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Abstract: In order to optimize sealing performance, a novel labyrinth seal with semi-elliptical teeth
(SET) structure is proposed in this paper, which includes semi-elliptical teeth and a series of cavities.
The simulation results calculated by the numerical methods are compared with the experimental
and theoretical results, and static and dynamic characteristics of the novel SET structure are further
investigated. The numerical simulations of labyrinth seals with the SET structure demonstrate high
accuracy and reliability, with a maximum relative error of less than 6% as compared to experimental
results, underscoring the validity of the model. Notably, leakage rates are directly influenced by
pressure drop and axial offset, with optimal sealing achieved at zero axial displacement. The direct
damping coefficient increases as the pressure drop increases while the other dynamic coefficients
decrease. Additionally, the stability results show that the novel SET structure exhibits higher stability
for positive axial offsets. The novel model and corresponding results can provide a meaningful
reference for the study of sealing structure and coupled vibration in the field of fluid machinery.

Keywords: labyrinth seal; semi-elliptical teeth structure; leakage performance; dynamic characteristics

1. Introduction

Centrifugal pumps are an important class of rotating machinery that has garnered
significant attention over recent years [1–4]. The effectiveness of the sealing structure is
crucial for ensuring the safety, reliability and economy of centrifugal pumps. With the
increasing demand for high-performance and large-capacity rotating machinery, there is a
need for improved sealing performance. Therefore, improving sealing performance, reduc-
ing leakage and extending service life for centrifugal pumps operating under demanding
conditions are of great significance. Labyrinth seals, celebrated for their superior sealing
capabilities and durability, are prevalently employed in industry [5]. In rotor systems, the
labyrinth sealing system, constituted by an assembly of cavities and teeth, plays a vital
role in mitigating fluid leakage between the rotor and stator [6]. The leakage reduction is
attributed to the sealing teeth gap’s throttling effect and the kinetic energy’s dissipation
within the sealing chamber, where the pressure energy, diminished during passage through
the labyrinth seal gap, is converted into kinetic energy and subsequently dissipated as heat
due to the significant friction in the rough-surfaced slit.

From the initial simple exploration to intensive research, many scholars have con-
ducted a lot of research on the labyrinth seal over the past few decades. In the early days,
due to the restriction of technical level, researchers could only combine experimental re-
search and thermodynamic analysis to conduct preliminary exploratory research. However,
the advent and widespread adoption of numerical simulation technology have enabled the
investigation of more intricate flow structures and sealing characteristics. Recent studies
by Kim and Cha using CFD simulations have delved into the leakage characteristics of
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straight-through and stepped labyrinth seals, revealing the stepped configuration’s supe-
rior leakage reduction capabilities [7]. Zhang et al. [8] explored the static characteristics
of labyrinth seals under various eccentricities and inlet pressures, both theoretically and
experimentally. Further contributions include Qin et al.’s investigation into the flow char-
acteristics of a non-rotating labyrinth seal with a right-angle trapezoidal throttle tooth
design [9]. Zhang et al. [10] proposed a novel hole-pattern damping seal with inclined
holes, which presented good leak-proof performance. Zhou et al. [11] proposed a novel
labyrinth seal with staggered helical teeth (SHT) structure, which has better leakage perfor-
mance compared with ordinary helical teeth (OHT) structure.

In addition to the research on static characteristics, the dynamic characteristics of
labyrinth seals have also been a focal point of research. Hirs [12] used the Blasius friction
coefficient formula to establish the viscous friction model, which provided the theoreti-
cal foundation for analyzing the dynamic characteristics of labyrinth seals. Subsequent
studies have introduced various methods and models for calculating labyrinth seals’ dy-
namic characteristic coefficients [13–15]. Saber et al. [16] carried out a theoretical study
to investigate the effect of transverse asymmetry of the shaft on the dynamic character-
istics of labyrinth seals for different geometries. Zhang et al. [17,18] proposed a new
hole-diaphragm-labyrinth seal (HDLS) structure constructed by adding a single hole to
the diaphragm from a conventional diaphragm-labyrinth seal (DLS) by introducing an
additional damping source. Sun et al. [19] analyzed how the dynamic characteristics of a
sealed rotor were affected by shunt injection and an improved impedance method based
on unbalanced synchronous excitation was proposed. Zhai et al. [20,21] proposed the
theoretical solutions for dynamic coefficients of spiral-grooved and herringbone groove
seals according to the perturbation method. Based on the porous medium model and
whirling rotor method, Zhang et al. [22] revealed the effects of operating conditions on
rotor dynamic coefficients for the different seal configurations by the numerical model.
Wu et al. [23] employed the multi-frequency dynamic mesh technique by Li [24] to cal-
culate the dynamic characteristics of various types of seals. Their research examined
changes in the dynamic characteristics of different seals, ranging from sub-frequency to
super-frequency whirl. In the study, they discovered that the cross-coupled stiffness turns
negative at sub-synchronous frequencies below the rotor speed.

