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Abstract: The increasing use of low-viscosity lubricants in order to reduce the friction in machine ele-
ments such as rolling bearings is leading to increased operation in the mixed or boundary lubrication
regime. The associated wear can lead to an earlier failure of tribological systems. In this context, a de-
tailed wear simulation offers great potential with regard to the design of machine elements as well as
the calculation of lifetimes. This contribution presents an approach for the numerical wear simulation
of lubricated rolling/sliding-contacts. Therefore, a finite element method-based simulation model
was developed which is able to deal with non-Gaussian surfaces and contacts subject to boundary
and mixed lubrication. Using the example of an axial cylindrical roller bearing considering realistic
geometry, locally varying velocities, and two load cases, the wear modeling results of the mixed and
the boundary lubrication regime were illustrated. The wear coefficient required for Archard’s wear
model was determined experimentally by means of a two-disc tribometer.

Keywords: wear modeling; contact mechanics; elastohydrodynamic lubrication; mixed lubrication;
boundary lubrication; machine elements; thrust roller bearing; two-disc tribometer

1. Introduction

Holmberg and Erdemir [1] revealed that 20% of the world’s energy consumption
is attributed to overcoming friction. The use of low-viscosity lubricants is one way of
reducing friction in tribological contacts. One disadvantage of this approach is that the
increasing use of low-viscosity lubricants also leads to lower lubricant film thicknesses
and thus to increased operation in the mixed or boundary lubrication regime. This in turn
leads to an increase in wear in tribologically highly exposed machine elements. Since wear
may result in catastrophic failures and operational breakdowns that can adversely impact
productivity and cost, the prediction of wear in a reliable manner offers new possibilities
for the understanding and redesigning of tribological systems. Therefore, numerical wear
prediction has been the subject of numerous publications whose underlying simulation
models analyze wear in dry and lubricated contacts.

Within this contribution, the finite element method-based simulation model of Win-
kler [2] was extended to include non-Gaussian surfaces and contacts subject to boundary
lubrication in addition to contacts subject to mixed lubrication.

1.1. State-of-the-Art

Põdra et al. [3] developed a simulation model to calculate wear in a dry cylinder on
flat and a ball on flat contact on the basis of the wear model according to Archard [4]. The
calculation of the contact pressure was based on Winkler’s foundation model [5]. Further-
more, Põdra et al. [6] published an FEM-based simulation model for wear calculation using
the example of a pin on disc tribometer as well as a conical spinning contact.

Hegadekatte et al. [7–9] published a FEM-based wear simulation for both the dry pin
on disc contact and the dry disc on disc contact. To consider the wear depth in the contact
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calculation, Hegadekatte used the UMESHMOTION subroutine implemented in the FEM
software ABAQUS.

Sfantos et al. [10] proposed a simulation method using the boundary element method
(BEM) for dry sliding wear based on Archard’s wear model, which was applied to both a
pin on disc contact and a hip arthroplasty wear problem.

Andersson et al. [11] investigated the wear of a dry sphere on a flat contact. The
contact pressure was calculated by a discrete convolution and fast Fourier transformation
(DC-FFT) method utilizing the half-space theory and assuming linear elastic—perfectly
plastic material behavior as described by Liu et al. [12].

Morales-Espejel et al. [13] recently published a simulation model for the example of
an axial cylindrical roller bearing, which enables the local wear depth to be calculated on
the basis of a FFT-based dry contact simulation and, in addition, the fatigue life can be
calculated by damage accumulation according to Palmgren and Miner [14,15].

The approaches mentioned so far allow for the wear modeling of non-lubricated
contacts. In the following, selected models for the numerical wear simulation of lubricated
tribological systems are briefly described.

Zhu et al. [16] suggested an approach for the numerical wear calculation in lubri-
cated contacts based upon a deterministic mixed elastohydrodynamic lubrication (EHL)
model [17,18]. Thereby, the surface topography was directly incorporated into the film thick-
ness equation and the wear volume was determined by means of Archard’s wear model.

Lorentz et al. [19] developed a deterministic mixed lubrication micro-scale model
considering two rough rubbing bodies, an adhesion model, heat generation as well as a
lubrication domain. Reichert et al. [20] extended the model by wear calculation, whereas
the wear coefficient for an Archard type wear model was determined based upon the
Johnson–Cook damage law [21].

