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Abstract: Convolutional Neural Network (CNN) has been widely used in bearing fault diagnosis in
recent years, and many satisfying results have been reported. However, when the training dataset
provided is unbalanced, such as the samples in some fault labels are very limited, the CNN’s
performance reduces inevitably. To solve the dataset imbalance problem, a Generative Adversarial
Network (GAN) has been preferably adopted for the data generation. In published research studies,
GAN only focuses on the overall similarity of generated data to the original measurement. The
similarity in the fault characteristics is ignored, which carries more information for the fault diagnosis.
To bridge this gap, this paper proposes two modifications for the general GAN. Firstly, a CNN,
together with a GAN, and two networks are optimized collaboratively. The GAN provides a more
balanced dataset for the CNN, and the CNN outputs the fault diagnosis result as a correction term in
the GAN generator’s loss function to improve the GAN’s performance. Secondly, the similarity of
the envelope spectrum between the generated data and the original measurement is considered. The
envelope spectrum error from the 1st to 5th order of the Fault Characteristic Frequencies (FCF) is
taken as another correction in the GAN generator’s loss function. Experimental results show that
the bearing fault samples generated by the optimized GAN contain more fault information than the
samples produced by the general GAN. Furthermore, after the data augmentation for the unbalanced
training sets, the CNN’s accuracy in the fault classification has been significantly improved.

Keywords: fault data generation; Convolutional Neural Network (CNN); Generative Adversarial
Network (GAN); bearing fault diagnosis; unbalanced datasets

1. Introduction

As an indispensable component in rotating machines, bearing health status directly
affects or even determines the equipment service life. However, in practice, a bearing
usually works under extreme and harsh conditions, which makes the bearing prone to
faults [1]. Therefore, the timely and accurate fault diagnosis is crucial to reduce the
maintenance costs and avoid serious accidents.

In recent years, the data-driven fault diagnosis has been attracting more and more
attention from both academia and industry. Among the various data-driven methods,
Convolution Neural Network (CNN) and Long Short Term Memory (LSTM) are the most
widely used due to their powerful abilities in the complex feature extraction and nonlinear
mapping. CNN was first employed in the bearing fault diagnosis by O. Janssens in 2016 [2],
and, since then, many improvements have proposed to enhance the CNN’s performance,
such as 1D-CNN, 2D-CNN, multiscale CNN, and adaptive CNN [3–6]. Russell Sabir
adopted LSTM for the bearing fault diagnosis based on the motor current signal and
obtained a classification accuracy of 96% [7]. L. Yu and D. Qiu proposed the stacked LSTM
and the bidirectional LSTM, respectively, and both LSTMs obtained an accuracy of more
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than 99% on the bearing fault diagnosis [8,9]. H. Pan combined 1D-CNN and 1D-LSTM
into a unified structure by using the CNN’s output into LSTM, achieving a satisfactory test
accuracy up to 99.6% [10].

Although many sound results have been reported in the deep learning-based fault di-
agnosis, there are still many challenges to be solved. For example, all the studies mentioned
above assume that there are plenty of high quality data for the deep network training.
However, in many applications, the available history or experimental data is very limited
or data provided is severely unbalanced. For example, the sample size under some fault
classes is extremely smaller compared with the others. Either insufficient or unbalanced
data will cause the serious performance reduction of deep networks. According to D.
Xiao’s work, when the training set samples were reduced from 1000 to 150, the CNN’s
accuracy declined correspondingly from 97.2% to 83.9% [11]. When the imbalance ratio
increased from 2:1 to 40:1, the fault classification accuracy for the outer ring fault based on
the GAN-SAE dropped sharply from 97.79% to 20.95% [12].

To address this problem, scholars have proposed diverse methods. Oversampling was
first proposed to solve the data imbalance, where the direct replication was used to generate
more samples for such labels that had very few ones [13,14]. Although this method is
simple and efficient, it easily causes overfitting since no new information is incorporated.
As another prospective method for data generation, GAN has been already used for
new sample generation in the fault diagnosis. Both W. Zhang and S. Shao employed
GAN to learn the mapping between the noise distribution and the actual machinery
vibration data to expand available dataset. The results confirmed that the diagnosis
accuracy could be improved once the imbalanced data was augmented by GAN [15,16].
However, when building and evaluating the GAN, published research studies only focus
on the overall similarity between the generated data and the original one, which inevitably
brings problems in the data quality. Small loss function in the general GAN only means that
the generated data has a high similarity to the original signal, but it does not guarantee that
the generated signal has captured the important characteristics of the original signal. When
generating more samples for the unbalanced datasets in the fault diagnosis, it is important
to ensure that the generated sample carries the same or nearly the same fault information as
the original one, which includes both time and frequency domain characteristics. For this
reason, an improved GAN is proposed in this paper and applied to generate samples for an
unbalanced experimental dataset which is further used in the CNN-based fault diagnosis.

