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Abstract: Artificial intelligence and, in particular, machine learning methods have gained notable
attention in the tribological community due to their ability to predict tribologically relevant pa-
rameters such as, for instance, the coefficient of friction or the oil film thickness. This perspective
aims at highlighting some of the recent advances achieved by implementing artificial intelligence,
specifically artificial neutral networks, towards tribological research. The presentation and discussion
of successful case studies using these approaches in a tribological context clearly demonstrates
their ability to accurately and efficiently predict these tribological characteristics. Regarding future
research directions and trends, we emphasis on the extended use of artificial intelligence and machine
learning concepts in the field of tribology including the characterization of the resulting surface
topography and the design of lubricated systems.

Keywords: artificial intelligence; machine learning; artificial neural networks; tribology

1. Introduction and Background

There have been very recent advances in applying methods of deep or machine
learning (ML) to improve tribological characteristics of materials by means of artificial
intelligence (AI). AI is generally concerned with the design and construction of intelligent
agents, which is anything that acts in the best way possible in any situation [1]. ML refers
to a vast set of data-driven methods and computational tools for modelling and under-
standing complex datasets. These methods can be used to detect automatically patterns in
datasets thus creating models to predict future data or other outcomes of interest under
uncertainty [2–4]. Generally, ML methods can be divided into supervised learning and
unsupervised learning [3,5], see Figure 1. Regarding predictive or supervised learning
approaches, the aim is to learn a mapping from input vectors (training data) to their
corresponding output vectors (target data). Depending on the nature of the target data, su-
pervised approaches can be subdivided into classification or regression methods. When the
output is a categorical or nominal variable from a finite set of discrete categories (e.g., type
of surface finish, oil grade, lubricant additive, etc.), the problem is known as classification
or pattern recognition. In contrast, when the output consists of one or more real-valued
continuous variables (e.g., coefficient of friction, film thickness, temperature rise, etc.),
the problem is defined as regression. The second type of machine learning approaches is
denoted as descriptive or unsupervised learning. In this case, only inputs are provided
without any corresponding output vectors. The goal is to find meaningful patterns and
groups of similar features within the dataset (clustering), to determine the distribution of
data in the input space (density estimation), or to reduce high-dimensional data space to
two or three dimensions for visualization purposes (dimensionality reduction) [5]. Unlike
supervised learning, for which comparisons can be made between the predictions to the
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observed values, problems involving unsupervised learning are not well-defined since
no additional information or obvious error metric is provided about the patterns to be
’discovered’ in the dataset [5].
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Figure 1. Diagram generally classifying existing machine learning methods and algorithms. 

A prominent method that machines employ to learn is by using artificial neural net-
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brain and have the ability to “learn” in a fashion similar to the way humans do. An ANN 
is made of a network of model neurons, which can use algorithms to make them function 
like biological neurons. In this context, each model neuron has a threshold. The model 
neurons will receive many different inputs, which are summed up and sent an output 
equal to 1, if the sum is larger than the threshold. Otherwise, the output is 0. Machines are 
able to learn by modifying the thresholds of each model neuron, when a new example is 
introduced, until the thresholds reach a point to where they don’t change much [6]. 
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Figure 1. Diagram generally classifying existing machine learning methods and algorithms.

A prominent method that machines employ to learn is by using artificial neural
networks (ANNs). These networks are based upon the network of neurons in the human
brain and have the ability to “learn” in a fashion similar to the way humans do. An ANN is
made of a network of model neurons, which can use algorithms to make them function like
biological neurons. In this context, each model neuron has a threshold. The model neurons
will receive many different inputs, which are summed up and sent an output equal to 1, if
the sum is larger than the threshold. Otherwise, the output is 0. Machines are able to learn
by modifying the thresholds of each model neuron, when a new example is introduced,
until the thresholds reach a point to where they don’t change much [6].
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In addition to ANNs, fuzzy systems are another type of models used in AI. These
systems are based on fuzzy logic and represent a more human way of thinking in their
application of inference. They are characterized by displaying a range of truth from 0 to 1
instead of displaying Boolean true/false results [9]. In the field of tribology, many tests
on materials are typically performed, which define a set of tribological properties. This
dataset can for example be incorporated to develop an ANN (Figure 2), which can be used
for further optimization [8,10]. This perspective attempts to display some of the recent
advances done in implementing AI, specifically but not limited to ANNs. Furthermore, we
intend to address current challenges and future research directions towards tribological-
related problems.

