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Abstract: Although a two-dimensional (2D) valve has excellent performance, the processing of its
spiral groove has a high cost and is time-consuming. This paper proposes a novel torque motor
based on an annulus air gap (TMAAG) to replace the negative feedback function of the spiral groove
to reduce the machining difficulty. In order to study the torque change law of the TMAAG, the air
gap permeance was analyzed, and then a qualitative analytical model was established. Orthogonal
tests were carried out to initially select the crucial parameters, which were further optimized through
a back propagation (BP) neural network and genetic algorithm. The prototype of TMAAG was
machined, and a special experimental platform was built, and experiment results are similar to the
simulation values, which verifies the accuracy of the air gap analysis and qualitative model. For
torque-angle characteristics, the output torque increases with both current and rotation angle and
reaches about 0.754 N·m with 2 A and 1.5◦. While for torque-displacement characteristics, due to the
negative feedback mechanism, the output torque decreases with increasing armature displacement,
which is about 0.084 N·m with 2 A and 1 mm. The research validates the unique negative feedback
mechanism of the TMAAG and indicates that it can be potentially used as an electro-mechanical
converter of a 2D valve.

Keywords: torque motor; negative feedback mechanism; annulus air gap; orthogonal test; 2D valve

1. Introduction

The electro-hydraulic servo control system is widely used in crucial fields such as
aerospace and mobile engineering equipment due to its high power-to-weight ratio, large
output force, and excellent static and dynamic performance. As a key component, the
electro-hydraulic servo valve has the functions of energy conversion and signal amplifi-
cation, which determine the overall performance of the system [1–4]. After World War II,
low-cost and robust electro-hydraulic control technology has grown rapidly in the civil
industry, and proportional valves that use proportional solenoid as electro-mechanical
converters (EMCs) appeared [5,6]. With the integration of the servo valve and proportional
valve, so-called industrial servo valves have emerged, which use high-performance linear
force motors to directly drive the valve and incorporate a linear variable differential trans-
former (LVDT) sensor to form a closed-loop control of the spool position [7,8]. Compared
with the proportional valve, it has better static and dynamic response while retaining
stability and simplicity [9–12].

Limited by the linear EMC output force, the servo valve usually needs to be designed
as a multi-stage structure with a pilot-operated mechanism to overcome the Bernoulli
force and friction force. Typical pilot-operated servo valves include a flapper-nozzle pilot
valve, jet pipe valve, and two-dimensional (2D) valve. The flapper-nozzle pilot valve has a
complicated structure, high machining and assembly precision requirements, and potential
pollution ability due to the pilot control stage structure [13–15]; the jet pipe valve does not
cause pollution, but the jet characteristics are not easy to predict [16,17].
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A 2D valve is a novel pilot-operated valve based on the principle of the hydraulic
servo-screw mechanism, which was first proposed by Ruan in 1989. The spool can move in
two degrees of freedom similar to a mechanical screw, with a predetermined proportional
relationship between the rotation and linear displacement. This is the key to the operation of
the negative feedback mechanism [18–20]. It is also because of the servo screw mechanism
that the 2D valve integrates the separated pilot stage and the power stage onto one single
spool, featuring a simple structure, high power-to-weight ratio, and excellent anti-pollution
ability [21,22]. Nevertheless, the machining of spiral grooves on 2D valve sleeves usually
requires electric discharge machining (EDM) machine tools with at least three axes, which
is not only expensive but also time consuming. This shortcoming greatly influences the
further promotion of 2D valves for civil industry areas that are more sensitive to cost and
relatively less sensitive in terms of performance [23]. Thus, in order to reduce machining
costs, necessary structural changes should be considered.

