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Abstract: Stability considerations play a central role in structural dynamics to determine states that
are robust against perturbations during the operation. Linear stability concepts, such as the complex
eigenvalue analysis, constitute the core of analysis approaches in engineering reality. However,
most stability concepts are limited to local perturbations, i.e., they can only measure a state’s
stability against small perturbations. Recently, the concept of basin stability was proposed as a
global stability concept for multi-stable systems. As multi-stability is a well-known property of a
range of nonlinear dynamical systems, this work studies the basin stability of bi-stable mechanical
oscillators that are affected and self-excited by dry friction. The results indicate how the basin stability
complements the classical binary stability concepts for quantifying how stable a state is given a set of
permissible perturbations.
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1. Introduction

The dynamics of systems affected by friction are most often studied in the context of
friction-excited vibrations (FIV). Prominent examples for FIV in mechanical structures and machines
range from brake systems [1–4], clutches [5], drill strings [6] to artificial hip joints [7] and others.
FIV often arise through positive energy feedback from a friction interface with the structure,
i.e., through self-excitation [8–10]. Sub-critical Hopf bifurcations [11,12] and isolated solution
branches [13–15] are a common observation in those systems, such that bi- and multi-stable systems
have been reported numerously [14,16,17]. The computation of those nonlinear responses (periodic,
quasi-period orbits, chaotic trajectories) is a well-established field of research [18–21], mostly resulting
in the identification of complicated bifurcation diagrams [11,13,22–24]. The stability of the solutions
is usually assessed by local Lyapunov-type stability metrics [25,26]. Hence, the stability statement
is often a binary one that measures the state’s robustness against small perturbations. However,
the actual size of permissible perturbations, i.e., those for which the trajectory would still return back to
the state, is not given. In a multi-stable system configuration, the long term steady-state behavior thus
depends on the choice of initial conditions or the size of instantaneous perturbations. Once the system
enters another basin of attraction, severe jumping phenomena may occur. Typically, such jumps are
related to a change from a stable steady sliding state to high-intensity periodic vibrations or stick-slip
cycles [27–29], or from one periodic solution to another periodic solution [11].

This work investigates a rather novel technique denoted as basin stability to estimate the size of
the system’s basins of attraction in a subset of the state space. The basins’ size estimation can then be
considered a global stability metric, i.e., indicating how likely the system is to end up on one of the

Lubricants 2020, 8, 105; doi:10.3390/lubricants8120105 www.mdpi.com/journal/lubricants

http://www.mdpi.com/journal/lubricants
http://www.mdpi.com
https://orcid.org/0000-0002-0888-8206
https://orcid.org/0000-0003-2074-3170
https://orcid.org/0000-0002-0214-904X
http://www.mdpi.com/2075-4442/8/12/105?type=check_update&version=1
http://dx.doi.org/10.3390/lubricants8120105
http://www.mdpi.com/journal/lubricants


Lubricants 2020, 8, 105 2 of 12

co-existing stable steady-states. Therefore, those probabilities add new insights to the rather binary
stability statements derived from local perturbation-based approaches. We study a friction oscillator
excited by a falling friction slope and a second oscillator excited through binary flutter instability.
Our results indicate that the basin stability analysis is a robust and easily applicable model-agnostic
technique. It can reveal the actual picture of the long-term behavior for a given set of perturbations,
thus augmenting classical bifurcation and stability studies. Using the basin stability analysis, some
solutions can even be ruled out if one can guarantee strict control over the instantaneous perturbations
to system trajectories or operating conditions.