The main innovations of this paper include: (1) A GAN, together with a CNN, and
two networks are optimized in cooperation. The GAN generates a more balanced dataset
for the CNN, and the CNN evaluates the quality of the GAN’s data generation. Both
networks contribute to each other in performance improvement. (2) The fault characteriza-
tion information is used to improve the general entropy-based loss function in the GAN.
The amplitude and frequency errors in the envelope spectrum between the experimental
and generated samples are taken as a correction term in the GAN’s loss function to enable
the GAN to produce samples with higher fidelity and identify more fault information.

The remaining part of this paper is organized as follows. Section 2 details the theory
and methodology of the GAN, CNN, and loss function improvement. Section 3 describes
the test bench and experimental dataset. Section 4 discusses and analyzes the results.
Section 5 concludes the whole paper.

2. Methodology
2.1. Theory of the GAN

A GAN generates new data without any prior knowledge of the probability density
function of original data. It mainly consists of a generator and a discriminator. The dis-
criminator determines whether a sample comes from the original or generated dataset.
On the contrary, the generator tries to produce data similar to the original one so that the
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discriminator can hardly make right decisions. In the general GAN, the loss functions of
generator and discriminator are defined as Equations (1) and (2), respectively [15]:

LG = − 1
K

K

∑
i=1

log
(

D
(

xi
f ake

))
, (1)

LD = −1
J

J

∑
m=1

log(D(xm
real))−

1
K

K

∑
i=1

log
(

1− D
(

xi
f ake

))
, (2)

where J is the number of real samples, and K is the number of generated samples. xm
real

represents the data samples coming from the real training dataset, and xi
f ake denotes the

data samples from GAN generator. D(xm
real) designates the output of discriminator D with

the input data sample xm
real .

Based on the loss function LG and LD, the GAN can be trained as a minmax two-player
game until the global optimum, D(xreal) = D(x f ake) = 0.5, is reached. This indicates that
the generated data from the generator is so similar to the real one that the discriminator
cannot tell the difference.

2.2. Fault Data Generation Based on GAN and CNN

The direct task of a GAN is to generate more samples for the labels with limited
measurements. However, the ultimate goal is to improve the data-driven fault-diagnosis
method performance when it deals with the imbalanced datasets. Therefore, it is reasonable
to take the final fault-diagnosis results into consideration when constructing a GAN so that
the data generated can indeed sharpen the algorithm’s fault-diagnosis ability. In this paper,
to facilitate research, a CNN is selected as a representative of the data-driven fault-diagnosis
methods, and the diagnosis task is focused on the fault classification, so its performance is
evaluated by the cross-entropy, as shown in Equation (3). The CNN’s result is introduced
as a correction term in the GAN’s generator loss function as formulated in Equation (4):

LCNN = −
N

∑
i=1

xi log(pi), (3)

LG′ = LG + βLCNN , (4)

where N is the number of bearing fault types. xi = 1, if the input sample belongs to
the bearing fault type i; otherwise, xi = 0. pi is the output of softmax function, which
represents the probability that the input data belongs to the bearing fault type i. The
formulation for pi is given in Equation (5), and it satisfies ∑N

i=1 pi = 1 [17]. β is a scale
factor to keep the loss functions of the GAN and CNN at the same range.

pi =
eai

∑N
i=1 eai

. (5)

2.3. Improvement of Loss Function with Envelope Spectrum

The general GAN can produce data with high similarity to the original measurement,
as stated in the last sub-section. In theory, the data fidelity can be even improved when
a CNN is employed to collaboratively optimize a GAN. However, until now, all the data
points in a sample are treated equally, and the GAN’s target is to keep the generated
data as similar to the original one as possible. However, in the fault diagnosis, some
data points contain more information than others. For example, once a fault occurs on a
certain component, such as the outer and inner ring or the balls, the corresponding fault
characteristic frequencies (FCF) will appear in the acceleration spectrum. Compared with
the overall similarity, the frequency and amplitude at the fault characteristic frequencies
contain much more information about the bearing health condition. Therefore, the error of
amplitudes and frequencies between the original signal and the generated one at the fault
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characteristic frequencies is defined as another correction term in the frequency domain as
follows:

L f requency =
N

∑
i=1

(∣∣∣Mi
real −Mi

f ake

∣∣∣+ ∣∣∣Fi
real − Fi

f ake

∣∣∣), (6)

where N denotes the maximum order of FCF, and N = 5 in this study. Mi
real and Mi

f ake

stand for the i-th order FCF amplitude from the real and generated sample. Fi
real and Fi

f ake
represent the i-th order FCF frequency from the real and generated sample. In addition,
due to different value ranges of frequency and amplitude, in this study, the most widely
used normalization method, MinMaxScaler [18], is applied to normalize the amplitudes
and frequencies within the 5th-order FCF to the range of [0, 1].