It is a feasible solution to transfer the negative feedback function from the spool-sleeve
to the EMC. Due to the characteristics of the 2D valve, linear EMC cannot be used directly.
2D valves need a rotary electro-mechanical converter (REMC) to rotate the spool firstly
to actuate the so-called “2D” mechanism. Common REMCs can be divided into a step
motor, rotary proportional solenoid (RPS), and torque motor. Step motors can nearly
achieve continuous angular displacements by using a multipole-pair structure and large
gear ratio, but they are not appropriate for servo valves due to structural complexity and
large volumes. The RPS features flat torque-angle characteristics. It has large output
torque and is easy to be designed as a “wet type” actuator with high-pressure oil resistant
ability [24]. The main difficulty of RPS designs is that there is no perfect universal method to
obtain proportional control characteristic. Torque motors have advantages of high control
accuracy, bidirectional capability, and fast dynamic response, which have been widely used
as EMCs for nozzle-flapper valves, jet pipe valves, and deflector jet pipe valves. Zhang
et al. proposed a novel torque motor with hybrid-magnetization pole arrays, whose output
torque can be increased by range of 47–52% compared with traditional designs, while
maintaining the original size and mass [25]. In order to solve self-excited high frequency
oscillations and noise, Li et al. added magnetic fluid to the working air gap of torque motors
and found that magnetic fluids can improve the stability of servo valves owing to their
damping and resistant effects [26,27]. Considering the torque motors might have unequal
air gaps due to production errors, Urata studied the influence of such unequal thickness on
the output torque of torque motors [28]. Liu et al. proposed a novel mathematical model of
torque motors. From the comparisons of results, the magnetic reluctances of the magnetic
elements cannot be neglected if the permeability is small [29]. Zhu et al. proposed a set of
theoretical models to describe the entire magnetization and demagnetization process of
torque motors [30]. Besides, several studies have been carried out on functional materials
such as piezoelectric crystals [31], giant magnetostrictive materials [32], magnetorheological
fluid, and shape memory alloys, which are used for EMC for novel servo valves [33,34].
Despite its extremely fast dynamic response, the material’s sensitivity to temperature and
hysteresis, and material deformation characteristics make it unsuitable as a REMC for
2D valves.

Many studies of torque motor have been carried out, but so far, it can only drive
the armature to rotate; there is no torque motor with both drive and negative feedback
functions. This paper presents a novel torque motor based on the annular air gap (TMAAG),
which integrates negative feedback mechanism. For a 2D valve driven by TMAAG, a simple
rectangular sensing groove can be used to replace the complicated spiral sensing groove,
which can greatly reduce manufacturing costs.

For novel electro-mechanical converters, parameter determination and optimization
are indispensable. Using algorithms can speed up this process and improve accuracy. As an
adaptive global optimization search algorithm, the genetic algorithm has the characteristics
of high efficiency, practicality, and strong robustness. It has been used in the parame-
ter optimization of various electro-mechanical converters. Diao et al. simultaneously
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employed sensitivity analysis, approximate models, and a genetic algorithm to reduce
the computation cost [35]. In order to improve the performance of the surface-mounted
permanent-magnet (SMPM), Jing et al. combined the analytical model with the genetic
algorithm to optimize some parameters of the motor [36]. Xu et al. studied the influence
of the slot parameters. The genetic algorithm-based optimization method is proposed
to maximize the torque density of the dual redundant permanent magnet synchronous
motor (PMSM) [37]. El-Nemr et al. proposed an optimal design methodology for switched
reluctance motor (SRM) using the non-dominated sorting genetic algorithm (NSGA-II)
optimization technique [38]. Yang et al. proposed an active disturbance rejection control
(ADRC) strategy based on the improved particle swarm optimization-genetic algorithm
(IPSO-GA) for a bearing less induction motor (BIM) [39]. Wang et al. proposed a multi-
objective optimization method based on the genetic algorithm and magnetostatic FEA 2D
model to optimize the shape design parameters of linear proportional solenoids [40]. Shen
et al. proposed an effective optimization method for mechanical structure of a bearing
less permanent magnet slice motor (BPMSM), which uses the gradient descent method to
obtain a linear regression model, and the genetic algorithm was used to solve it [41]. For
the research of TMAAG in this paper, the method where a regression model is obtained
through neural network and then solved by genetic algorithm is selected, which considers
both simplicity and accuracy simultaneously.