2. The Concept of Basin Stability

We study nonlinear dynamic systems

ẋ = f (x, t) , x ∈ RN (1)

with the states x (t) in the N-dimensional state space. The long-term asymptotic behavior is denoted as
attractorA [30] throughout this work. Typically, the Lyapunov spectrum Λ = [λ1, . . . , λN ] is assessed to
characterize the linear stability of a state x against small perturbations. For fixed points, the Lyapunov
exponents are equivalent to the system’s eigenvalues derived from the complex eigenvalue analysis
(CEA). The real parts of the eigenvalues indicate linear stability to a small perturbation about the fixed
point. The sizes of the real parts indicate the strength of attraction (λ < 0) or rejection (λ > 0) for
stable or unstable directions in state space, respectively. However, the eigenvalues do not encode a
piece of information about the permissible size of perturbations that are still attracted by the fixed
point. While this is not an issue for systems that feature only a single stable solution, the situation is
different for systems featuring multiple stable solutions. For these systems, local stability concepts
may have only a limited validity: a non-small perturbation of a state can result in a jump to another
attractor. Hence, global stability concepts are required to assess the size of permissible perturbations,
i.e., to characterize the basins of attraction for all solutions. The basin of attraction

B (A) =
{

x0 ∈ RN | lim
t→∞

x (t) = A, x0 = x (t = 0)
}

(2)

denotes the subset of states that converge to the same attracting set A. The basin boundaries are
related to unstable solutions of the system which represent separatrices of the basins in state space.
Depending on the size and shape of its basin, an attractor can be more or less robust against non-small
perturbations. There are multiple ways to compute the basins of attraction, e.g., through Lyapunov
functions [31]. These methods are known for some canonical, low-dimensional, and well-studied
systems. However, they are not readily available, or straight-forward to compute, for any generic
and high-dimensional nonlinear dynamical system, such as frictional oscillators which are studied in
this work.

The basin stability proposed by Menck et al. [32,33] is a global stability concept for complex
systems that aims at measuring stability against non-small perturbations by a volume-based
probabilistic approach. Conceptually, the basin stability measures the volumetric share of all basins of
attraction in a hypervolume of the state space. For a computationally feasible solution, a distribution
ρ (x) of perturbations is drawn from a reference subsetQ ⊂ RN of the state space, representing a set of
states to which the system may be pushed to through non-small perturbations with

∫
Q ρ (x) dx = 1.

For each perturbation, the steady-state behavior of the dynamical system is obtained through
time-marching integrations. Then, the fraction of perturbed states that converged to the specific
attractor A denotes an estimate for the basin stability SB (A), i.e., [32,34]

SB (A) =
∫

κB (A) (x) ρ (x)dx, κB (A) (x) =
{

1, if x ∈ B (A)
0, otherwise

. (3)
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Here, κB denotes an indicator function that classifies a steady state solution x (t) to belong to the
attractor A. Therefore, SB (A) is an estimate for the volume share of the basin of attraction BA given
the reference subset Q ⊂ RN sampled by ρ (x) [32,35]. Naturally, for a k-multi-stable system, the basin
stability values of all k attractors add up to unity ∑k

i SB (Ai) = 1. The size, i.e., the number of states,
of the dynamical system to be studied by the basin stability is only limited by computational power
for the Monte Carlo simulations. As the basin stability computation can be considered a repeated
Bernoulli experiment [32], the standard error of the basin stability estimate is

e =
√
SB (1− SB)√

n
(4)

which can be used to find a subset Q that ensures a low standard error. Recently, systems with fractal,
riddled, and intermingled basin boundaries were studied [33] indicating the robustness of the basin
stability concept. All basin stability computations in this work were obtained from the open-source
package bSTAB [36] available at https://github.com/TUHH-DYN/bSTAB/tree/v1.0.

Figure 1 displays a schematic for illustrating the practical computation of basin stability values.
A nonlinear dynamical system with two states x = [x1, x2] is studied (In fact, the system is the
single-degree-of-freedom frictional oscillator to be discussed in Section 3). The system exhibits three
solutions: A stable equilibrium position (xEP), an unstable periodic orbit (xUPO), and a stable limit
cycle (xLC). The distribution of perturbations ρ (x) is chosen such that all solutions are contained in
Q and n = 100 samples are drawn uniformly at random. The trajectories starting from nEP = 37
states in the basin BEP converge towards the equilibrium position, while nLC = 63 states are located
in the basin BLC and thus converge to the stable limit cycle. As a result, the basin stability estimates
are SB (EP) = 0.37 and SB (LC) = 0.63, respectively. Because the separatrix, which is the unstable
periodic orbit, is explicitly known for the system, the basin volumes can be determined analytically.
The exact volumetric fractions of BEP and BLC in Q are 0.3275 and 0.6725, respectively. Therefore,
the basin stability computed from n = 100 samples is a good approximation for the system at hand
(Appendix A.2 indicates that n ≈ 300 samples are required for a very close approximation of the
analytical results).