Finally, L f requency is combined with LCNN to construct the final loss function of the
GAN’s generator. As shown in Equation (7), the sum of LCNN and L f requency is taken as a
modification term in the general GAN’s loss function LG to ensure the generated data from
GAN has a high similarity and captures the important information in detail at the same
time. α is a weight factor.

LG” = LG + α
(

LCNN + L f requency

)
. (7)

To obtain L f requency, the first step is to calculate the theoretical FCF. The XJTU-SY
dataset [19] introduced in the following section includes only three kinds of faults, namely
the outer race fault, the inner race fault, and the cage fault. The theoretical FCFs for
the aforementioned 3 fault types are the BPFO (Ball Passing Frequency on Outer race),
BPFI (Ball Passing Frequency on Inner race), and FTF (Fundamental Train Frequency),
respectively. Their formulations are listed as follows [20]:

BPFO =
n fs

2

(
1− d

D
cos α

)
, (8)

BPFI =
n fs

2

(
1 +

d
D

cos α

)
, (9)

FTF =
fs

2

(
1− d

D
cos α

)
, (10)

where n is the number of rolling elements, and fs means the shaft frequency. d represents
the ball diameter, and D denotes the pitch diameter. α is the bearing contact angle.

After calculation of the theoretical FCF, the second step is to capture the actual FCF
around corresponding theoretical values. The actual FCF can be affected by many factors,
such as the shaft speed, external load, friction coefficient, raceway groove curvature, and
the defect size [21,22]. Therefore, there exists bias between the theoretical FCF and the
actual FCF in most cases. Besides, some harmonics of FCF influenced by modulation of
other vibrations may not be detected in the test bench [22]. Thus, in this paper, the i-th order
actual FCF is determined as the maximum peak in the interval of [0.95, 1.05]× FCF1st × i,
where FCF1st is the first order theoretical FCF, and i is the current frequency order. The
actual FCF of both the real measurement sample and generated sample are determined
by above two steps. Once actual FCF is identified, the L f requency can be obtained by
Equation (6).

2.4. Collaborative Training Mechanism of the GAN and CNN

Once the modification for the GAN loss function has been determined, the next
step is to train a GAN in cooperation with a CNN. The collaborative training process is
demonstrated in Figure 1. Generally, a GAN provides a more balanced dataset for CNN to
improve its fault diagnosis accuracy. Whereas CNN evaluates the GAN’s generated dataset
and outputs its fault classification result as a correction term in the generator’s loss function
to improve the GAN’s data-generation quality, under the collaborative training structure,



Lubricants 2021, 9, 105 5 of 18

both CNN and GAN performance can be enhanced. Specifically, as shown in Figure 1,
the CNN is firstly built based on the unbalanced dataset, and its classification error is
supposed to be high. Meanwhile, the discriminator, as well as the generator, of the GAN
are established. Initially, the generator does not work so well, and the generated samples
are not so similar to the original ones. The next step is to optimize the CNN and GAN
collaboratively. During the optimization process, the GAN’s generator learns to generate
samples similar to the original signal. The newly generated samples are immediately added
to the training dataset of the CNN so that the dataset imbalance can be reduced. When the
Nash equilibrium is reached, which is defined as D(xreal) = D(x f ake) = 0.5, the optimiza-
tion process stops. Lastly, the GAN’s generator is used to extend the original dataset and
fine-tune the CNN with the extended dataset. The architecture of the GAN proposed in
this paper is detailed in Figure 2. Tables 1 and 2 summarize the hyperparameters of the
GAN and CNN, respectively.

Get sample 𝑿𝒓𝒆𝒂𝒍 from fault class with 

limited samples 

Build generator and discriminator 

for GAN

Generate sample 𝑿𝒇𝒂𝒌𝒆 by GAN’s 

generator

Calculate generator loss 𝑳𝑮

Optimize the generator

Transfer 𝑿𝒓𝒆𝒂𝒍 from time-domain 

to frequency-domain 

Transfer 𝑿𝒇𝒂𝒌𝒆 from time-domain 

to frequency-domain 

Calculate the envelope spectrum error 𝑳𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚

Calculate the new loss 𝑳𝑮"
𝑳𝑮" = 𝑳𝑮 +𝜶(𝑳𝑪𝑵𝑵 + 𝑳𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚)

Build CNN

Nash 

equilibrium

Fine-tune CNN

Calculate fault 

diagnosis loss 𝑳𝑪𝑵𝑵

Add 𝑿𝒇𝒂𝒌𝒆 to 

unbalanced dataset

Unbalanced dataset

Start

Dataset 

balanced

Train GAN’s generator and discriminator 

End

Y

Y

N

N

Figure 1. Collaborative training structure of the GAN and CNN.
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Input Conv 1 Conv 2 Conv 3 Flatten Output

Input noise Transposed 
conv 1 

OutputTransposed 
conv 1 

Transposed 
conv 1 

Generator

Discriminator

Batch normalization layer LeakyReLU layer

Figure 2. Architecture of generator and discriminator in the GAN.

Table 1. Hyperparameters of the GAN.