Terwey et al. [22–24] implemented a contact and wear model based upon half-space
theory for boundary and mixed lubricated rolling contacts with a deterministic consider-
ation of surface roughness. The contact pressure was determined by coupling an elastic
half-space model with empirical lubricant film thickness equations according to [25]. The
wear coefficient for Archard’s wear model was determined by means of continuum damage
mechanics (CDM) theory. In addition to the Archard wear equation, the wear model of
Fleischer [26,27] was applied.

Beheshti et al. [28] introduced a stochastic approach for wear modeling in mixed lubri-
cated line contacts based upon a load-sharing concept according to [29] and a CDM-based
Archard type wear model considering simplified thermo-elastohydrodynamic analysis [30].
The asperity contact pressure was determined by means of the asperity contact model of
Kogut and Etsion [31–33].

Zhang et al. [34] also investigated the wear as well as the surface roughness evolution
in a mixed lubricated line contact. Therefore, the asperity contact model of Kogut and
Etsion was coupled with a finite difference based EHL model to calculate the asperity
and hydrodynamic contact pressures. Moreover, the change in surface height probability
density function (PDF) was calculated in accordance with Sugimura and Kimura [35–37].
The modified PDF was subsequently used as an input for the stochastic asperity contact
model in the next time step. Local wear was computed by Archard’s wear law using the
asperity contact pressure.

The aforementioned models represent only a small number of available numerical
wear simulations. Further numerical wear simulation models can be found in the review
paper of Mukras [38].

1.2. Derivation of the Need for Research

In summary, on one hand, simulation models for calculating wear in dry contacts
and on the other hand, simulation models for lubricated contacts, have been developed.
However, there is a lack of holistic methods for calculating the wear time efficiently across
all lubrication regimes. For this reason, this paper presents an approach to numerical
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wear modeling that covers the entire range from the mixed lubrication regime to boundary
lubricated and dry contacts within a single simulation environment. The wear simulation
is based on an EHL model for mixed lubricated contacts and a FEM based contact model
for boundary lubricated and dry contacts, and it enables a time efficient wear calculation of
lubricated and non-lubricated contraformal rolling/sliding contacts.

Due to its rather high sliding ratios and the associated susceptibility to wear, an axial
cylindrical roller bearing operated in the mixed and boundary lubrication regime was
selected as an example for the numerical wear simulation. The wear coefficient required
for the numerical wear simulation was determined by means of experimental tests on a
two-disc tribometer. Section 2 provides an overview of the theoretical fundamentals and the
setup of the numerical simulation models, whereas Section 3 focuses on the experimental
determination of wear coefficients as input variables for the numerical wear simulation.

2. Numerical Modeling

The numerical wear modeling of the raceways and washers of an axial cylindrical
roller bearing was performed considering the coordinate system and velocity distribution
shown in Figure 1.
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Figure 1. (a) Definition and location of coordinate systems; (b) schematic illustration of the velocity
distribution in the contact area of the roller element and the raceway in a thrust roller bearing [2].

Unless otherwise indicated, the transition from the mixed to the boundary lubrication
regime according to [39,40] can be assumed at a film thickness parameter

λ =
hmin√
σ2

1 + σ2
2

(1)

of λ < 1. However, it should be pointed out that the transition might also occur at signifi-
cantly lower lubricant film thicknesses (see [41–43]).

The wear simulation model is part of the computation software TriboFEM, which is a
FEM-based in-house tool of the Chair of Engineering Design at the Friedrich-Alexander-
Universität Erlangen-Nürnberg for the simulation of elastohydrodynamically lubricated
contacts. Within the framework of this contribution, the software was supplemented by
the possibility of considering contacts subject to boundary lubrication as well as unlubri-
cated contacts.

The following sections briefly describe the wear modeling approach in the area of
mixed lubrication as well as in the area of boundary lubrication.

2.1. Mixed Lubrication Regime

Figure 2 shows the flowchart of the numerical wear modeling in the mixed lubrication
regime. The implemented calculation models, which are detailed in the following sections,
are highlighted in yellow. Instead of a transient simulation, a stationary EHL model was
solved for each time step in order to save computing time. The wear depth was then
extrapolated over a constant time step ∆t.
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2.1.1. Asperity Contact Model

The asperity contact model of Jackson and Green [44–46] was implemented within the
present study. The underlying model for the contact of a rough surface with a rigid plane
is shown in Figure 3. In order to stochastically describe the surface roughness, surface
measurements were performed by means of laser scanning microscopy on three different
rollers and washers of the axial cylindrical roller bearing type 81212.
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The relation between the separation of a rough surface and a rigid plane based on the
asperity heights and surface heights can be written as

h = d + ys (2)

where ys is the distance between the mean height of the asperity summits and the mean
height of the surface according to Bush et al. [47]:

ys = 4 ·
( m0

π · α

)0,5
(3)