xLC

xEP

x1

x
2

limt→∞ x (t) = xEP

limt→∞ x (t) = xLC

Q ⊂ RN

BLC

BEPBEP

SB (EP) = nEP/n

SB (LC) = nLC/n

n randomly chosen states x

Figure 1. Schematic of the basin stability calculation. In the two-dimensional state space, two stable
attractors EP (equilibrium position) and LC (limit cycle) co-exist. The respective basins of attraction BEP

and BLC are separated by an unstable periodic orbit (indicated by the dashed line). The steady-state
behaviors of n = 100 randomly sampled states are used to estimate the volume shares of the basins of
attraction in the subset Q. The resulting basin stability estimates are SB (EP) = 0.37, SB (LC) = 0.63
for this example.

https://github.com/TUHH-DYN/bSTAB/tree/v1.0
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3. Bi-Stable Oscillator with Falling Friction Slope

As a first system, we study the dynamics and the stability of a single-degree-of-freedom oscillator
mẍ + cẋ + kx = F, see Figure 2a, with velocity-dependent friction as proposed by Papangelo et al. [12].
Specifically, the friction characteristic µ (vrel) is a velocity-dependent weakening function

vrel 6= 0 : F = −Nµ (vrel) sign (vrel) , vrel = ẋ− vd

vrel = 0 : |F| < µstN

µ(vrel) = µd + (µst − µd) exp
(
−|vrel|

v0

) (5)

featuring the static friction coefficient µ (0) = µst, the dynamic friction coefficient µ (vrel → +∞) =

µd, the reference velocity v0 and the contact normal load N. The non-dimensional form of the
equations of motion is obtained through normalization (·̃) of the quantities accordingly to the work
of Papangelo et al. [12]. The velocity-dependence introduces a dynamic instability that gives rise to
friction-induced vibrations (FIV) for 0 ≤ ṽd ≤ 1.84. Moreover, the friction nonlinearity enables the
system to exhibit a bi-stable behavior, such that a stable steady sliding state and a stable stick-slip cycle
co-exist for a range of belt velocities 1.11 ≤ ṽd ≤ 1.84, see Figure 2b. At ṽd = 1.15, the steady sliding
state loses stability at a subcritical Hopf bifurcation point. In the bi-stability regime, and depending on
the initial condition or instantaneous perturbations, the system will either end up in the low-energy
steady sliding state, or on the high-intensity stick-slip cycle. Both solutions are locally stable and
attractive, i.e., robust against small perturbations.

k

c

m

vd

µ(vrel)

x

N

(a)

1 2 3
0

1

2

bi-stability
regime

ṽd[/]

Ã
[/

]

(b)

0 2
−2

−1

0

1

x̃[/]

˙̃ x
[/

]

(c)

Figure 2. (a) single-degree-of-freedom frictional oscillator, (b) bifurcation diagram for the
non-dimensional belt velocity ṽd, and (c) phase plane for ṽd = 1.5. Stable (unstable) solutions are
indicated by solid (dashed) lines. The stable steady sliding state (blue spiral trajectory) co-exists with
the unstable periodic orbit (black dashed line) and the stable stick-slip limit cycle (red trajectory).
The non-dimensional system (·̃) is evaluated for µd = 0.5, µst = 1.0, ξ = 0.005, N = 1.0 and ṽ0 = 0.5.