Hyperparameters Values

Initial learning rate of generator 0.0001
Initial learning rate of discriminator 0.0001
Kernel size of discriminator’s 1st layer 8× 8
Kernel size of discriminator’s other layers 4× 4
Number of filters in discriminator’s n-th layer 16× 2n−1

Kernel size of generator’s last layer 8× 8
Kernel size of discriminator’s other layers 4× 4
Number of filters in generator’s n-th layer 512/2n−1

Max epochs 2000

Table 2. Hyperparameters of the CNN.

Hyperparameters Values

Initial learning rate 0.0002
Max epochs 1000
Batch size 20
Kernel size of 1st layer 7× 7
Kernel size of other layers 3× 3
Number of filters in n-th layer 16× 2n−1

3. Experimental dataset
3.1. Introduction of Bearing Test Bench and Dataset

Experimental data for validation comes from the Xi’an Jiaotong University (XJTU-SY)
bearing test bench [19]. As shown in Figure 3, the bearing accelerated life test bench
consists of an alternating current induction motor, motor speed controller, supporting shaft,
supporting bearing, hydraulic loading system, and test bearing. The test bearing type is
LDK UER204, and its basic parameters are summarized in Table 3. The bearing works
under 3 different conditions, as specified in the first column of Table 4, where fs stands for
the shaft frequency, and Fr the radial loading force. Both the axial and radial accelerations
are measured at a sampling frequency of 25.6 kHz, and the sampling interval between
any two measurements is defined as 1 min, and each sampling lasts for 1.28 s. Under each
condition, 5 bearings are tested, such as bearing 1_1–1_5 under condition 1. As each test
bearing has a different lifetime, the measurement sample size of each test bearing varies
from one to another.
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Digital force display Motor speed controller

Support shaft

AC motor Support bearings

Hydraulic loading

Vertical accelerometer Tested bearing

Horizontal accelerometer

Figure 3. XJTU-SY experimental setup [19].

Table 3. Specifications of bearing parameters.

Parameters Values Parameters Values

Inner raceway
diameter 29.30 mm Ball diameter 7.92 mm

Outer raceway
diameter 39.80 mm Number of balls 8

Pitch diameter 34.55 mm Initial contact angle 0°

Due to the inherent micro-anisotropy and different working conditions, the lifetime
and failure location of the test bearing differ from each other. For a single fault, there
are 3 fault types in total, namely the outer race fault, the inner race fault, and the cage
fault. Moreover, there are two datasets, bearing 1_5 and bearing 3_2, containing the
measurements of compound fault. To simplify the labeling process, only a single fault is
considered in this paper. As summarized in Table 4, the number of total samples is large
enough for CNN training. However, the dataset is extremely unbalanced. For the most
test bearings under all 3 conditions, the failure occurs on the outer ring, with very limited
samples on the inner ring and the cage.

Table 4. Data specification of XJTU-SY bearing dataset.

Condition Test Bearing Measurement Sample Size Fault Location

(1)
bearing 1_1 123 outer ring

fs = 35 Hz
bearing 1_2 161 outer ring

Fr = 12 kN
bearing 1_3 158 outer ring
bearing 1_4 122 cage
bearing 1_5 52 outer ring & inner ring

(2)
bearing 2_1 491 inner ring

fs = 37.5 Hz
bearing 2_2 161 outer ring

Fr = 11 kN
bearing 2_3 533 cage
bearing 2_4 42 outer ring
bearing 2_5 339 outer ring

(3)
bearing 3_1 2538 outer ring

fs = 40 Hz
bearing 3_2 2496 inner ring & element & cage &

outer ring

Fr = 10 kN
bearing 3_3 371 inner ring
bearing 3_4 1515 inner ring
bearing 3_5 114 outer ring
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3.2. Data Preprocessing

The XJTU-SY bearing dataset has recorded the bearing acceleration during the whole
life cycle. The test bench runs continuously until the acceleration amplitude exceeds
10 × Anormal , which is defined as the failure point. Here, Anormal is the maximum amplitude
of the horizontal or vertical vibration signals when the bearing runs in the normal operating
stage. The fault location in Table 4 stands for position where the fault happens when bearing
finally fails. In order to extract the sufficient measurement data for the fault classification
while maintaining the correct labels, the signals with acceleration amplitude between
2 × Anormal and 10× Anormal are regarded as the fault signals, as shown in Figure 4. All the
measurement samples in the fault period are labeled with the corresponding final failure
position, such as 1 for the cage fault, 2 for the inner race fault, and 3 for the outer race fault.

0 20 40 60 80 100 120 140

Time [min]

-30

-20

-10

0

10

20
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A
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io
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g
]

    normal signal     fault signal

10*Anormal

Figure 4. Complete life cycle of bearing 1_1.