Here, α denotes the bandwidth parameter

α =
m0 · m4

m2
2

(4)
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which is calculated from the spectral moments of zeroth, second, and fourth order of a
surface profile [48]:

m0 = E
(
z2) = σ2

m2,x = E
((

dz
dx

)2
)

m2,y = E
((

dz
dy

)2
)

m2 =
√m2,x · m2,y

m4,x = E
((

d2z
dx2

)2
)

m4,y = E
((

d2z
dy2

)2
)

m4 =
√m4,x · m4,y

(5)

Additionally, the spectral moments can be employed to determine the density of
summits

η =
m4/m2

6 · π ·
√

3
(6)

as well as the mean summit radius

β =
3
8
·
√

π

m4
(7)

and the relation between the standard deviation of the surface heights σ and the standard
deviation of the asperity heights σs

σ2
s =

(
1− 0.8968

α

)
· σ2 (8)

Aside from the parameters derived from the spectral moments, stochastic parameters
of the surface profile such as standard deviation, skewness, and kurtosis are required in
order to set up the PDF of surface heights:

Sq =

√
E
(
(z− µ)2

)
= σ

Ssk = E
((

z−µ
σ

)3
)

Sku = E
((

z−µ
σ

)4
) (9)

It is worth mentioning that the origin of the z-axis was chosen so that µ = 0.
The calculation of the integral asperity contact pressure for the contact of two rough

surfaces requires equivalent values for the spectral moments [48]

m0,eq = m0,1 + m0,2
m2,eq = m2,1 + m2,2
m4,eq = m4,1 + m4,2

(10)

The standard deviation of the surface and asperity heights [49]

σeq =
√

σ2
1 + σ2

2 (11)

The mean summit radius
1

βeq
=

√
1
β2

1
+

1
β2

2
(12)

and the density of summits

1
ηeq

=
1
η1

(
βeq

β1

)2

+
1
η2

(
βeq

β2

)2

. (13)
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According to Tomota [50], the skewness and kurtosis of the equivalent rough surface
is calculated according to Equations (14) and (15):

Ssk,eq =
σ3

1 · Ssk,1 + σ3
2 · Ssk,2

σ3
eq

(14)

Sku,eq =
σ4

1 · Sku,1 + σ4
2 · Sku,2 + 6 · σ2

1 · σ2
2

σ4
eq

(15)

The equivalent non-Gaussian PDF of the surface heights can be determined on the basis
of Johnson’s system of frequency curves [51,52] using the equivalent standard deviation of
the surface heights, the skewness, and kurtosis. The equivalent PDF of the asperity heights
can be determined approximately from the PDF of the surface heights according to Yu [53]:

φs(zs) =
1
σs
· φ′s
(

1
σs
· zs

)
≈ 1

σs
· φ∗

(
1
σs
· zs

)
=

σ

σs
· φ
(

σ

σs
· zs

)
(16)

Dimensionless values denoted by ‘ are normalized by the standard deviation of
asperity heights σs, whereas dimensionless values denoted by * are normalized by the
standard deviation of surface heights σ.

Finally, the asperity contact pressure according to the FEM-based elasto-plastic model
of Jackson and Green [44–46] is given by:

pa =

d+1,9·ωc∫
d

η · Pel · φs(zs) dzs +

∞∫
d+1,9·ωc

η · Ppl · φs(zs) dzs (17)

The elastic portion of the force acting on a single asperity is

Pel =
4
3
· E′ · β0,5 · ω1,5 (18)

with the equivalent Young’s modulus on both surfaces:

E′ =

(
1− ν2

1
E1

+
1− ν2

2
E2

)−1

(19)

The plastic portion of the total asperity load is derived by a single asperity FEM
simulation:

Ppl = Pc ·
{ [

exp

(
−1

4
·
(

ω

ωc

) 5
12
)]
·
(

ω

ωc

) 3
2
+

4 · HG

C · σy
·
[

1− exp

(
− 1

25
·
(

ω

ωc

) 5
9
)]
· ω

ωc

}
(20)

All parameters introduced in Equation (20) are calculated as follows:

Pc =
4
3 ·
(

β
E′

)2
·
(

C
2 · π · σy

)3

B = 0, 14 · exp
(
23 · ey

)
with : ey =

σy
E′

C = 1, 295 · exp(0, 736 · ν)
HG
σy

= 2, 84 ·
[

1− exp

(
−0, 82 ·

(√
ω
β ·
(

ω
1,9 · ωc

) B
2
)−0,7)] (21)

The Poisson’s ratio ν to be used in the above equation is that of the material that yields
first. The critical interference is derived based upon the von Mises yield criterion:

ωc =

(
π · C · σy

2 · E′

)2

· β (22)
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2.1.2. EHL Model

The EHL simulation was carried out according to a FEM-based approach of Habchi [54]
using commercial FEM software. Therefore, the Reynolds equation

Poiseuille term︷ ︸︸ ︷
∂

∂x

(
ρ(ph) · h(x, y)3

12 · η(ph)
· ∂ph

∂x

)
+

∂

∂y

(
ρ(ph) · h(x, y)3

12 · η(ph)
· ∂ph

∂y

)
=

∂

∂x

(
ρ(ph) · h(x, y) · u1 + u2

2

)
+

∂

∂y

(
ρ(ph) · h(x, y) · v1 + v2

2

)
︸ ︷︷ ︸

Couette term

(23)

is solved in its weak form on the upper surface Ωc of Figure 4 under consideration of a
mass-conserving cavitation algorithm, as introduced by Marian et al. [55]. The Galerkin
least squares (GLS) method [56] and isotropic diffusion (ID) method [57] were utilized for
the numerical stabilization.
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Density ρ and viscosity η were considered to be pressure-dependent following equa-
tions from Dowson and Higginson [58] and Roelands [59], respectively. The shear rate
dependency of the viscosity was taken into account according to Eyring [60].

The elastic deformation is calculated for one equivalent body Ω with the Young’s
modulus

Eeq =
E2

1 · E2 · (1 + ν2)
2 + E2

2 · E1 · (1 + ν1)
2

[E1 · (1 + ν2) + E2 · (1 + ν1)] 2 (24)

and Poisson’s ratio

νeq =
E1 · ν2 · (1 + ν2) + E2 · ν1 · (1 + ν1)

E1 · (1 + ν2) + E2 · (1 + ν1)
. (25)

The lubricant film thickness equation describes the height of the separating fluid film
in terms of the distance h0 and the shape of the undeformed geometry s0 as well as of the
elastic deformation δ and the wear depth hwear:

h(x, y, tn) = h0(tn) + s0(x, y) + hwear(x, y, tn) + δ(x, y, tn) (26)

Here, s0 is a function describing the equivalent undeformed geometry considering
logarithmically profiled rolling elements:

s0(x, y) =
x2

D
+ 0.00035 · D · ln

 1

1−
(

2 · y
L

)2

 (27)
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The load balance equation ensures the equilibrium of forces:

F =
x

Ωc

(ph(x, y) + pa(x, y)) dx dy (28)

This considers both the hydrodynamic contact pressure as well as the asperity contact
pressure in the mixed lubrication regime.

2.1.3. Wear Model

The local wear depth is determined by applying the wear model according to Ar-
chard [4]:

hwear(x, y, tn) = hwear(x, y, tn−1) + k · pa(x, y, tn) · vslide(x, y) · ∆t (29)

Since only the asperity contact pressure pa is used for the wear calculation, the wear
coefficient k can thus be determined independently of the lubricant film thickness in the
boundary lubrication regime. Furthermore, vslide denotes the local sliding velocity.

The wear coefficient depends on numerous factors such as the material properties,
surface conditions, and boundary layers. It is frequently determined experimentally and
can vary between 10−1 and 10−15 mm3/Nm for metals [61,62]. Within the framework of this
study, the wear coefficient required for the wear simulation was determined experimentally
on a two-disc tribometer (see Section 3).

2.1.4. Surface Topography Model

The surface topography of Sugimura and Kimura [35–37] allows for the calculation
of the time-varying change of the probability density function of the surface heights as a
function of the wear depth (see Figure 5).
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Figure 5. Evolution of the surface height distribution φ(z) during the time interval ∆t.

The density function at time t + ∆t is calculated from Equation (30):

φ(z, t + ∆t) =
{

φ(z + ∆z0, t) + ψ(zh + ∆zh − z) · ∆φ(t), z ≤ zh + ∆zh
0, z > zh + ∆zh

(30)

Thereby, ψ denotes the probability density function of the wear-induced height loss.
Jeng [63–65] further extended the model of Sugimura and Kimura to include non-Gaussian
PDFs using Johnson’s system of frequency curves [51,52]. For further information on the
surface topography model of Sugimura and Kimura and its numerical implementation,
see [2].
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2.2. Boundary Lubrication Regime and Dry Contacts

Figure 6 shows the flowchart of the numerical wear modeling in the boundary lubrica-
tion regime.
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lubrication regime.