For this minimal system, the basin boundaries are directly accessible through the unstable periodic
orbit (UPO). However, if this knowledge was not available, the probability of arriving on one of the two
steady states would be unknown. Figure 1 displays a sampling with n = 100 points uniform at random
from Q (x, ẋ) : [−3, 3]× [−2, 2] at ṽd = 1.5, and the resulting basin stability values SB (FP) = 0.37
and SB (LC) = 0.63. Hence, for this ρ (x), it is more likely to arrive on the high-amplitude limit cycle
solution than on the steady sliding fixed point.

To complement the bifurcation diagram and the complex eigenvalue analysis, the basin stability
of the fixed point and limit cycle solution is derived along the normalized belt velocity parameter.
In particular, at each velocity value n = 1000 initial conditions are drawn from a uniform random
distribution in Q (x, ẋ) : [0.5, 2.5] × [−2, 0], i.e., positive initial displacement and negative initial
velocity. Figure 3 depicts the eigenvalue’s real part and the basin stability. As ṽd decreases, the real
part grows until it crosses into the positive plane at ṽd = 1.15. This rather smooth behavior nicely
indicates the transition into linear instability of the fixed point solution. However, the eigenvalues at
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the exemplary points ṽd = 1.3 and ṽd = 1.7 would not allow a statement about the system’s probability
to converge to this solution instead of converging to the periodic orbit. Additionally, the eigenvalue
obviously does not indicate the existence of the competing stable periodic solution in this parameter
range. At this point the basin stability analysis comes into play: Below the Hopf bifurcation point,
all trajectories converge to the periodic orbit, hence SB (LC) = 1.0, and above the bi-stability regime
all trajectories converge to the globally stable fixed point, i.e., SB (FP) = 1.0 for ṽd > 1.84. For the
chosen subset Q, the periodic orbit is the dominating behavior in the lower parameter range of the
bi-stable regime. For increasing relative velocity the probabilities, i.e., the basin stability values, are
more balanced for arriving either on the LC or the FP. For ṽd > 1.6 the fixed point is the more probable
solution to arrive at. Therefore, the basin stability values add an important insight and complement
the binary stability statements given by the eigenvalues. Using the basin stability, it is now possible
to state how stable a solution is against arbitrary and possibly non-small perturbations. For more
realistic systems, this statement may be of even larger value than the binary stability statement given
by local metrics.

0.5

1.5

2.5 stick-slip cycle
(LC)

steady sliding (FP)

bi-stability
regime
ṽlw ≤ ṽd ≤ ṽupÂ

[/
]

stable
unstable

0

0.1

eigenvalue λ of FP

<
(λ
)

0.8 1.2 1.6 2 2.4

0

0.5

1

ṽd[/]

S B

FP
LC

Figure 3. Bifurcation diagram (top), real eigenvalue (middle) and basin stability (bottom) of the
single-DOF friction oscillator along the relative sliding velocity.

4. Bi-Stable Oscillator with Mode-Coupling

As a second system, we study a frictional oscillator [8,11], which (in contrast to the first system)
experiences FIV through a mode-coupling instability. The system features a main oscillating mass
that is in dry Coulomb-type frictional contact with a conveyer belt. A second mass is connected to the
main mass through a nonlinear joint element in diagonal direction, thereby geometrically coupling the
vertical and horizontal movement of the main mass. The relative sliding velocity is assumed to always
be positive, such that no stick-slip cycles can arise. For the nonlinear joint element, a cubic stiffness
nonlinearity knl is chosen [11]. The equations of motion and parameter values are given in Appendix B
and the model is displayed in Figure 4.
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Figure 4. (a) Frictional oscillator with nonlinear joint and mode-coupling instability [11]. (b) Trajectories
obtained in the reference configuration (see Appendix B) for two different initial conditions of the
horizontal displacement x (all other states were kept at 0).