After preparation for the valid source data and labels, the next step is the data prepro-
cessing. At first, the original measurement is denoised by 3-level wavelet decomposition,
with Symlet4 as the mother wavelet. After the noise cancellation for the high-frequency
components, the data is normalized by z-score. Finally, the normalized data is trans-
formed from 1D to 2D, which means that the acceleration series are sliced into fragments
with the same length and then stacked row by row to build a matrix, as illustrated in
Figure 5. In each sample, there are a total of 32,768 points of data in each sample. Therefore,
the size of 2D matrix is determined as 181× 181, and the reshaped 2D matrix is fed into
GAN and CNN as images. All the work in this study is conducted in MATLAB Deep
Network Designer.

1*32761

181

181

Figure 5. Illustration of data reshape.

4. Results and Analysis
4.1. Fault Data Generation Based on Optimized GAN

According to Table 5, there are significantly more samples for the outer race fault than
for the inner race fault and the cage fault. Consequently, generating more samples for the
inner race fault and the cage fault is paramount to reduce the dataset imbalance. It should
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be noticed that the inner race fault samples consist of data from bearing 2_1, bearing 3_3,
and bearing 3_4, while the cage fault samples consist of data from bearing 1_4 and bearing
2_3. This means both the inner race and cage faults have measurement samples collected
from different working conditions that define different data distributions. Furthermore,
each test bearing has totally different aging dynamics, which can be deduced from their
full life cycle trajectories [19]. As a result, the GANs for these datasets need to be trained
individually. Bearing 1_4 has only one sample and is, hence, not feasible for the fault
diagnosis. In total, 4 GANs need to be established for bearing 2_1, bearing 2_3, bearing
3_3, and bearing 3_4.

Table 5. Sample size of different fault types.

Fault Location Test Bearing Measurement Sample Size Training Sets Test Sets

Outer race

bearing 1_1 58

518 130

bearing 1_2 108
bearing 1_3 69
bearing 2_2 77
bearing 2_4 12
bearing 2_5 173
bearing 3_1 55
bearing 3_5 106

Inner race
bearing 2_1 26

110 28bearing 3_3 28
bearing 3_4 84

Cage bearing 1_4 1 167 42bearing 2_3 208

The data samples generated by a general GAN and an optimized GAN are illus-
trated in Figure 6 and compared with the original ones after normalization. Specifically,
Figure 6(a1) stands for the original signal of a measurement sample from bearing 2_1,
Figure 6(a2) is the corresponding sample generated by the general GAN, and Figure 6(a3)
shows the sample generated by the optimized GAN. Likewise, Figure 6(b1–b3) are the
result for bearing sample 2_3, and Figure 6(c1–c3) for bearing sample 3_3. Take the inner
race fault bearing 2_1 as an example; both GANs produce the samples with high similarity
to the original ones measured in time domain, and even the peaks are accurately rebuilt.
It can be further noticed that the optimized GAN generates a much more accurate peak
amplitude than the general GAN. In order to evaluate the GAN’s data-generation quality
in time domain, every sample is regarded as a vector ~x (~x ∈ RD), and every sampling point
xi as an element in the vector.

The similarity between the generated sample and the original one can be measured by
the angle between two corresponding vectors. Therefore, cosine similarity is adopted as a
time domain similarity metric, which is defined as follows:

cos θ =
~m ·~n
|~m| · |~n| , (11)

where ~m and ~n stand for the acceleration series from the original measurement and the
generated sample, respectively, with ~m = {x1, x2, · · · , xL} and ~n =

{
x
′
1, x

′
2, · · · , x

′
L

}
. |~m|

and |~n| identify the 2-norm of ~m and~n, respectively.
The cosine similarity results are summarized in Table 6. For all 3 cases, the sample

generated by the optimized GAN has higher cosine similarity to the original one than
that produced by the general GAN, which proves the superiority of the optimized GAN
in the high-quality data generation. Additionally, the reason why the cosine similarity is
relatively small can be explained as the acceleration values change within a big range of
[−5, 5], and the signal length is up to 32,761, which means any difference in acceleration
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amplitude or direction or time lag between counterpart points will bring big accumulative
deviation. Besides, the assumption by taking the acceleration signal as 1D vector may not
be so feasible when it contains too many elements, which needs further exploration in the
future, such as using the Fréchet distance to replace the cosine similarity [23].
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Figure 6. Comparison between original sample and generated sample in time domain; (a), (b) and (c) represent bearing 2_1,
bearing 2_3 and bearing 3_3 respectively, while (1), (2) and (3) represent the original sample, general GAN and optimized
GAN respectively.

Table 6. Cosine similarity of samples in time domain.