The rest of this paper is organized as follows: In Section 2, the structure and working
principle of TMAAG are introduced. In Section 3, the air gap permeance of TMAAG is
analyzed, and a novel analytical model is established by using the equivalent magnetic
circuit method. In Section 4, the orthogonal test, BP neural network, and genetic algorithm
are used to study the influence of crucial parameters on the performance of TMAAG. In Sec-
tion 5, a prototype of TMAAG is designed and manufactured, and a specialized experiment
platform is built to measure its torque-angle and torque-displacement characteristics. The
experiment results are then compared with the finite element method (FEM) simulation.
Finally, some conclusions of this work are drawn in Section 6.

2. Structure and Working Principle

As shown in Figure 1, the structure of TMAAG consists of yokes, an armature, per-
manent magnets (PMs), and coils. The PMs are installed in upper and lower grooves of
the yokes, and the coils are wound on the left and right sides of the yokes. Both the yoke
and the armature are made of a soft magnetic material, DT4, the armature is located in the
middle of the yokes, its two wings are centered symmetrical, and there is a pitch angle
β between the wing surface and the axis. The inner annulus surface of the yoke is also
designed with a slope groove of the pitch angle.
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and there is no output torque. When the coils are electrified, the control magnetic flux 𝜙ଵ, 

Figure 1. Schematic of the structure of TMAAG.

The schematic of the magnetic circuit of TMAAG is shown in Figure 2. When the coils
are not electrified, due to the symmetrical structure, the armature is in the neutral position
and there is no output torque. When the coils are electrified, the control magnetic flux φ1,
φ3 generated by the coils and the polarized magnetic flux φ2, φ4 generated by the PMs are
differentially superimposed at the air gap g1, g2, g3 and g4, thereby generating torque. In
addition, since both the armature and the yoke have an annulus structure, there will be no



Machines 2021, 9, 131 4 of 18

touching in any case. This ensures that the armature can be greatly rotated or moved in the
axial direction.
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Figure 2. Schematic of the magnetic circuit of TMAAG.

Due to the pitch angle of TMAAG, either the rotation or axial movement of the
armature can vary the four air gaps, resulting in corresponding torque variation. When the
coils are electrified, a magnetic force F is generated. The circumferential component force
Fd generates a driving torque Td to drive the armature to rotate a certain angle θ. As shown
in Figure 3, the armature moves from position 1 to position 2. The upper and lower air gaps
vary accordingly, and therefore the magnetic force F and its circumferential component
force Fd and axial component force Fz further increase. At this time, if an external force
Fe pulls the armature to move axially with displacement z, the air gaps will vary again.
Then, the armature will be acted on by a feedback torque Tf whose value is proportional to
the armature displacement z. The feedback torque Tf is opposite to the driving torque Td
and counteracts the latter. Therefore, the armature can return to initial position, and the
so-called “negative feedback mechanism” can be realized.
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Figure 3. Schematic of the armature movement and force.

Figure 4 shows the novel 2D valve driven by TMAAG. The armature of TMAAG is
fixed on the spool by a pin. In the sleeve, the spool forms a high-pressure chamber and
a sensitive chamber with the concentric ring and the end cap, respectively. Two pairs of
symmetrical high-pressure and low-pressure grooves are machined on the inner peripheral
surface of the spool close to the sensitive chamber. Hole a, hole b, and an internal channel
in the spool can pilot the high-pressure oil into the high-pressure groove and high-pressure
chamber, and the low-pressure groove is directly connected to the oil return port. The
internal surface of the sleeve is also machined with a centrally symmetrical straight groove.
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One end of the straight groove communicates with the sensitive chamber, and the other
end forms a resistance half bridge with the high-pressure and the low-pressure groove to
control the pressure in the sensitive chamber. In this way, the pressure difference between
the two ends of the spool is controlled to realize the axial movement of the spool.
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When TMAAG is electrified, the armature drives the spool to rotate; this rotary motion
varies the two overlapping openings differentially, so that the pressure in the sensitive
chamber is changed. The hydrostatic force balance is broken, and the spool begins to
moves axially. Due to this axial external force (Fe in Figure 3) and the slope structure of
the armature, the armature generates a feedback torque Tf during the axial movement,
which continuously counteracts the driving torque Td until the output torque decreases to
zero. The angle returns to zero, and two overlapping openings are restored to equal, which
re-establish the spool force balance; at this time, the spool stops moving and is in a new
equilibrium position.