Previous studies have revealed the complicated bifurcation behavior of this system, including
super- and sub-critical Hopf bifurcations as well as isolated solution branches [11,13,14]. In this study,
a variation of the horizontal stiffness kx is performed. A sub-critical Hopf bifurcation point is found at
kx = 32.3, see Figure 5a. Below, a stable limit cycle and the unstable fixed point exist. Above this value
there is a bi-stable range up to kx = 33.0 with a co-existing stable limit cycle and the stable fixed point.
The eigenvalues’ real parts in Figure 5b exhibit the classical forking behavior that is related to the
mode-coupling instability mechanism in this system. At the point of instability, one eigenvalue crosses
into the positive plane. The basin stability SB of both stable solutions is computed for n = 500 random
initial conditions drawn from Q (x, ẋ) : [0, 0.5]× [0, 0.25] (all other initial conditions are fixed to 0).
Figure 5c depicts the basin stability as a function of the horizontal stiffness. In the bi-stability range
32.3 ≤ kx ≤ 33.0 the basin stability values indicate that the limit cycle solution is the dominating one
for lower stiffness values. For larger stiffness values the fixed point solution is the most probable for
our choice of Q. Hence, within this rather short bi-stability range, a minor variation of the horizontal
stiffness value would crucially affect the probability of arriving either on the low-energy steady-sliding
state, or on the high-energy limit cycle, which may cause increased wear, audible vibrations and other
effects in realistic systems. Such kind of statement about the global stability regarding non-small
perturbations would not have been easily accessible through the bifurcation diagram or the local
stability analysis.

30 31 32 33 34

0

0.5

1

1.5

kx

x̂

(a)

30 31 32 33 34

−0.3

0

0.3

kx

R
e(
λ
)

(b)

30 31 32 33 34

0

0.5

1

kx

S B

FP
LC

(c)

Figure 5. (a) bifurcation diagram for the horizontal stiffness parameter, (b) eigenvalues’ real parts and
(c) basin stability of the fixed point and limit cycle solution. x̂ denotes the maximum amplitude of x(t)
along one vibration period. Solid and dashed lines indicate stable and unstable solutions, respectively.

These results are clearly related to the shape of the unstable periodic orbit, i.e., the separatrix
of both basins of attraction. While the qualitative basin stability values for a variation in the initial
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conditions for x would have been readable from the bifurcation diagram in Figure 5a, this task quickly
becomes complex once more degrees-of-freedom (DOFs) are considered. For example, let us consider
a reference subset Q that captures certain variations for multiple DOFs, instead of variations for a
single DOF as shown before. Figure 6 displays the basin stability values for three different choices of
Q, i.e., different variations of the range of possible initial conditions:

Q1 (x, y) : [0, 0.25]× [0, 0.5]

Q2 (x, y, ẋ, ẏ) : [0, 0.25]× [0, 0.25]× [−0.1, 0.1]× [−0.2, 0.2]

Q3 (x, y, z, ẋ, ẏ, ż) : [0, 0.25]× [0, 0.25]× [0, 0.25]× [−0.1, 0.1]× [−0.1, 0.1]× [−0.1, 0.1] .

(6)

In the first case, some initial variations in the horizontal position and large variations in the vertical
displacement of the main mass are allowed. In the second case, variations in the initial velocities are
studied, and in the third case also variations in the secondary mass’ initial conditions are considered.
Such scenarios would quickly become impractical for studying permissible perturbations, i.e., the
global stability of each solution, using bifurcation diagrams and subdividing the state space by the
unstable solutions. The concept of basin stability automates this process through the Monte Carlo
sampling, allowing for a easy-scaling and consistent estimation of the relevant basin volumes.

32 32.5 33

0

0.5

1

kx

S B

FP
LC

(a)

32 32.5 33

0

0.5

1

kx

(b)

32 32.5 33

0

0.5

1

kx

(c)

Figure 6. Basin stability values in the bi-stability range for the reference sets of initial conditions Q1 (a),
Q2 (b), and Q3 (c) defined in Equation (6).