Generated Sample
Cosine Similarity

GAN Optimized GAN

bearing 2_1 0.3214 0.3739
bearing 3_3 0.3374 0.3408
bearing 2_3 0.2009 0.2675

Apart from the overall similarity in time domain, the signal characteristics in the
frequency domain are the same or even more important for the fault diagnosis. In this
study, the envelope spectrum is processed on the original and generated samples. As only
the 1st to 5th FCFs are considered in this study, the signal is first filtered by a low-pass filter
of 1000 Hz, and then the envelope spectrum is extracted by Hilbert transform and Fast
Fourier Transform. The results are displayed in Figures 7–9. Take Figure 7 as an example,
which gives the envelope spectrum of bearing 2_1, where the black line is the result of the
original measurement, the blue line stands for the sample generated by the general GAN,
and the red line symbolizes the sample from the optimized GAN. The theoretical BPFI is
also provided by the green dash line. We can find that the envelope spectrum of samples
generated by the optimized GAN is similar to the original one, while it appears clearly
different from that of the samples generated by the general GAN, especially the amplitudes
at the real fault characteristic frequencies. Two locally enlarged views in Figure 7 show that
the amplitude from the sample generated by the optimized GAN is much closer to that of
the original sample, compared with the sample from the general GAN. The phenomenon
is the same for the inner race fault (bearing 3_3), as well as the cage fault (bearing 2_3),
which confirms that the optimized GAN can efficiently promote the generated signals to
capture more accurate fault characteristics in the frequency domain. As for the other peaks
besides fault characteristic ones, especially for the inner race fault, we can find that most of
them are caused by the modulation from the shaft frequency and its harmonics, which is
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consistent with the previous research [24]. Additionally, the deviation between the actual
FCFs and the corresponding theoretical values can be explained by many factors, such as
the frequency resolution of 0.7814 Hz, the occurrence of rolling element sliding, and the
transient contact angles under high external load.

Figure 7. Envelope spectrum comparison: inner race fault of bearing 2_1.

Figure 8. Envelope spectrum comparison: inner race fault of bearing 3_3.
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Figure 9. Envelope spectrum comparison: cage fault of bearing 2_3.

Tables 7–9 summarize the sample frequencies and amplitudes at the corresponding
FCF and harmonics, as well as the relative error percentage of these two features between
the generated and original samples. The comparison in Table 7 shows that, for all the 1st–
5th order BPFIs, the frequencies and amplitudes of samples generated by the optimized
GAN are much closer to the original ones than those of samples produced by the general
GAN. For the sample generated by the optimized GAN, the frequency error percentage
under all five orders of BPFI is zero, while the sample generated by the general GAN
cannot fully capture the actual BPFI in the original ones, even though the deviation error
is 0.34% and only exists in the 5th order BPFI. However, if we focus on the amplitudes
under BPFI, the optimized GAN shows much more superiority over the general one.
The amplitude errors under all 5 orders of BPFI from the samples generated by the opti-
mized GAN are much smaller than those from the general GAN. Take the 2nd BPFI as an
example; the actual amplitude from the original samples is 0.062, while the corresponding
amplitudes of the samples from the general GAN and the optimized GAN are 0.023 and
0.047, respectively. The relative error percentage of amplitude drops from 62.0% to 23.8%.
The above analysis confirms that the modification term L f requency in the GAN’s generator
loss function can enable the GAN to capture the fault information in the frequency domain.
The same conclusion can be also drawn based on the results in Tables 8 and 9.

Table 7. Amplitudes and frequencies of bearing 2_1 at 1st–5th BPFI.

Sample Source Parameter 1st—BPFI 2nd—BPFI 3rd—BPFI 4th—BPFI 5th—BPFI

Original sample Frequency (Hz) 178.944 357.889 536.833 715.788 931.449
Amplitude 0.176 0.062 0.124 0.072 0.020

Frequency (Hz) 178.944 357.889 536.833 715.788 928.323
Sample from
general GAN

Error (%) 0 0 0 0 0.34

Amplitude 0.117 0.023 0.086 0.053 0.011
Error (%) 33.3 62.0 30.1 26.1 44.1

Frequency 178.944 357.889 536.833 715.788 931.449
Sample from
optimized GAN

Error (%) 0 0 0 0 0

Amplitude 0.149 0.047 0.106 0.060 0.018
Error (%) 15.3 23.8 14.2 16.5 9.4
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Table 8. Amplitudes and frequencies of bearing 3_3 at 1st–5th BPFI.

Sample Source Parameter 1st—BPFI 2nd—BPFI 3rd—BPFI 4th—BPFI 5th—BPFI

Original sample Frequency (Hz) 192.229 384.457 576.686 808.767 994.744
Amplitude 0.127 0.168 0.104 0.015 0.013

Frequency (Hz) 192.229 384.457 576.686 808.767 990.055
Sample from
general GAN

Error (%) 0 0 0 0 0.5

Amplitude 0.104 0.131 0.088 0.019 0.006
Error (%) 18.0 22.1 15.9 26.0 49.5

Frequency (Hz) 192.229 384.457 576.686 808.767 961.143
Sample from
optimized GAN

Error (%) 0 0 0 0 0

Amplitude 0.124 0.143 0.096 0.020 0.011
Error (%) 2.2 14.7 7.9 26.7 14.4

Table 9. Amplitudes and frequencies of bearing 2_3 at 1st–5th FTF.