2. Application Fields of AI in Tribology

As briefly evidenced by several examples below, the use of AI and ML approaches
already covers various fields of tribology, ranging from condition monitoring over the
design of material compositions to lubricant formulations or film thickness predictions.

2.1. Online Condition Monitoring

As early as in 1998, Umeda et al. [11] trained a multilayer and a self-organizing fea-
ture map ANN with microscopy data from lubricated ball-on-disk sliding experiments
to classify wear particles by means of various descriptors (width, length, projection area,
perimeter, representative diameter, elongation, reflectivity etc.). When trained with rep-
resentative data, the multilayer ANN successfully predicted the relation between the
experimental conditions and the obtained particle features. The self-organizing feature
map ANN was found to be capable of classifying the data without any supervised data.
Thus, on the one hand, characteristic particle features can be identified, and, on the other
hand, the authors suggested that these approaches could be used for condition monitoring,
while the (partly unknown) sliding conditions can be derived from the automated particle
analysis. Shortly after, Subrahmanyam and Sujatha [12] applied two ANN approaches,
namely a multilayered feed forward neural network trained with supervised error back
propagation (EBP) technique and an unsupervised adaptive resonance theory-2 (ART2)
based neural network for the detection and diagnosis of localized defects in ball bearings.
These networks were trained with vibration acceleration signals from a rolling bearing
test-rig under various load and speed conditions. Thereby, the EBP and the ART2 model
were found to be accurate in distinguishing a defective bearing from a normal one (100% re-
liability), with the ART2 being 100 times faster. Moreover, the EBP network was capable to
classify the ball bearings into different states, i.e., ball or raceway defect, with a success rate
over 95%. A more recent ANN-based approach for monitoring and classifying the multi-
variant wear behavior of lubricated journal bearings was presented by König et al. [13].
As illustrated in Figure 3, an autoencoder was used for anomaly detection. Moreover,
acoustic emission signals with continuous wavelet transformation were utilized to train a
convolutional neural network to classify the modes of running-in, insufficient lubrication
and particle-contamination of the oil. While the first and second were sometimes mistaken,
the contaminated lubricant was detected with an accuracy and a sensitivity of 97 and 100%,
respectively.
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2.2. Design of Material Composition

In addition, various researchers have applied ML and AI approaches to predict and
optimize the tribological behavior of different materials and operating conditions with
manifold applications in mind [14–20]. For instance, Alambeigi et al. [21] investigated the
accuracy of predictive AI models by comparing them with experimental results obtained
by testing the dry sliding contact of sintered steels [21]. The steel for this study was
manufactured by powder metallurgy, which is known to have many industrial applications
in engine parts and transmission systems with problems related to friction and wear. Three
different types of predictive models were used in this study. The first approach made use of
an ANN. ANNs have a significant advantage in their learning ability and their handling of
nonlinear functions, which the wear tests of these steel materials are mainly characterized
by. The second model used is known as a “fuzzy system,” specifically known as a fuzzy
C-means clustering algorithm (FCM). Fuzzy systems also work well in decision making
with nonlinear functions and for systems with many time-dependent parameters. The third
model was based upon a fuzzy-neuro system known as adaptive neuro fuzzy inference
system (ANFIS), which combines the qualities of both ANNs and regular fuzzy networks.
Their tests were conducted using input parameters such as cooling rates, applied loads,
sliding distances, and the type of powders. Therefore, tests were done at three different
cooling rates and three different applied loads. In this study, all three methods displayed
high accuracy in predicting the behavior of the wear tests with the ANN model performing
the best, generating an R2 value above 0.9911 and a root mean square error of 3.98 × 10−4

for testing data sets [21].
Apart from steels, composite materials have also been the subject of investigations