A periodic excitation force caused by the sealing structure on the rotor could cause
rotor instability and vibration when the rotor rotates periodically [25,26]. The performance
of the upper-end seal structure of the molten salt pump was calculated, and the correlation
between key variables such as heads, viscosities and sealing performance of the upper end
was summarized by Jin et al. [27]. Zhang et al. [28] proposed the interpolation database
method (IDM) to examine the dynamic response of circumferentially discontinuous seals.
The IDM demonstrates enhanced accuracy in the calculation of the nonlinear vibration
characteristics of the rotor-seal system. The main reason for the unsteady tangential force
was the circumferential helical flow. Zhang et al. [29] proposed a new helix-comb seal
(HCS) to control the circumferential helical flow and reduce the unsteady tangential force.
In addition, the HCS had superior tangential force reduction capability compared to the
traditional labyrinth seal. Xue et al. [30] proposed the incorporation of partition walls and
helical teeth into traditional labyrinth seal structures. The presence of partition walls and
helical teeth significantly reduces the cross-coupling stiffness of the labyrinth seal structure.

Although there are a lot of studies on the labyrinth seal structure, there exist relatively
few studies on the elliptical labyrinth seal with liquid medium. The behavior of liquid, char-
acterized by properties such as higher density and viscosity compared to gas, significantly
alters the sealing performance and dynamic interactions within the seal structure. In this
paper, a staggered labyrinth seal with SET structure is proposed, introducing a unique inte-
gration of semi-elliptical teeth within a staggered arrangement to optimize fluid dynamic
interactions and sealing efficiency. The leakage and dynamic characteristic coefficients
of this novel staggered labyrinth sealing structure with SET structure are studied using
CFD simulation technology after experimental verification. The staggered labyrinth sealing
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structure with SET structure has good sealing performance, which can be further applied
in the centrifugal pump system to replace the existing smooth annular seal structure.

2. The Novel Labyrinth Seal with SET Structure
2.1. Geometric Model

The staggered labyrinth seal, incorporating a semi-elliptical tooth (SET) design, is
depicted schematically in Figure 1. This figure outlines the general configuration of the
seal. Figure 2 shows the radial profile and main parameters of the novel SET structure.
The main parameters of the labyrinth seal with the SET structure are seal length (L), seal
clearance (Cr), tooth number (Z), tooth height (H), staggered tooth spacing (Lg), cavity
width (B1), and tooth width (B2), which are listed in Table 1. The labyrinth seal structure
features a staggered seal design with a semi-elliptical labyrinth tooth ring on the rotor.
Additionally, an extended outlet section is utilized to investigate flow conditions at the end
of the labyrinth seal and prevent any adverse backflow effects in computational results.
This innovative design enhances the friction and bunching effects, resulting in improved
sealing performance.
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Table 1. The values of structural parameters.

Parameters L/mm Cr/mm H/mm B1/mm B2/mm Z Lg/mm D/mm

Value 41.5 0.3 2.7 1 4 4 2.5 50
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2.2. Numerical Simulation Method