Contrary to the load-sharing concept of the wear simulation in the mixed lubrication
regime, it was assumed that there was no supporting hydrodynamic lubricant film present
in the area of boundary lubrication. For this reason, the differences to Section 2.1 will be
discussed in the following.

2.2.1. Contact Model

In distinction to the wear simulation of contacts subject to mixed lubrication, in the
area of boundary lubrication and dry contacts, a FEM contact model based on the penalty
contact algorithm with an equivalent body was used to calculate the contact pressure.
Analogous to the EHL modeling approach according to Habchi [54], a cubic substitute
body is defined, which possesses the equivalent mechanical properties of the base and the
counter body. This body is brought into contact with a rigid surface, which in turn has the
equivalent geometry of both bodies (see Figure 7).
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The consideration of the wear-related profile change in the contact simulation was
achieved by an adaptation of the Karush–Kuhn–Tucker contact conditions, as depicted in
Figure 8.
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Figure 8. Wear-related modification of the Karush–Kuhn–Tucker condition.

The parameter gn denotes the distance of the rigid surface to the elastic cubic body.
The Karush–Kuhn–Tucker conditions can be modified within the wear simulation to allow
for the penetration of both bodies in the amount of the local wear depth hwear in order
to consider the wear-related profile change in the contact pressure calculation. As an
alternative to varying the Karush–Kuhn–Tucker conditions, the geometry function of the
rigid surface can be extended by a wear term, analogous to Equation (26).

2.2.2. Wear Model

Archard’s wear model was applied to the total contact pressure pc determined by the
contact model presented in the previous section:

hwear(x, y, tn) = hwear(x, y, tn−1) + k · pc(x, y, tn) · vslide(x, y) · ∆t (31)

In both the mixed lubricated and boundary lubricated systems, the wear coefficient
was determined experimentally in the boundary lubrication regime. Further details regard-
ing the experimental determination of wear coefficients by means of a two-disc tribometer
can be found in Section 3.

3. Experimental Determination of Wear Coefficients

A two-disc tribometer—as depicted in Figure 9 was chosen as an experimental set-up
to determine the wear coefficient as an input parameter for the numerical wear simulations.
The tribometer consists of two independently driven spindles that rotate the test discs at a
defined speed and press them against each other at a defined force. The contact between
both discs is lubricated by circulating oil, which can be warmed up to a defined temperature
by oil heating.

The test discs were made of the rolling bearing steel 100Cr6 and had the properties
listed in Table 1. One washer was cylindrical, while the other washer was crowned with a
radius of 50 mm. A non-additivated PAO 6 was used as the lubricant, which was heated to
80 ◦C.

Table 1. Test parameters for the two-disc tribometer.

Parameter Value

Disc material 100Cr6
Lubricant PAO 6
Oil temperature 80 ◦C
Disc 1 Ø 45 mm; Crowning: 50 mm
Disc 2 Ø 45 mm; Crowning: ∞



Lubricants 2022, 10, 334 11 of 19Lubricants 2022, 10, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 9. (a) View into the test chamber of the two-disc tribometer. (b) Schematic illustration of the 
contact of two test discs. 

The test discs were made of the rolling bearing steel 100Cr6 and had the properties 
listed in Table 1. One washer was cylindrical, while the other washer was crowned with 
a radius of 50 mm. A non-additivated PAO 6 was used as the lubricant, which was heated 
to 80 °C. 

Table 1. Test parameters for the two-disc tribometer. 

Parameter Value 
Disc material 100Cr6 
Lubricant PAO 6 
Oil temperature 80 °C 
Disc 1 Ø 45 mm; Crowning: 50 mm 
Disc 2 Ø 45 mm; Crowning: ∞ 

Three replicate trials were conducted, each lasting 72 h. The normal force was 500 N 
and the speeds of the master and slave spindles were set to 30 rpm and 10 rpm, respec-
tively. This resulted in a maximum Hertzian pressure of approximately 1.4 GPa and a 
slide-to-roll ratio (SRR) of 100%. Furthermore, the lubricant film thickness parameter 𝜆 
was about 0.18, whereby the minimum lubricant film thickness ℎ୫୧୬ was estimated ac-
cording to Hamrock’s empirical equation for elliptical contacts [66]. The wear coefficient 
was determined in the boundary lubrication regime, as only the solid contact pressure 
was applied in Archard’s wear model (see Equations (29) and (31)). The experimental val-
idation of this approach is part of ongoing research. 