based upon AI and ML approaches. Senatore et al. [22] developed an EBP model to study
the tribological behavior of different brakes and clutch materials thus elucidating the
influence of different materials, loading, sliding and acceleration conditions. Therefore,
the three-layer ANNs were optimized by an evolutionary genetic algorithm to maximize
the prediction quality and the data base was extracted from experimental pin-on-disc
tests. By means of a sensitivity analysis, it was demonstrated, for instance, that the sliding
velocity particularly contributed to the friction coefficient in the experiments carried out.
Moreover, it was verified that the behavior within the data limits was predicted well,
whereas an extrapolation rather serves merely as a first indication for future research
directions. Besides, Busse and Schlarb [23] developed an ANN architecture with the
Levenberg–Marquardt (LM) training algorithm and mean squared error with regularization
(MSEREG) as performance function to predict the tribological properties of polyphenylene
sulfide (PPS) reinforced on different scales. Using this approach, the coefficient of friction
(COF) was predicted with two times and the wear rate with six times higher accuracy
than with conventional ANN pruned by the optimal brain surgeon (OBS) method. In
addition, the predicted error scales for both friction and wear were ten times smaller than
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the standard deviations from the tribological pin-on-disk experiments of the database. Both
tribological properties were predicted well by using the material composition, sliding speed
and contact pressure as input variables. It was also demonstrated that additional input
variables such as tensile or compression properties only slightly improve the predictions
for friction and wear.

2.3. Lubricant Formulations

In addition to material composition, AI/ML approaches can be used for designing
lubricant formulations. Bhaumik et al. [24] used the ANN approach to create a biolubricant
with optimized properties and characteristics. They used a genetic algorithm to optimize
the properties and the ANN acted as the objective function for the genetic algorithm.
Their goal was to create a blend of different vegetable oils, including castor, coconut, and
palm oils using multiple friction modifiers, including carbon nanotubes and graphene,
which were intended to be optimized using an ANN. The ANN was used to verify the
effect of these inputs on the COF. Two different ANN models were used to optimize and
design two different lubricants. The first lubricant (Lube A) had a composition of 40%
palm oil, 40% castor oil, and 20% coconut oil with 0.7 wt.-% carbon nanotubes and no
graphene. The second lubricant (Lube B) contained equal percentages of all oils with
1 wt.-% each of carbon nanotubes and graphene. Based upon the experimental results,
it was shown that the COF was reduced by the addition of friction modifiers in both
lubricants. Additionally, experimental work demonstrated a sensitivity regarding the
respective testing conditions (four-ball versus pin-on-disk tester). A similar study was
performed by Bhaumik et al. [25], in which a genetic algorithm and ANN were used to
optimize and design a castor oil lubricant with graphite, graphene, multi-walled carbon
nanotubes, and zinc oxide nanoparticles. Pin-on-disk tests were used to gather tribological
data for the castor oil with different concentrations of these modifiers. The ANN used
concentration, load, and speed as input parameters and the COF as output parameter.
The composition of the designed lubricants using the ANN came out to have a total
concentration of friction modifiers of 2 wt.-% with a distribution of 0.66 wt.-% each of
graphite, carbon nanotubes, and zinc oxide nanoparticles. There was no graphene in the
designed lubricant since the amount of graphene was shown to have a negligible effect.
Afterward, it was experimentally verified that the designed lubricant induced a friction
reduction by about 50% compared to most conventional mineral oils.

Other researchers [26] also analyzed the use of ANNs to design lubricants with
significantly lower COFs (Figure 4). They considered the optimization of mixtures of
vegetable oil (sunflower and rapeseed oils) with diesel oil for use in diesel engines. The
ANN predicted a lower COF for a mixture of 4 wt.-% sunflower oil and 0 wt.-% rapeseed oil
compared to a mixture of 0 wt.-% sunflower oil and 20 wt.-% rapeseed oil. The ANN also
predicted a lower COF for a mixture of 6.5 wt.-% sunflower oil and 0 wt.-% rapeseed oil
compared to a mixture of 0 wt.-% sunflower oil and 0 wt.-% rapeseed oil. Both predictions
aligned well with experimental results.
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2.4. Lubrication and Fluid Film Formation