3. Analytical Modeling
3.1. Air Gap Analysis

TMAAG needs to achieve the goal of rapid variation of feedback torque with displace-
ment. Therefore, it is necessary to study the air gap structure of TMAAG and the law of
torque changes.

TMAAG with overlapping parts between the yoke and the armature (the opening is
negative) was selected as the analysis object, and its air gaps were divided into four parts,
where the thin lines with arrows represent the magnetic flux lines, as shown in Figure 5. In
the initial position, part 1 and 2 are symmetrical to part 3 and 4. When electrified, owing
to the negative feedback mechanism, the armature realizes the conversion of torque to
displacement, which is uniformly shown as the center section after movement. At this time,
because of displacement z1, part 1 disappeared, part 2 and 3 did not change significantly,
and part 4 increased. From displacement z0 to z1, part 1 and 4 changed, and the magnetic
force on part 1 and 4 is in the radial direction. Therefore, changes in part 1 and 4 do not
affect the variation of torque. From displacement z1 to z2, part 4 continues to increase
but basically does not affect the torque, part 3 remains the same, while part 2 changes
significantly; the air path passing by is increased, which greatly reduces the permeance.
The changes in part 2 and 3 are the main factors for the variation of torque. If the feedback
torque needs to be changed rapidly with the armature displacement, the opening should
not be designed to be negative.

The magnetization curve of DT4 is shown in Figure 6. Using Maxwell 2D, the magnetic
flux lines of TMAAG are simulated in Figure 7. The working principle is in line with
expectations. When electrified, the magnetic flux on one side is strengthened, and the other
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side is weakened. After the armature is rotated or displaced, the change in the magnetic
flux lines is also consistent with Figure 5, which verifies the above-mentioned discussion.
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The basic form of the permeance formula can be written as Equation (1), where, µ
represents the permeability of the material, S represents the area perpendicular to the
direction of the magnetic flux line (magnetic equipotential plane), and l represents the path
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distance along the direction of the magnetic flux line [42]. Therefore, the choice of the plane
where the magnetic flux path is located is very important when analyzing the permeance.

Λ =
µS
l

(1)

The permeance model of the magnetic-flux-strengthened side is shown in Figure 8b.
According to (1), we can obtain:

Λ1 = Λ1a + Λ1b = 2µ0
(p + 2d)Lg

k(p/2 + zsinβ − rθcosβ + d)
(2)
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Here, Λ1b is 0, p is the parameter related to the width of the magnetic equipotential
plane, d is the opening between the yoke and the armature, Lg is the length of armature
wing, µ0 represents the permeability of the air, z represents the linear displacement of
armature, β represents the pitch angle, r represents the radius of armature, θ represents
the rotation angle of armature. The value of k is equal to α in Figure 8b; it is related to the
ellipse cut by the cylinder along the pitch angle. Since k changes little, the given value is
1.52 rad.

k = α = arctan
[

d/
(

r −
√

r2 − d2/sin2β

)]
(3)

The main permeance on the magnetic-flux-weakened side is shown in Figure 8c. In
addition, there is also other permeance on the magnetic-flux-weakened side that will not
change. Since the two are connected in parallel, the total permeance can be written as:

Λ2 = Λ2a + Λ2b = 2µ0
(p + 2d)Lg

k(p/2 + d)
+

µ0Lg

g
(zsinβ − rθcosβ − d) (4)

3.2. Magnetic Circuit and Torque Analysis

The equivalent magnetic circuit diagram of TMAAG is shown in Figure 9.
According to Kirchhoff’s law of magnetic circuit, we can have:

φ1/Λ1 + φ1/Λ2 − φ2/Λ2 − φ4/Λ1 = Ni
φ2/Λ2 + φ2/Λ3 − φ1/Λ2 − φ3/Λ3 = M

φ3/Λ3 + φ3/Λ4 − φ2/Λ3 − φ4/Λ4 = −Ni
φ4/Λ1 + φ4/Λ4 − φ1/Λ1 − φ3/Λ4 = −M

(5)
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M represents the magnetic potential of PMs, N represents the turns of coil, and i
represents the current. Since Λ1 = Λ3, Λ2 = Λ4, it can be obtained from Equation (5) that
φ1 = −φ3, φ2 = −φ4; thus, the following Equation can be obtained:{

φ1/Λ1 + φ1/Λ2 − φ2/Λ2 + φ2/Λ1 = Ni
φ2/Λ1 + φ2/Λ2 − φ1/Λ2 + φ1/Λ1 = M

(6)
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The magnetic potential drop in the air gap can be written as:{
u1 = φ1/Λ1 + φ2/Λ1 = (M + Ni)/2
u2 = φ2/Λ2 + φ1/Λ2 = (M − Ni)/2

(7)

The magnetic co-energy can be written as:

W =
1
2

4

∑
i=1

u2
i Λi =

(M + Ni)2Λ1

4
+

(M − Ni)2Λ2

4
(8)

Equation (8) can be further expanded as:

W =
(M + Ni)2µ0(p + 2d)Lg

2k(p/2 + zsinβ − rθcosβ + d)
+

(M − Ni)2µ0(p + 2d)Lg

2k(p/2 + d)
+

(M − Ni)2µ0Lg

4g
(zsinβ − rθcosβ − d) (9)

Taking the partial derivative of θ, we get:

T =
(M + Ni)2µ0(p + 2d)Lgrcosβ

2k(p/2 + zsinβ − rθcosβ + d)2 −
(M − Ni)2µ0Lgrcosβ

4g
(10)

where
k(p + 2d) = 8g (11)

Equation (11) is obtained under the condition that no torque is generated when there is
no movement. Equation (10) is a function of the torque inversely proportional to the square
of the movement. When the armature movement is very small, the torque change will be
obvious. When the armature movement is large, the torque change is basically invisible.
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When the armature movement is very small, the torque change is approximately a
straight line. The above Equation (10) can be further processed as:

T =
2(M + Ni)2µ0Lg(p + 2d)grcosβ − (M − Ni)2µ0Lgkrcosβ(p/2 + zsinβ − rθcosβ + d)2

4kg(p/2 + zsinβ − rθcosβ + d)2 (12)

The denominator extracts (p + 2d)2/4, leaving (1 + (2zsinβ − 2rθcosβ)/(p + 2d))2.
Because (2zsinβ − 2rθcosβ)/(p + 2d) � 1, this part is omitted.

T =
2(M+Ni)2µ0Lg(p+2d)grcosβ

kg(p+2d)2 − (M−Ni)2µ0Lgkrcosβ((p+2d)2/4+(p+2d)(zsinβ−rθcosβ)

kg(p+2d)2

+ (zsinβ−rθcosβ)2

kg(p+2d)2

(13)

the molecule (zsinβ − rθcosβ)2 is extracted, and it is compared with the bottom (p + 2d)2.
Because ((zsinβ − rθcosβ)/(p + 2d))2 � 1, this part is omitted again and the formula
is obtained:

T =
8(M + Ni)2g − (M − Ni)2k(p + 2d)

4kg(p + 2d)
µ0Lgrcosβ − (M − Ni)2(zsinβ − rθcosβ)

g(p + 2d)
µ0Lgrcosβ (14)

If Ni is much less than M, Ni � 2M, the first term of Equation (14) can be written as:

(8g − k(p + 2d))M2 + 2(8g + k(p + 2d))MNi
4kg(p + 2d)

µ0Lgrcosβ =
MNµ0Lgrcosβ

g
i (15)

Therefore, Equation (14) can be finally simplified as:

T = Kti + Kmrθ − Kmlz (16)

where 
Kt =

MN
g µ0Lgrcosβ

Kmr =
(M−Ni)2

g(p+2d) µ0Lgr2cos2β

Kml =
(M−Ni)2

2g(p+2d)µ0Lgrsin2β

(17)