Sample Source Parameter 1st—FTF 2nd—FTF 3rd—FTF 4th—FTF 5th—FTF

Original sample Frequency (Hz) 14.847 28.912 42.978 57.825 71.890
Amplitude 0.069 0.043 0.064 0.022 0.031

Frequency 14.066 28.131 42.978 57.043 71.890
Sample from
general GAN

Error (%) 5.3 2.7 0 1.4 0

Amplitude 0.018 0.019 0.019 0.020 0.014
Error 73.3 55.4 70.6 10.7 54.1

Frequency (Hz) 14.066 28.912 42.978 58.606 71.890
Sample from
optimized GAN

Error (%) 5.3 0 0 1.4 0

Amplitude 0.082 0.028 0.057 0.021 0.033
Error (%) 17.5 35.3 10.9 4.6 6.4

In summary, data generation results show that both the general GAN and the op-
timized GAN can generate similar samples compared to the original ones. However,
the samples generated by the optimized GAN have higher similarity to the original one
than that generated by the general GAN, especially at the FCF and harmonics in the
frequency domain. More specifically, data generation for one fault type under different
working conditions, such as bearing 2_1 and bearing 3_3, proves that the optimized GAN
method can be applied to the bearings under the different working conditions. Further-
more, the results of bearing 2_1 (inner race fault) and bearing 2_3 (cage fault) demonstrate
that the optimized GAN method adapts to the bearings with different defect types.

4.2. Fault Diagnosis Based on CNN_GAN

As introduced in Section 3, there are 648 outer race fault samples, 138 inner race fault
samples, and 209 cage fault samples. In other words, the imbalance ratio of XJTU-SY
bearing datasets is nearly 5:1:1.5 (outer race fault samples: inner race fault samples: cage
fault samples). Besides, 80% of these samples are divided into the training set, with the
remaining 20% as the test set. To fully evaluate the positive effect that the GAN has on CNN
when dealing with the unbalanced datasets, two more training sets with the imbalance
ratios of 10:1:2 and 20:1:2 are built by randomly selecting fewer inner race fault and cage
fault samples from the XJTU-SY bearing datasets (the training dataset in Table 5), while the
test set is fixed the same as the test set in Table 5. The sample composition of three training
sets with different imbalance ratios and the test sets is illustrated in Figure 10.
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Figure 10. Composition of training sets and the test set.

Before validating the test set, on the one hand, CNN is trained on the training sets
with the different imbalance ratios, in which the outer race fault has much more samples
than the inner race fault and the cage fault. On the other hand, the unbalanced training
sets are extended with the optimized GAN by generating more inner race fault and cage
fault samples. After data generation, all 3 fault types in the extended training sets have the
same sample size, with 518 samples individually. In other words, the ratios between the
outer race fault samples, the inner race fault samples, and the cage fault samples become
balanced. The general CNN and CNN_GAN mentioned above are validated with the same
testing set. The difference between these two CNNs is that the former is trained with the
imbalanced training set and then directly validated with the testing set, while the latter is
trained with the extended dataset that has been balanced with the collaboration of the GAN
and CNN and then validated with the testing set. The CNNs’ performance comparison on
the testing set is displayed in Table 10.

Table 10. Comparison of fault diagnosis performance between CNN and CNN_GAN.

Imbalance Ratio
CNN CNN_GAN

Accuracy Cross-Entropy Error Accuracy Cross-Entropy Error

Training set 1 (5:1:1.5) 98% 0.6071 100% 0.5645
Training set 2 (10:1:2) 88% 0.7013 90% 0.6642
Training set 3 (20:1:2) 68% 0.8478 88% 0.7012

For the general CNN, the fault diagnosis accuracy decreases from 98% to 88% when
the imbalance ratio of training set increases from 5:1:1.5 to 10:1:2, and it sharply drops to
68% when the imbalance ratio further raises to 20:1:2. This confirms that the imbalance
ratio of training datasets has a great influence on the CNN’s performance. On the contrary,
if a CNN is trained on the extended datasets that have been augmented with the generated
samples from the optimized GAN, the CNN’s performance can be significantly improved.
For instance, when CNN_GAN is trained with the training sets 1 and 2 that have been ex-
tended and balanced, its fault classification accuracy on the testing sets achieves up to 100%
and 90%, respectively. Even when the imbalance ratio raises up to 20:1:2, the CNN_GAN’s
fault classification accuracy still maintains 88%. Under all 3 training sets, the CNN_GAN
has a smaller average cross-entropy error compared with the general CNN, which proves
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that the GAN can efficiently improve the CNN’s fault diagnosis performance by generating
new samples when dealing with the unbalanced datasets. Additionally, Table 10 shows that
a training set with a higher imbalance ratio brings lower CNN classification accuracy, even
after being balanced by data generation with a GAN. Though CNN_GAN performs better
than CNN, the change tendencies of both two networks over increasing imbalance ratios
are consistent, which indicates there exists an imbalance ratio limitation of the training set
that CNN_GAN can handle with, especially for a predefined CNN’s performance index.
For example, in this case, if the target of the CNN’s classification accuracy on the fixed
imbalanced dataset is set as 90%, then, the CNN_GAN can deal with the training set with a
maximum imbalance ratio of 10:1:2.