For the numerical calculations, the standard k-ε turbulence model is employed due to
its derived dissipation rate equation from the precise vortex pulsation equation, ensuring
the accuracy and reliability of the simulation outcomes. The study investigates the leakage
performance by examining variations in parameters such as pressure drops, axial offsets
of rotor teeth, rotation speeds and seal clearances. In this study, a scalable wall function
is employed. The calculated Y+ value for all walls falls within the permitted range of a
scalable wall function requirement, spanning from 15 to 20. The turbulence boundary is a
combination of intensity and hydraulic diameter, with a turbulence intensity of 5% of the
default value. The working medium is liquid water with a density of 998.2 m3/kg, and
the entire working field rotating at 1450 r/min. To simulate realistic operating conditions,
pressure boundary conditions are applied at both inlet and outlet boundaries to facilitate
the desired pressure drop across the seal. Moreover, all remaining surfaces are treated
as smooth, adiabatic and no-slip boundaries to accurately reflect physical conditions.
To enhance the precision of the simulation results, the second-order upwind scheme is
utilized for both turbulent kinetic energy and its dissipation rate. The results converged
once the residuals reached a level of 10−6. A summary of the numerical parameters and
details, including the boundary conditions, applied in the present investigation is presented
in Table 2.

Table 2. Numerical details for the Computational Fluid Dynamics analyses.

Numerical Parameters Specification

Inlet pressure 0.2 MPa
Outlet pressure 0 MPa

Turbulence model Standard k-ε
Wall function Scalable
Discretization 2nd order upwind scheme
Rotation speed 1450 rpm

3. Computational Model Validation
3.1. Grid Independence Verification

In contrast to unstructured grids, structured grids are characterized by good quality,
high convergence accuracy and easy implementation of region boundary fitting. There-
fore, the structured meshes are used to discretize the computational domain, and the
corresponding working domain is shown in Figure 3.
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The utilization of a large quantity of high-quality grids ensures that the computational
results are both precise and accurate. However, the large number of grids will consume a
lot of computation time. To strike an optimal balance between computational efficiency
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and accuracy, it is imperative to establish the grid count through grid independence
verification (GIV) prior to advancing with further calculations. The purpose of GIV is
to determine the optimal number of grids that achieve adequate computational accuracy
without unnecessarily consuming computational resources. Therefore, the structured grids
have been carried out from 9.7 × 105 to 3.5 × 106 elements. The result leakage Q and
corresponding relative error Er for GIV are shown in Figure 4.
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As shown in Figure 4, the number of grids has a significant effect on leakage when the
number of grids is small. Nevertheless, when the number of grids is greater than 2.2 × 106,
grid refinement exhibits marginal influence on enhancing calculation accuracy. At a grid
number of 2.2 × 106, the rate of change in leakage is below 1%, and the leakage exhibits
minimal variation with the incremental enlargement of the grid size. Consequently, the
optimal number of grids for further calculations is 2.2 × 106.

3.2. Validation of Numerical Method

To verify the accuracy and reliability of the present numerical method, the simulation
results are compared with the experimental results of the labyrinth seal with a typical
herringbone-grooved rotor proposed by Zhai [31]. The test rig includes test apparatus,
driving devices, whirling devices and transmissions, which can measure the leakage and
hydraulic forces within the herringbone-grooved seal under different operating conditions.
The selected data for comparison correspond to a configuration where the upstream spiral
section, the intermediate smooth section and the downstream spiral section measure
12 mm, 4 mm and 12 mm in length, respectively. In the validation, the pressure drop is set
at 0.142 MPa, and the rotation speeds range from 360 rpm to 2400 rpm. The corresponding
verification results are shown in Figure 5.
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Figure 5 presents the validation outcomes, comparing the simulated and experimental
results for hydraulic force and leakage at different rotational speeds. It is noted that
the calculated results are almost the same as the experimental results when the rotating
speed ranges from 360 r/min to 2160 r/min. The maximum error between calculated and
experimental results for leakage was only 5.95%. To ensure accurate calculation of the
dynamic characteristics, the hydraulic force data are also shown in Figure 5b in comparison
with the experimental data. The experimental results had errors ranging from 0.69% to
5.92%, which confirms the commendable accuracy and reliability of the numerical method
used in this study.

4. Results and Discussion

In order to obtain the static characteristics of the SET structure, this paper calculates
the leakage Q under different pressure drops, axial offsets of rotor teeth, rotating speeds
and seal clearances. In addition, the dynamic coefficients and whirl-frequency ratio are also
studied. To compare the quality of the sealing performance, the mass flow rate is viewed as
a measure in that incompressible fluid is used as the sealing medium.