It can be seen that the output torque of TMAAG consists of three terms, where the
terms of Kti and Kmrθ represent the sum of driving torque while Kmlz represents feedback
torque. Kt represents the electromagnetic torque coefficient, which will increase with Lg
and r yet decrease with g and β. Kmr and Kml represent rotary magnetic spring stiffness and
linear magnetic spring stiffness, respectively. They both increase with Lg, and r decreases
with g, p, and d. The highlight is that Kml is negative spring stiffness, which makes the
feedback torque and the driving torque in the opposite direction. Therefore, Kmlz is the key
of the negative feedback mechanism. Besides, Equation (17) indicates that Kml will have
the maximum value when β = 45◦.

4. Parameter Optimization

In order to verify the trend of the analytical model, an orthogonal test was designed.
Five structural variables including the pitch angle β, air gap g, opening d, wing length
Lg, and radius r were selected as the five factors of the orthogonal test. Among them, the
pitch angle is an essential research parameter, thus three levels were selected, and the other
factors were set as two levels, as shown in Table 1.

Based on the principle of selecting fewer tests, L12
(
31 × 24) was selected as the ap-

propriate orthogonal array, which means 12 sets of tests need to be conducted by using
the Maxwell 3D. The test results of FEM simulation are shown in Figure 10. Therefore,
12 groups of tests were analyzed, and the analysis results are shown in Table 2.

The target ∆T represents the torque value that changes every 0.1 mm. The test results
show that the optimal levels of pitch angle, air gap, opening, length, and radius are 45◦,
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0.4 mm, 0.1 mm, 20 mm, and 28 mm, respectively. Among these factors, the air gap has the
greatest influence, followed by the pitch angle. From the orthogonal test, the same trend as
the analytical model can be drawn.

Table 1. Factor level table of the orthogonal test.

Level A. Pitch Angle B. Air Gap C. Opening D. Wing Length E. Radius

1 30◦ 0.4 mm 0 mm 16 mm 24 mm
2 45◦ 0.5 mm 0.1 mm 20 mm 28 mm
3 60◦ / / / /

Figure 10. Orthogonal array test results.

Table 2. Results analysis of the orthogonal test.

Test Number A B C D E ∆T

1 1 1 1 1 1 0.192
2 1 1 1 2 2 0.164
3 1 2 2 1 2 0.123
4 1 2 2 2 1 0.113
5 2 1 2 1 1 0.181
6 2 1 2 2 2 0.238
7 2 2 1 1 1 0.109
8 2 2 1 2 2 0.133
9 3 1 2 1 2 0.173

10 3 1 1 2 1 0.158
11 3 2 1 1 2 0.104
12 3 2 2 2 1 0.132

yj1 0.591 1.106 0.86 0.882 0.885

12
∑

i=1
∆T = 1.82

yj2 0.661 0.714 0.96 0.938 0.935
yj3 0.567 / / / /
yj1 0.148 0.184 0.143 0.147 0.147
yj2 0.165 0.119 0.16 0.156 0.156
yj3 0.142 / / / /
Rj 0.017 0.065 0.016 0.009 0.008

Primary level A2 B1 C2 D2 E2

Primary and secondary factors B, A, C, D, E
Optimal combination A2B1C2D2E2
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The trend of the opening is opposite to the analytical model. This is because the
opening of 0 is the limiting condition in the model. If the opening is 0, the permeance
tends to infinity. In fact, the transition between the positive and the negative of the opening
is continuous. Therefore, according to the orthogonal test, when the size of the opening
is near 0, the proper opening to avoid the limiting position is beneficial to the feedback
torque, while too large an opening is disadvantageous.

The optimal design based on the intelligent algorithm needs enough samples. How-
ever, it is time-consuming and laborious to obtain samples only by FEM simulation. Here,
a three-layer BP neural network was constructed on the platform of Matlab in order to
approximate the FEM results of TMAAG, where the number of input layer nodes is 5, the
number of hidden layer nodes is 8, and the number of output layer nodes is 1. The BP
network is trained by gradient descent with momentum and adaptive lr algorithm, where
the target error goal = 1 × 10−3, learning rate lr = 0.035, and the maximum number of
iterations epochs = 2000. The fitting orthogonal test curve is shown in Figure 11, which
indicates the BP neural network has very high fitting accuracy.