In addition, AI/ML algorithms can be used to predict lubricant film formation and
friction behavior in thermo-hydrodynamically (THL) and thermo-elastohydrodynamically
lubricated (TEHL) contacts. For example, Moder et al. [27] used highspeed data signals of
a torque sensor obtained from a journal bearing test-rig to train ML models for predicting
lubrication regimes (Figure 5). Main results showed that deep and shallow neural networks
performed equally well, reaching high accuracies. Furthermore, logistic regression yielded
the same level of accuracy as neural networks. It was also emphasized the potential
use of the proposed methodology for further investigations of ML applications on other
tribological experiments.
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Senatore and Ciortan [28] trained an ANN with excellent prediction quality to optimize
the frictional performance of the piston-liner using data obtained from numerical HL
simulations. Wang and Tsai [29] proposed a surrogate model using ANN for fast prediction
of the THL lubrication performance of a slider bearing. The goal of creating the meta-
model was to reduce the computational efforts of conventional THL analysis without
compromising the solution accuracy. The dataset used to train and validate the ANN were
obtained from numerical simulations. Results showed that when using an appropriate,
results can be predicted with reasonable accuracy. Furthermore, it was also verified that
the training algorithm and the sample size affect the prediction accuracy significantly.
Gorasso and Wang [30] proposed a journal bearing optimization process, in which the
performance functions were an ANN trained with a dataset obtained from numerical
solutions of the Reynolds equation and Computational Fluid Dynamics (CFD) simulations.
The optimization strategies adopted for the calculations were non-sorted genetic algorithm
and artificial bee colony algorithm. Otero et al. [31] investigated the use of ANNs for
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predicting the friction coefficient in EHL point contacts. The model was fed with friction
data obtained from tribological tests carried out for different lubricants and a range of
operating conditions. It was shown that properly trained networks are capable to offer
excellent predictions with a high level of correlation with the corresponding experimental
data. Nonetheless, it was highlighted that special care is needed when using ANNs
models as predictive since they are accompanied with the loss of relevant information, or
intermediate results of interest (e.g., the complex rheological response of the lubricant at
high pressure, temperature and shear-strain rate conditions), associated with the physical
phenomena taking place in TEHL contacts. However, the supervised ML approach could
be extended by using data from mixed-TEHL simulations for a wide range of materials
and lubricant properties, contact geometries and working conditions. This would enable a
fast and powerful design tool to predict the lubrication performance (e.g., film thickness,
friction, temperature rise, leakage, among others) of different types of bearings and other
lubricated systems [32]. For example, Marian et al. [33] applied a metamodel of optimal
prognosis (MOP) to predict the influence of surface micro-textures on the frictional behavior
of EHL point-contacts, see Figure 6. Thereby, the database was generated by numerical
simulations considering mixed lubrication, whereby geometrical micro-texture parameters
such as dimple depth and diameter were varied. Non-significant variables were then
filtered and various metamodels, such as polynomial regression, moving least squares and
kriging were trained. The most suitable approach was then automatically selected using a
coefficient of prognosis and used for optimization by a genetic algorithm. Thus, tailored
and load-case dependent surface textures can be determined.
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Furthermore, Boidi et al. [34] employed the radial basis function (RBF) method for
predicting the friction coefficient in lubricated contacts with textured and porous surfaces.
The RBF model was trained with friction data obtained from tribological tests conducted
on surfaces with different features and for a range of entrainment velocity and slide-roll
ratio. The main results show that the hardy multiquadric radial basis function provided
satisfactory overall correlation with the experimental data. It was also pointed out that
the application of the suggested methodology could be extended to other experimental
results to train more robust ML models for predicting tribological performances of textured
and structured surfaces. In this respect, unsupervised ML methods could be used to
construct design charts and to identify patterns of optimum performance. Furthermore,
the reliability and accuracy of these ML-based tools are expected to improve continuously
as more data is available. Regarding the analysis of the involved surface topography,
unsupervised ML methods could be applied to achieve robust segmentation procedures for
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the characterization of real surface topographies. In this regard, clustering methods can help
to identify and separate different surface features with tribological functionalities, such as
plateau regions, bumps, honing grooves, textures, pores, wear zones, among others. Once
the surface features are detected and separated in clusters, specific characterization methods
and statistical assessments can be individually applied to each cluster. Furthermore, the
analysis of the surface topography could further benefit from the use of supervised ML
methods, in which ML algorithms are trained using post-processed data (e.g., roughness
parameters, features statistics, etc.) of a variety of surfaces to create classification learning
models. These trained models are intended to be used to assess surface finishing processes
or correlated with tribological results to reveal specific characteristics of the surfaces that
most affect the tribological performance.