4.1. The Static Characteristics of the SET Structure
4.1.1. The Influences of Axial Offset and Pressure Drop on Leakage Performance

Under specific operating conditions, pressure pulsations within the pump structure
may induce vibrations in the impeller, resulting in axial offset at the seal port ring and
consequently affecting the leakage performance. Accordingly, the paper investigates the
relationship between the axial offset of rotor teeth and leakage, with an emphasis on the
direction of flow, where the axial offset of rotor teeth is considered positive. Considering
that the pressure drop is the main factor affecting the size of leakage [32,33], Figure 6
presents the influence of both the axial offset of the rotor and pressure drop on leakage,
with ∆p escalating from 0.2 MPa to 0.8 MPa and ∆z varying from −1 mm to 1 mm. The
analysis reveals that an increase in pressure drop leads to heightened leakage for a constant
axial offset of the rotor. In addition, for a constant pressure drop, sealing performance is
optimal when there is no axial offset of the rotor, i.e., ∆z is 0. The presence of axial offset of
the rotor can lead to increased leakage. The magnitude of the offset directly correlates with
the amount of leakage.
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To verify the contribution of the novel labyrinth seal structure to the improved sealing
performance, the leakage Q of the labyrinth seal structure with the SET structure and the
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smooth annular seal under different pressure drops are compared. As shown in Figure 6, the
novel SET structure provides a better sealing effect. Compared to the smooth annular seal,
the SET seal demonstrates a significant reduction in leakage of up to about 30%; the results
clearly illustrate the superior sealing performance of the novel structure. Additionally, the
novel SET structure is less sensitive to pressure drop than a smooth annular seal.

To further explore the mechanisms underlying the observed reduction in leakage
across varying pressure drops, an analysis was performed focusing on the velocity stream-
lines and pressure contours for different pressure drops. As shown in Figure 7, maintaining
a constant axial offset of the rotor reveals that an increase in pressure drop leads to a
corresponding increase in both the pressure gradient and the flow rate through the seal.
The energy of the fluid pressure is mainly dissipated in the cavity through the throttle teeth.
The internal fluid works together with the vortex inside the cavity and exchanges energy
with each other when the internal fluid passes through the sealing tooth gap, which makes
the energy of the fluid dissipate in large quantities. The flow path of the high-velocity
stream is illustrated in Figure 8. As the pressure drop increases, the amount of high-velocity
fluid in the cavity also increases, which inhibits the formation of dissipative vortices.
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4.1.2. The Influences of Seal Clearance and Rotating Speed on Leakage Performance

Seal clearance is a crucial factor in preventing leakage. This paper explores the effects
of different seal clearances and rotational speeds on the leakage performance of the SET
structures. As can be seen in Figure 9, the findings illustrate a direct relationship between
seal clearance and leakage: as the seal clearance widens, leakage correspondingly escalates.
It is worth noting that diminishing the seal clearance exerts a pronounced influence on
the magnitude of leakage, which also indicates that the seal clearance is an extremely
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important parameter in the sealing structure. Moreover, the analysis reveals that variations
in rotating speed only marginally affect the leakage of SET structures, suggesting that
rotating speed exerts a limited influence on the seal’s static characteristics. This observation
implies that, within the studied range, the SET structure’s leakage performance is more
sensitively dictated by seal clearance than by rotating speed.
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The pressure distribution and velocity contours along the wall surface of the rotor
at different seal clearances are shown in Figure 10. A rapid decrease in fluid pressure
is observed as it passes through the constricted regions of the throttle teeth, followed
by a subsequent recovery within the cavity. The effectiveness of fluid pressure recovery
decreases with the reduction in clearance. This iterative process continues until the final
reduction in clearance aligns the outlet fluid pressure more closely with the back pressure,
resulting in a reduction in leakage.
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4.2. The Dynamic Characteristics of the SET Structure

When the rotor is disturbed by a small displacement and speed, the relationship
between the fluid-induced force acting on the rotor and the motion parameters can be
linearly expressed as [31]:

−
[

Fx
Fy

]
=

[
Mm Mc
−Mc Mm

][ ..
x
..
y

]
+

[
Cm Cc
−Cc Cm

][ .
x
.
y

]
+

[
Km Kc
−Kc Km

][
x
y

]
(1)

where Fx and Fy are the components of acting force in the x- and y- directions, respec-
tively. Mm and Mc are the direct mass coefficient and cross-coupled mass coefficient,
respectively. Cm and Cc are the direct damping coefficient and cross-coupled damping
coefficient, respectively. Km and Kc are the direct stiffness coefficient and cross-coupled
stiffness coefficient, respectively.