In fact, even though the three reference sets are very different in their value ranges, the resulting
basin stability analysis displayed in Figure 6 does not change qualitatively. The turning point,
i.e., the point after which the FP solution dominates over the LC solution for increasing values
of kx, changes only slightly: ForQ1 this point is found at kx = 32.9, while it is kx = 32.7 and kx = 32.55
for Q2 and Q3, respectively. Hence, the basin stability is not very sensitive to the choice of Q for this
system. In a situation in which the overall qualitative behavior of the basin stability values may have
seem obvious, the quantitative evaluation would have become difficult to obtain from the bifurcation
diagrams. Especially for higher-dimensional systems and specific subset choices the basin stability
analysis represents a highly robust approach to estimate the probability of arriving on either of the
competing solutions, which we will illustrate in the next section.

5. Bi-Stable Oscillator with Isolated Periodic Solution

The third dynamical system studied in this work is a weakly damped variant of the system
proposed in the previous section and sketched in Figure 4. Here, the damping parameters are reduced
by a factor of 10 to dx = dy = dz = dlin = 0.002. This system configuration has already been studied
in [13,14] where the authors found an isolated solution branch resulting from the damping variation.
Figure 7a displays the bifurcation diagram for the horizontal stiffness kx. The fixed point solution loses
stability through a sub-critical Hopf bifurcation at kx = 32.24 to a limit cycle solution, hereafter denotes
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as LC1. Interestingly, a second stable limit cycle solution is born for kx < 29.9, which is found to be
an isolated branch [14], hereafter denoted as LC2. That is, this solution is not connected to any other
solution path. As a result, the system may jump from the fixed point solution to the first limit cycle for
32.24 ≤ kx ≤ 33.0, and then from the limit cycle to the isolated branch for kx < 29.9. Hence, within a
rather narrow parameter range, two jumping phenomena between different solutions may occur. It is,
therefore, of great interest to investigate the probability of arriving on either of those solutions for
some prescribed set of initial conditions.

10 15 20 25 30 35
0

10

20

LC2 (isola)

LC1

kx

x̂

(a)

15 20 25 30 35

0

0.5

1

kx

S B

FP
LC1
LC2 (isola)

(b)

Figure 7. Bifurcation diagram for the weakly damped friction oscillator exhibiting an isolated solution
branch (a) and basin stability values (b) for all three stable solutions along the horizontal stiffness kx.
Initial conditions for each solution are given in Appendix C.

Figure 7b displays the basin stability values for both periodic orbits and the fixed point solution.
For the reference subset, we arbitrarily chose Q (x, y, z, ẋ, ẏ, ż) : [0, 10] × [0, 10] × [0, 10] × [−2, 2] ×
[−2, 2] × [−2, 2] using n = 1000 sampling points. For for the bi-stability range featuring the two
periodic solutions LC1 and LC2 (kx < 29.9) the basin stability analysis reveals that LC1 is the by
far most probable solution. A maximum of 21% of the trajectories converge to the isolated solution
branch, while the remaining trajectories converge to the first periodic orbit. Particularly interesting is
the parameter regime 27.4 ≤ kx ≤ 29.9. Here, the basin stability indicates that LC1 is globally stable,
even though the stable isola still co-exists. However, due to the choice of Q, no initial conditions were
drawn for the basin related to LC2. Hence, if the range of initial conditions and perturbations can be
quantified or limited for some specific system, the basin stability analysis can also help to rule out
jumping phenomena between co-existing solutions.

Another interesting observation is the following: the basin stability values in this specific setting
do not follow the qualitative trend of the respective amplitudes reported in Figure 7a. SB (LC1) keeps
increasing along the stiffness parameter, while the corresponding amplitude of the horizontal vibration
amplitude shows a different behavior. Theoretically, it is clear that the vibration amplitudes do not
relate to the size of the basins of attraction. However, on the first sight classical bifurcation diagrams
may suggest that one solution is more attractive if it has a larger vibration amplitude. At this point,
the basin stability represents a technique to quantify the attractiveness in a highly consistent manner.