Figure 11. Neural network fitting curve.

A genetic algorithm is used to obtain the optimal parameters of TMAAG. Here, the
number of the initial population NP = 100, the length of the chromosome binary code
is 20, the maximum evolution algebra G = 100, the crossover probability is Pc = 0.8, and
the mutation probability Pm = 0.1. The initial population was generated first, then the
binary code was converted into decimal system, and the individual fitness value was
calculated and normalized. The selection operation based on roulette, crossover, and
mutation operation based on probability are used to generate new populations, and the
optimal individuals of previous generations are retained in the new species group for the
next genetic operation. During this process, the termination condition will be judged, and
if the termination condition is met, the optimization value will be output, otherwise the
iterative optimization continues. The fitness evolution curve is shown in Figure 12. After
100 iterations, the algorithm has approached the optimal solution, and the result ∆T = 0.24.
The optimization results are as follows: pitch angle β = 45.001, air gap g = 0.403, opening
d = 0.1, wing length Lg = 20, radius r = 27.615, which basically conforms to the previous
conclusions. Finally, according to the optimized results, the key parameters of the TMAAG
prototype are determined, as shown in Table 3.

Before the experiment, a 3D model was established to perform FEM simulation in
Maxwell 3D. The simulation cloud diagrams are shown in Figure 13. When TMAAG is
not electrified, the magnetic flux is symmetrical. From Figure 13a,b after electrification,
the magnetic flux in one side is strengthened and the other side is weakened. Figure 13c,d
show magnetic flux variation after rotation and axial movement, respectively. The axial
movement obviously plays a role of negative feedback and make two sides of the magnetic
flux gradually closer.
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Table 3. Key parameters of the TMAAG prototype.

Parameters Value

Full length 100 mm
Full height 52 mm

Full thickness 28 mm
Pitch angle β 45◦

Air gap g 0.2 mm
Opening d 0.1 mm

Wing thickness 5 mm
Wing length Lg 20 mm

Armature radius r 28 mm
PM size 14 × 24 × 10 mm
PM type NdFeB52

Coil turns N 200
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Figure 13. Cloud diagram of TMAAG. (a) i = 0 A, θ = 0◦, z = 0 mm; (b) i = 2 A, θ = 0◦, z = 0 mm; (c) i = 2 A, θ = 1.5◦,
z = 0 mm; (d) i = 2 A, θ = 0◦, z = 1 mm.
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5. Experiment

In order to further verify the analytical and simulation results, a prototype of TMAAG
was machined, and an experiment platform was built, as shown in Figure 14a,c. The
experiment platform includes the prototype, direct current (DC) power supply, torque
sensor, controller, and linear and rotary micrometers. As shown in Figure 14b, the angular
and linear displacement of the yoke relative to the armature can be changed by using
the linear and rotary micrometer, respectively. The armature is fixedly connected to the
torque sensor through the shaft, and thereby the torque of TMAAG at any position can be
measured. Finally, the torque-angle and the torque-displacement characteristic curves can
be obtained, which reflect driving torque and feedback torque, respectively.
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Figure 14. Experiment device. (a) Prototype; (b) Linear micrometer and rotary micrometer; (c) Exper-
iment platform.

Torque-angle characteristics were measured when the current i was 0, 1, and 2 A. The
results were then compared with the corresponding FEM simulation, as shown in Figure 15.
Table 4 summarizes the comparison data. With the increase in current and rotation angle,
the torque presented an increasing trend, which is consistent with the analysis of Kti and
Kmrθ in Equation (17). When i = 2 A and θ = 1.5◦, the FEM and experiment results were
0.859, and 0.754 N·m, respectively. As the current gradually increased, the experimental
result was smaller than the simulation value. The reason for such deviation might be that
compared with the BH curve in the finite element model, the real soft magnetic material
tends to be saturated more easily under high current excitation.
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Figure 15. Torque-angle characteristic curve with different currents.

Table 4. Comparison of torque-angle characteristics.