To analyze the rotor-seal system motion from a stationary frame, it is noted that the
rotor rotates at speed ω and also revolves around the stator center at speed Ω, presenting a
transient problem that involves moving grids. To circumvent the need for transient analysis
and mesh movement, a rotating frame approach is adopted for evaluating the dynamic
characteristics of the SET structure, as depicted in Figure 11. Within this framework, the
rotor spins at a relative speed of ω − Ω, while the stator rotates at speed Ω in the opposing
direction, transforming the transient issue into a steady-state one, hence obviating grid
displacement concerns.
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Moreover, the dynamic coefficients can be solved by Fr and Fτ , which can be integrated
as follows:

Fr =
∫ L

0

∫ 2π

0
p(φ, z)cosφRdφdz (2)

Fτ =
∫ L

0

∫ 2π

0
p(φ, z)sinφRdφdz (3)

where Fr and Fτ are the radial and tangential components of the exciting force on the rotor,
respectively, p(φ, z) is the pressure on the rotor surface, φ is the radian in the circumferential
direction, z is the axial direction, and R is the radius of the rotor. Once the horizontal and
vertical components of the exciting force are solved by numerical calculation, the surface
pressure can be obtained. The circumferential and axial quadratic integrals can further be
applied to obtain the two-direction components. The rotor dynamics coefficient can be
calculated using the following equation:{

Fr
e = −Km − CcΩ + MmΩ2

Fτ
e = Kc − CmΩ

(4)
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In addition, five types of the ratio of whirling speed to rotating speed are selected to
obtain the dynamic characteristics.

4.2.1. The Dynamic Characteristic Coefficients

Figure 12 presents the influences of axial offset and pressure drop on dynamic char-
acteristic coefficients. The results show that pressure drop plays a significant role in the
variation of dynamic characteristics. The direct damping coefficient Cm increases with
an increase in pressure drop, while the other dynamic characteristic coefficients decrease
as the pressure drop increases. In this simulation, the cross-coupled stiffness coefficient
Kc exhibits negative values, which is consistent with the findings of Gu et al. [34], who
observed a similar trend when the number of teeth of the labyrinth seal was less than a
certain number. Furthermore, Kc decreases as inlet pressure increases; the results indicate
that system stability is better for higher pressure differences. The dynamic coefficients
show complex changes when the axial displacement is considered. The direct damping
coefficient Cm is at its maximum when the axial offset ∆z is +1, while it increases when the
axial offset ∆z is −1. As for the direct stiffness coefficient Km, it is minimized when the
axial offset ∆z is +1.
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Figure 13 displays the impact of seal clearance and rotating speed on the dynamic
characteristic coefficients of the SET structure. The direct stiffness coefficient Km is not
significantly influenced by changes in rotating speed. In contrast, the cross-coupled stiffness
coefficient Kc exhibits a pronounced negative correlation with rotating speed. For the
damping coefficients, the sensitivity of both the direct damping coefficient Cm and the
cross-coupled damping coefficient Cc to rotating speed varies with seal clearance. The
damping coefficients remain relatively constant when the rotating speed changes from
1000 r/min to 3000 r/min at Cr = 0.5 mm. However, for smaller seal clearance Cr = 0.1 mm,
both Cm and Cc exhibit an increasing trend with rotating speed, implying that the damping
effect becomes more pronounced at higher speeds in small clearance for the SET structure.
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4.2.2. The Stability Performance of the SET Structure

The cross-coupled stiffness coefficient Kc and the direct damping coefficient Cm are
crucial as they directly impact the stability of the seal structure [35]. Tangential forces affect
the cross-coupled stiffness coefficient Kc, which can cause instability in the rotor system.
The direct damping coefficient Cm reflects the ability to suppress severe vibrations. The
stability energy of the seal can be estimated from the whirl-frequency ratio f, defined as [36]:

f =
Kc

Cmω
(5)