3. Current Challenges, Future Research Directions and Concluding Remarks

Summarizing, the application of AI and ML has been shown to be a powerful and
efficient way in predicting tribological characteristics and performance of materials with
respect to valuable resources and time. Thereby, these techniques combine statistics and
machine learning, imitating human intelligence at a more unconscious or untransparent
level. ANNs are suitable for highly complex, non-linear fundamental and applied problems,
which makes them particularly interesting for various fields of tribology. In addition,
however, there are some other approaches that should certainly receive attention from
tribologists. With this perspective, we intended to highlight some successful examples
that show the potential for further research and future applications. In the future, AI
methods could be applied in a lot more fields of tribology, e.g., the additivation of base oils
with viscosity and friction modifies (for instance, nano-particles) to predict the results of
experiments done on various materials compositions and test conditions.

Besides the prediction of optimal concentration, we hypothesize that AI and ML
approaches will be useful to predict the size of the nano-particles (x-, y- and z-dimension)
to effectively reduce friction and wear. Moreover, these approaches may be used to predict
the likelihood of a tribo-layer formation, which largely depends on a complex interplay
between different operational conditions. Moreover, AI and ML methods may be useful
to support the characterization and classification of the involved surface topography in
case of a stochastic surface roughness or even deterministic textured surfaces. Thereby, the
change of the surface topography during running-in or wearing may also be addressed.
From a more applied point of view, it can be also expected that AI and ML methods will be
greatly involved in the design process of dry or lubricated components, see Figure 7. Apart
from the prediction of optimum oil film thicknesses in machine components depending on
the operational conditions such as sliding speed or load, surface topographies and textures,
which are designed for specific conditions resulting in certain oil film thicknesses, are likely
to be predictable by AI and ML algorithms.

With the fast-paced developments in the area of algorithms and computing power
as well as the increasing availability and reusability of data [35], the utilization of AI in
tribology will certainly increase in the upcoming years. To increase the range of applications
and enhance the accuracy of the AI models, an online open platform could be created,
on which the tribology community could share data of numerical simulations, surface
characterizations and experiments. It is also conceivable that the database will not only be
based on numerical simulations or experimental work on a research/laboratory scale but
will also include actual operating data from real applications such as machine elements
or engine components. This would enable controllers with ML/AI algorithms to be
incorporated directly into these applications, e.g., rolling/sliding bearings, gears, brakes,
clutches or the piston assembly, and used for performance prediction and adaptation to
discontinuous and critical operating conditions.
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The recently emerging big data trend won’t bypass tribology and AI techniques have
already be shown to be effective for many tribological questions. However, one of the
biggest obstacles remaining is the handling of uncertainties in experimental and practical
data sets due to differences in setups and sensor systems as well as the inherent multi-
scale and statistical character of tribology with partially pronounced scattering of targeted
parameters. These are not hard data but correspond to time-dependent and very specific
loss variables, also resulting in frequently difficult transferability to other conditions or
even tribosystems. Therefore, further fundamental research is essential for the application
of new AI methods to ensure suitability and reliability in solving tribological issues. In
particular, strongly domain-specific expert knowledge is crucial. The interdisciplinary
character of tribology represents a great opportunity, but also a great challenge for the
intense collaborations between different disciplines including physics, chemistry, materials
science, mechanical engineering and computational science. Therefore, we would like
to encourage tribologists all over the world to be open to new approaches/methods and
interdisciplinary collaborations. Together with the aid of AI/ML algorithms, this can
enable deeper insights in the incredibly important domain of tribology thus guiding us
towards a new, greener and more energy-efficient era.
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