Current i = 0 A i = 1 A i = 2 A

FEM
θ = 0◦ −0.009 0.358 0.699

θ = 1.5◦ 0.325 0.593 0.859

Experiment θ = 0◦ 0.001 0.308 0.603
θ = 1.5◦ 0.319 0.559 0.754

In order to validate the negative feedback mechanism of TMAAG, the torque-displacement
characteristics were also measured when the current i was 0, 1, and 2 A. The results were
then compared with the corresponding FEM simulation, as shown in Figure 16. Table 5
summarizes the comparison data. With the increase in armature displacement, the feedback
torque increased. Note that here the measured torque is the sum of the driving torque and
feedback torque. Since the direction of driving torque and feedback torque is opposite, the
measured overall torque is influenced by the increasing feedback torque and thus presents a
downward trend, which is consistent with the analysis of Kmlz in Equation (17) and verifies
the negative feedback mechanism of TMAAG. When i = 2 A, z = 1 mm, the torque was 0.175
and 0.084 N·m. Similarly, when the current gradually increased, the experimental result was
smaller than the simulation value. The reason of such deviation can also be attributed to the
different material characteristics between the FEM model and real situation, as discussed for
the torque-angle characteristics.

Figure 16. Torque-displacement characteristic curve with different currents.
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Table 5. Comparison of torque-displacement characteristics.

Current i = 0 A i = 1 A i = 2 A

FEM
z = 0 mm −0.009 0.358 0.699
z = 1 mm −0.358 −0.09 0.175

Experiment z = 0 mm 0.001 0.307 0.601
z = 1 mm −0.368 −0.147 0.084

6. Conclusions

(1) In order to reduce machining difficulty and costs of 2D valves, a novel TMAAG is
proposed in this paper, which has a negative feedback mechanism to replace the
original spiral groove of traditional 2D valves.

(2) Aiming at the annulus air gap structure of TMAAG, the air gap change law is an-
alyzed and verified by FEM simulation. A qualitative analytical model that can
intuitively reflect the torque change law of TMAAG is proposed, which shows that
the output torque consists of three parts: electromagnetic torque, driving torque, and
feedback torque.

(3) Using the method of orthogonal test, the significance of the factors affecting the torque
change was analyzed, and the optimization results were obtained through neural
network learning and genetic algorithm verification.

(4) A prototype of TMAAG was machined, and the experiment proved the consistency
of the analytical analysis and experiment. For torque-angle characteristics, the output
torque increased with increasing current and rotary angle, which reached about
0.754 N·m with 2 A and 1.5◦. While for torque-displacement characteristics, due
to the negative feedback mechanism, the output torque decreased with armature
displacement, which was about 0.084 N·m with 2 A and 1 mm. The research validates
the unique negative feedback mechanism of the TMAAG and indicates that it can be
potentially used as an electro-mechanical converter of 2D valves.

(5) In order to improve the optimization effect, more factors and levels in orthogonal
tests will be considered in future work. A robust design optimization based on space
reduction strategy might be used for the optimization algorithm.
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Nomenclature

β Pitch angle
g Air gap
φ Magnetic flux
F Magnetic force
Fd Circumferential component force
Td Driving torque
θ Rotation angle
Fz Axial component force
Fe External force
Tf Feedback torque
z Axial displacement
d Opening between the yoke and the armature
Λ Permeance
µ Permeability of the material
S Magnetic equipotential plane aera
l The path distance along the direction of the magnetic flux line
Λ1 Air gap permeance of magnetic strengthened side
Λ2 Air gap permeance of magnetic weakened side
µ0 Permeability of air
p A parameter related to the width of the magnetic equipotential plane
k A parameter related to the ellipse cut by the cylinder along the pitch angle
r Armature radius
Lg Armature wing length
M Permanent magnet magnetic potential
N Coil turns
i Current
u Air gap magnetic potential
W Magnetic co-energy
T Output torque
Kt Electromagnetic torque coefficient
Kmr Rotary magnetic spring stiffness
Kml Linear magnetic spring stiffness
∆T Torque change value every 0.1 mm
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