Lastly, we discuss our previous thought on the benefits of having a robust methodical approach
to estimating the basin volumes through Monte Carlo sampling irrespective of the dynamical system
at hand (so-called model-agnostic techniques). Especially for such low-dimensional systems as shown
before, one might raise the issue of using computation-heavy sampling methods, even though the
basins of attraction are readily available once the bifurcation diagram is known. Figure 8 displays the
state space of each DOF at kx = 27, hence in a configuration where the two periodic orbits co-exists.
It becomes clear that even for this 3 DOF oscillator (6 states), the analytical calculation of the basin
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volumes can quickly become a challenge. There is no straight-forward way to computing the volumes
in the six-dimensional space from the intertwined basins separated by the unstable orbits, especially
looking at the z coordinate. Therefore, the basin stability analysis is not only relevant for systems
featuring larger number of states, but also for rather low-dimensional systems.
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ẋ
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LC2
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ẏ
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0

50
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Figure 8. State space of all DOFs (horizontal direction in (a), vertical direction in (b) and diagonal
direction in (c)) at kx = 27.0 for the weakly damped oscillator.

6. Conclusions

This work proposed augmenting the classical local stability analysis of friction-excited oscillators
by their basin stability. The concept of basin stability allows assigning global stability metrics to
multi-stable solutions in a highly automated manner including error estimates. For three different
friction-excited systems, we show that the knowledge of global stability with respect to a specific
set of initial conditions can provide important insights into the long-term dynamics. Particularly for
well-controlled perturbations, this approach allows estimating the probabilities of arriving on either of
multiple stable solutions, and even to rule out some steady-state behavior. As a result, we suggest
to include the basin stability analysis into the toolbox of techniques that are applied to study the
nonlinear dynamics of multi-stable systems, especially when operating conditions are well-known.
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Appendix A. Single-DOF Oscillator

Appendix A.1. Equations of Motion

Using ωn =
√

k
m , ξ = c

2
√

km
, x0 = N

k , and τ = ωnt, d
dt = ωn

d
dτ we re-write Equation (5) into

¨̃x + 2ξ ˙̃x + x̃ = F̃ (A1)

where (·̃) indicates a non-dimensional quantity.

Appendix A.2. Convergence of Basin Stability Values

The number of samples n is varied to answer the question of how many samples from Q are
required for a robust approximation of the basin stability values. Figure A1 displays the convergence
of the basin stability values for the single-DOF oscillator case and the corresponding analytical values.
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Figure A1. Effect of increasing the number of samples for estimating the basin stability values at
ṽd = 1.5. For each value n, the calculation has been repeated ten times. Mean values δ and the standard
deviation σ are reported along with the analytical values.

Appendix B. Mode-Coupling Instability Oscillator

The equations of motion are given by

Mẍ + (D + G) ẋ + (K + N) x + fnl = 0, x = [x, y, z]> ,

M =

m 0 0
0 m 0
0 0 m1

 , D =

dx 0 0
0 dy 0
0 0 dx

 , G = 0, K =

 kx −0.5kyµ 0
−0.5kyµ ky 0

0 0 kz

 ,

N =

 0 −0.5kyµ 0
0.5kyµ 0 0

0 0 0

 , Fnl = uklin + u3knl + u̇dlin, fnl =

−
√

2
2

−
√

2
2

1

 Fnl

(A2)

where u is the relative displacement in the joint between the main mass and the secondary mass,
given by u = −

√
2

2 x −
√

2
2 y + z. The parameter values for the reference configuration are given by

m = m1 = 1, kx = 32.5, ky = 20, kz = 100, klin = 10, knl = 5, dx = dy = dz = dlin = 0.02, µ = 0.65.
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Appendix C. Mode-Coupling Instability Oscillator with Isolated Solutions

Compared to the system configuration given in Appendix B, the damping parameter values are
set to dx = dy = dz = dlin = 0.002. Initial values on the periodic orbits at kx = 11 for the weakly
damped system configuration read

y0 =
[
−1.1366 −4.5527 −1.2077 −0.0125 0.0722 −0.0054

]>
LC1

y0 =
[
5.9650 −6.6938 −4.5901 0.2163 8.6960 −6.1122

]>
LC2 .

(A3)
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