The evaluation of the wear volume to calculate a wear coefficient was achieved by 
two methods. On one hand, the surface profile of the discs was measured at four positions 
evenly distributed around the circumference before and after the test by the Stylus instru-
ment Form Talysurf® PGI NOVUS. By creating a difference profile, the wear cross-sec-
tional area 𝐴୵ could be determined: 

Figure 9. (a) View into the test chamber of the two-disc tribometer. (b) Schematic illustration of the
contact of two test discs.

Three replicate trials were conducted, each lasting 72 h. The normal force was 500 N
and the speeds of the master and slave spindles were set to 30 rpm and 10 rpm, respectively.
This resulted in a maximum Hertzian pressure of approximately 1.4 GPa and a slide-to-roll
ratio (SRR) of 100%. Furthermore, the lubricant film thickness parameter λ was about 0.18,
whereby the minimum lubricant film thickness hmin was estimated according to Hamrock’s
empirical equation for elliptical contacts [66]. The wear coefficient was determined in the
boundary lubrication regime, as only the solid contact pressure was applied in Archard’s
wear model (see Equations (29) and (31)). The experimental validation of this approach is
part of ongoing research.

The evaluation of the wear volume to calculate a wear coefficient was achieved
by two methods. On one hand, the surface profile of the discs was measured at four
positions evenly distributed around the circumference before and after the test by the
Stylus instrument Form Talysurf® PGI NOVUS. By creating a difference profile, the wear
cross-sectional area Aw could be determined:

Aw =
1
N
·

N

∑
i=1

Aw,i (32)

Furthermore, the wear volume as well as the wear coefficient could be calculated from
the wear cross-sectional area Aw, the diameter of the test discs Ddisc, the normal force F,
and the sliding distance s:

k =
W

F · s =
Aw · π · Ddisc

F · s (33)

Figures 10 and 11 show exemplary plots of a difference profile of a crowned and a
cylindrical disc, respectively.
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Figure 10. Exemplary profile difference of a crowned disc.
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On the other hand, the wear volume was determined gravimetrically by weighing the
discs before and after the test using a Kern® ALJ 500-4A analytical balance.

mstart =
1
N
·

N

∑
i=1

mstart,i (34)

mend =
1
N
·

N

∑
i=1

mend,i (35)

In this way, the wear coefficient can similarly be calculated from the difference of
masses and the density of the disc material ρ:

k =
W

F · s =
mstart −mend

ρ · F · s (36)

Both approaches were in very good accordance with each other. While the method
using a stylus instrument revealed an average wear coefficient of k = 1, 21 · 10−7 mm3

Nm , the

gravimetric method resulted in an average wear coefficient of k = 1, 22 · 10−7 mm3

Nm .
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4. Results and Discussion

In this section, exemplary simulation results for two different operating conditions of
the axial cylindrical roller bearing 81212 are discussed. An overview of the investigated
load cases can be found in Table 2.

Table 2. Load cases for the numerical wear simulation.

Operating Parameters Load Case 1
(Mixed Lubrication)

Load Case 2
(Boundary Lubrication)

Operating time t 8 h 80 h
Rotational speed n 1000 min−1 100 min−1

Load F 50 kN
Lubricant PAO 6 at 80 ◦C

The contact geometry was based on the dimensions of the axial cylindrical roller
bearing 81212. The experimentally determined wear coefficient as presented in Section 3
for Archard’s wear model was applied within the wear simulation. Moreover, the non-
Gaussian PDF of the surface and asperity heights required for the stochastic asperity contact
model of Jackson and Green as well as the surface topography model of Sugimura and
Kimura were determined by measurements on bearing washers and rolling elements of the
axial cylindrical roller bearing 81212 using the 3D laser scanning microscope Keyence® VK-
X200 (Keyence Corporation, Osaka, Japan). For the rolling bearing steel 100Cr6, a Young’s
modulus of 208 GPa and a Poisson’s ratio of 0.3 were assumed. The oil was assumed to
be structurally viscous with a shear rate dependency according to Eyring with an Eyring
stress of τE = 10 MPa.