∀( f > 1) → unstable
∀(0 < f ≤ 1) → stable

( f < 0) → stable, if f (C > 0, k < 0)
(6)

Considering the unique characteristics of the SET structure, which include the negative
cross-coupled stiffness coefficient Kc and positive direct damping coefficient Cm, an alterna-
tive criterion has been proposed to more accurately quantify the structure’s stability. This
criterion is the quantized whirl-frequency ratio fc, whose magnitude is directly proportional
to stability. The formula for calculating the quantized whirl-frequency ratio is defined
as follows:

fc = Cmω − Kc (7)

The effects of axial offset on the quantized whirl-frequency ratio at different pressure
drops are shown in Figure 14. It is evident that the quantized whirl-frequency ratio fc
increases as the pressure drop increases, indicating that the SET structure is more stable
under a high pressure drop. Furthermore, the stability of the SET structure is greater when
there is an axial offset of +1 compared to a structure with no offset and an axial offset
of −1. This could be attributed to the fact that the axial offset reduces the cavity size
between the rotor teeth and the stator teeth, which enhances the flow effect. When the axial
displacement is positive, the high velocity flow in the small cavity moves towards the rotor
center, causing a shift of the rotor center towards the static center, ultimately increasing
the structure’s stability. Figure 15 shows the effects of seal clearance on the quantized
whirl-frequency ratio at different rotating speeds. The higher quantized whirl-frequency
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ratio at 3000 r/min implies that the high rotating speed is good for the structure’s stability.
The smaller the clearance, the higher the quantized whirl-frequency ratio at the same
rotating speed in addition to the 1000 r/min.
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5. Conclusions

In this paper, a novel labyrinth seal with SET structure is proposed, and its sealing
performance is calculated and analyzed to minimize leakage and improve stability. The
numerical results are compared with the experimental results. In addition, the effects of
pressure drop, axial offset of rotor teeth, rotating speed and seal clearance on leakage and
dynamic coefficients have also been studied. Meanwhile, the system stability for labyrinth
seals with SET structure is further studied. The main conclusions are as follows.

(1) The numerical results for labyrinth seals with SET structure exhibit good accuracy
and reliability. The maximum relative error between the numerical and experimental
results obtained by simulation does not exceed 6%.

(2) Pressure drop and leakage rate are positively correlated, and the optimal sealing
performance occurs at zero axial offset of the rotor (∆z = 0). The presence of any axial offset
exacerbates leakage. The fluid pressure rapidly drops as it passes through the throttling
teeth when the clearance decreases, followed by a recovery within the cavity.

(3) The direct damping coefficient Cm increases with the increased pressure drop while
other dynamic coefficients decrease. The rotating speed has a limited effect on the damping
coefficients when the seal clearances are 0.3 mm and 0.5 mm. Additionally, Cm peaks at an
axial offset of +1, where the direct stiffness coefficient Km also reaches its minimum.
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(4) The stability of the SET structure is notably enhanced at an axial offset of +1
compared to configurations with no offset or a negative axial offset. This relationship is
supported by the positive correlation between the quantized whirl-frequency ratio and
pressure drop, which suggests that the stability can be enhanced at higher pressure drop
and specific axial displacement.
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Nomenclature

L Seal length (mm)
Cr Clearance (mm)
H Height of rotor tooth (mm)
B1 Tooth width (mm)
B2 Cavity width (mm)
Z Tooth number
Lg Pitch between rotor teeth and static teeth (mm)
D Rotor diameter (mm)
Q Leakage (kg/s)
∆p Pressure drop (MPa)
Ω Whirling speed (rpm)
ω Rotating speed (rpm)
Fx, Fy Seal reaction force in x and y axis (N)
Fr, Fτ Seal reaction force in radial and tangential direction (N)
Km Direct stiffness coefficient (N/m)
Kc Cross-coupled stiffness coefficient (N/m)
Cm Direct damping coefficient (N·s/m)
Cc Cross-coupled damping coefficient (N·s/m)
Mm Direct added mass (kg)
Mc Cross-coupled added mass (kg)
f Whirl frequency ratio
fc Quantized whirl-frequency ratio
∆z Static tooth offset(mm)
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