Besides the accuracy and cross-entropy, the confusion matrix gives more details of
the classification for each label. As presented in Table 11, all these 3 cases are validated
on the same dataset as the testing set in Figure 10 but trained with one of the three
training sets with different imbalance ratios in Figure 10. Specifically, the general CNN
is trained with the original unbalanced datasets, and the CNN_GAN is trained with the
extended datasets that have been balanced by the optimized GAN. In these confusion
matrices, the misclassified samples mainly come from the inner race fault and the cage
fault because the outer race fault samples are dominant in each training set. Moreover,
the higher the imbalance ratio is, the higher the prediction error is. With further comparison
between the CNN and CNN_GAN, it can be found that the CNN_GAN achieves higher
overall accuracy than the general CNN. In addition, the fault classification accuracy of
both the inner race fault and the cage fault can be improved if the optimized GAN is
employed to generate the inner race and cage fault samples. For example, under set 1
and set 2, the CNN’s classification accuracy on the inner race fault increases from 85.7%
to 100% and from 14.3% to 28.6%, respectively. With respect to the cage fault, the CNN’s
diagnosis accuracy increases remarkably from 4.8% to 90.5% under set 3. The result can be
explained as: in the unbalanced dataset, the dominant fault type samples have much more
influence on the loss function, which, therefore, push the CNN forward to extract more
local features that are only shared by the dominant fault type, with CNN’s ability lost to
extract more general and robust features that can distinguish different fault types. This
means that CNN has dropped into overfitting. While, for the CNN_GAN, the imbalanced
data has been balanced, which means there are no dominant fault types in the training set.
Therefore, the trained CNN_GAN can avoid overfitting and have the capability to capture
fault features that can be used to recognize the fault types and be simultaneously robust
enough. Based on the above analysis, it can be concluded that the balanced training dataset
can effectively enhance the CNN’s fault classification performance, and the optimized
GAN can efficiently transform the unbalanced dataset into the balanced one by generating
samples for the fault types that have limited data.

Table 11. Fault diagnosis confusion matrix under three training sets.

Diagnosis
Network

Confusion Matrix on Testing Set

Training with Set 1 Training with Set 2 Training with Set 3
Unbalance Ratio (5:1:1.5) Unbalance Ratio (10:1:2) Unbalance Ratio (20:1:2)

CNN
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Table 11. Cont.

Diagnosis
Network

Confusion Matrix on Testing Set

Training with Set 1 Training with Set 2 Training with Set 3
Unbalance Ratio (5:1:1.5) Unbalance Ratio (10:1:2) Unbalance Ratio (20:1:2)

CNN_GAN

Target label: CF-cage fault, IRF-inner race fault, ORF-outer race fault; prediction label: CF’-cage fault, IRF’-inner race fault, ORF’-outer race
fault.

5. Conclusions

To solve the CNN’s performance reduction problem under the unbalanced datasets,
an improved GAN is proposed to generate new data for the fault class with limited samples.
The work can be summarized as follows:

• A collaborative network GAN_CNN is developed. The GAN generates an almost
balanced dataset with data augmentation for the inner ring and the cage fault samples.
Once the generated samples are added, the CNN evaluates the extended dataset
quality and outputs the fault classification result to modify the loss function of the
GAN’s generator.

• Besides the overall similarity, the similarity on the envelope spectrum is considered
when building the GAN. The envelope spectrum error from the 1st-5th order FCF
between the experimental data and the generated data is taken as a correction term to
the general cross-entropy based loss function of the GAN’s generator.

Experimental validation is carried on the XJTU-SY bearing dataset. Results confirm the
effectiveness of an optimized GAN and the collaborative structure of the CNN_GAN.
The following are the main conclusions:

• When constructing the loss function for a GAN, the GAN performance can be im-
proved by considering the envelope spectrum error. The generated samples have
higher fidelity and contain more accurate fault information, which, in turn, contribute
to the CNN’s accuracy improvement.

• The collaborative network CNN_GAN performs better than the GAN or the CNN.
The GAN generates more accurate data if the CNN’s classification results are con-
sidered into the GAN’s loss function. The CNN’s fault classification accuracy can be
significantly enhanced after the GAN generates more data for the unbalanced training
dataset.

Though only the idea is validated with CNN_GAN in this paper, it can be extended
with other methods. For example, the fault characteristic spectrum can be replaced by
other metrics characterizing bearing fault status. With regard to the outlook, we will focus
on the extension of this method and try to develop a physics-guided GAN. Validation with
more experimental data and application cases will also be addressed in the future.
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