The selected operating parameters resulted in 3,600,000 overrollings for both load
cases. In the mixed lubrication regime of load case 1, the lubricant film thickness parameter
was λ ≈ 0.64; in the boundary lubrication regime of load case 2, it amounted to λ ≈ 0.13.
According to deterministic numerical investigations by Terwey [22], the transition between
the mixed and boundary lubrication for the specific axial cylindrical roller bearing under
consideration occurred at a lubricant film thickness parameter of λ ≈ 0.35.

Figure 12 illustrates the initial hydrodynamic and asperity contact pressure for load
case 1 and the total contact pressure for load case 2, respectively. The pressure was evaluated
at the contact center (y = 0) in the rolling direction (i.e., along the x-coordinate).

Lubricants 2022, 10, x FOR PEER REVIEW 14 of 21 
 

 

  
Figure 12. Initial contact pressure along the x-coordinate for load cases 1 and 2. 

Figure 13 shows the distribution of the total contact pressures over the whole contact 
area at the initial state and after 3,600,000 overrollings. The initial contact pressure of the 
contact subject to mixed lubrication (load case 1) differed slightly from the contact pres-
sure of the boundary lubricated contact (load case 2), as heavily loaded, mixed lubricated 
EHL contacts typically show a steeper pressure gradient at the contact outlet compared to 
the Hertz-like contact pressure of load case 2 in the boundary lubrication regime. After 
3,600,000 overrollings, a significant pressure peak in the center of the contact occurred, 
which was more pronounced in load case 2 than in load case 1. 

  
Figure 13. Total contact pressure at the initial state and after 3,600,000 overrollings. 

The reason for the pressure peaks resulted from the wear depth profiles shown in 
Figure 14. The wear depths were calculated according to Equations (29) and (31), by a 
superposition of contact pressure and sliding speed. While pure rolling occurs in the cen-
ter of the rolling element, the sliding velocity increases linearly toward the outer and inner 
direction (see Figure 1b). The slightly higher wear depths on the inner contact halves (neg-
ative y-direction) of the bearing washers can be explained by the distribution of the wear 
volume over a smaller circumference compared to the outer sides. It should be noted that 
in experimental tests, wear can also occur in the contact center due to macroscopic slip 
and displacement of the rollers in the radial direction, which would result in lower contact 
pressures. 

mm mm

MPaMPa

load case 1 load case 2

–0.3   –0.2    –0.1      0.0      0.1     mm     0.3 –0.3   –0.2    –0.1      0.0      0.1     mm     0.3

Figure 12. Initial contact pressure along the x-coordinate for load cases 1 and 2.

Figure 13 shows the distribution of the total contact pressures over the whole contact
area at the initial state and after 3,600,000 overrollings. The initial contact pressure of the
contact subject to mixed lubrication (load case 1) differed slightly from the contact pressure
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of the boundary lubricated contact (load case 2), as heavily loaded, mixed lubricated
EHL contacts typically show a steeper pressure gradient at the contact outlet compared
to the Hertz-like contact pressure of load case 2 in the boundary lubrication regime. After
3,600,000 overrollings, a significant pressure peak in the center of the contact occurred,
which was more pronounced in load case 2 than in load case 1.
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Figure 13. Total contact pressure at the initial state and after 3,600,000 overrollings.

The reason for the pressure peaks resulted from the wear depth profiles shown in
Figure 14. The wear depths were calculated according to Equations (29) and (31), by a
superposition of contact pressure and sliding speed. While pure rolling occurs in the center
of the rolling element, the sliding velocity increases linearly toward the outer and inner
direction (see Figure 1b). The slightly higher wear depths on the inner contact halves
(negative y-direction) of the bearing washers can be explained by the distribution of the
wear volume over a smaller circumference compared to the outer sides. It should be noted
that in experimental tests, wear can also occur in the contact center due to macroscopic slip
and displacement of the rollers in the radial direction, which would result in lower contact
pressures.
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Finally, the results of the stochastic asperity contact model according to Greenwood
and Williamson and the surface topography model according to Sugimura and Kimura are
illustrated Figure 15. Figure 15a shows the probability density function of the equivalent
rough surface of the washer and roller at the initial state (blue) and after 3,600,000 over-
rollings (red). The suitability of the Sugimura and Kimura model for the prediction of
the PDF of worn surfaces has already been experimentally investigated and confirmed
by [37] and [64,65]. Using the PDF of asperity heights φs, the asperity contact pressure
curves shown in Figure 15b were obtained. It is apparent that the transition from a state of
full film lubrication to the regime of mixed lubrication shifted toward lower lubricant film
thicknesses due to the wear-related modification of the surface roughness. Furthermore,
Figure 15c shows the evolution of the equivalent standard deviation of surface heights σeq.
After approximately 3 h, a stationary state of the surface roughness was reached.
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The total wear masses of both bearing washers and all 15 rolling elements are summa-
rized in Table 3.

Table 3. Calculated wear masses after 3,600,000 overrollings.

Load Case 1
(Mixed Lubrication)

Load Case 2
(Boundary Lubrication)

Wear mass 144 mg 280 mg
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In order to evaluate the presented simulation results with respect to their accuracy, ex-
perimental investigations are part of the currently ongoing research. The roller bearing test
apparatus FE8 [67,68] was identified as a suitable test rig for the experimental validation.

5. Conclusions and Outlook

A detailed wear simulation can contribute to estimating the service life of machine
elements and to avoiding premature failure of machine elements as well as avoiding
operating conditions that are most subjected to wear. It can additionally support the
optimization of contact geometries. The wear modeling approach presented within this
contribution provides a detailed wear calculation of rolling/sliding contacts, which are
operated in the mixed and boundary lubrication regime as well as under unlubricated
conditions. The contact calculation in the mixed lubrication regime is based on an EHL
simulation, which is coupled with a stochastic asperity contact model via the load-sharing
concept. In the region of boundary lubrication and dry friction, the contact pressure
is determined via a FEM-based “half-space”-like contact model. In addition to axial
cylindrical roller bearings, the presented wear simulation approach can be applied to other
types of rolling bearings and further machine elements such as gears or cam-tappets.

In order to obtain reliable quantitative predictions of wear, an adequate experimental
determination of the wear coefficient k for the respective tribological system is of utmost
importance. In this contribution, the experimental determination of a wear coefficient
using a two-disc tribometer was described. Furthermore, to verify the accuracy of the
wear simulation, a comparison with experimental tests on a component test rig is required.
The latter is currently part of ongoing investigations by means of the roller bearing test
apparatus FE8.
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Nomenclature

Aw Wear cross-sectional area
B Parameter of the Jackson/Green asperity contact model
C Parameter of the Jackson/Green asperity contact model
d Separation based on asperity heights
D Diameter of roller
Ddisc Diameter of test discs
E Young’s modulus
E′ Combined Young’s modulus of two surfaces for the asperity contact model
Eeq Equivalent Young’s modulus
F Load
gn Distance between master and slave surfaces of FEM-based contact models
h Separation based on surface heights / lubricant film thickness
h0 Film thickness constant parameter
hmin Minimum lubricant film thickness
hwear Local wear depth
HG Geometrical hardness limit according to the Jackson/Green asperity contact model
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k Wear coefficient
L Length of roller
m0,2,4 Zeroth, second, and fourth spectral moment of a surface profile
mstart, mend Masses of discs before and after two-disc tribometer tests
n Rotational speed
pa Asperity contact pressure
pc Total contact pressure in boundary lubricated or dry contacts
ph Hydrodynamic contact pressure
Pc Critical contact force at initial yielding according to the Jackson/Green asperity

contact model
Pel Elastic portion of the force acting on a single asperity
Ppl Plastic portion of the force acting on a single asperity
s Sliding distance
s0 Geometry-function of the roller
Sq Standard deviation of surface heights
Ssk Skewness of surface heights
Sku Kurtosis of surface heights
SRR Slide-to-roll ratio
t Time
u1, u2 Relative velocity of the washer/roller in x direction
v1, v2 Relative velocity of the washer/roller in y direction
vslide Sliding velocity
x, y Coordinates in and perpendicular to the rolling direction
ys Distance between the mean height of asperities and the mean height of surface
z Profile coordinate based on mean height of surface
zs Profile coordinate based on mean height of asperities
z0 Ordinate of the mean line of the composite profile
∆z0 Descending quantity of mean line
zh Highest point of composite profile
∆zh Moving distance of highest point
α Bandwidth parameter
β Mean summit radius
δ Elastic deformation in z direction
λ Dimensionless film thickness parameter
ν1, ν2 Poisson’s ratio of washer/roller
νeq Equivalent Poisson’s ratio
ρ Density
η Area density of asperities
η Dynamic viscosity
σ Standard deviation of surface heights
σs Standard deviation of asperity heights
σy Yield strength
φ Probability density function of surface heights
φs Probability density function of asperity heights
ψ Height-loss probability density function
ω Interference
ωc Critical interference
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