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Abstract: In the context of Industry 4.0, the matrix production developed by KUKA robotics repre-
sents a revolutionary solution for flexible manufacturing systems. Because of the adaptable and 
flexible manufacturing and material handling solutions, the design and control of these processes 
require new models and methods, especially from a real-time control point of view. Within the 
frame of this article, a new real-time optimization algorithm for in-plant material supply of smart 
manufacturing is proposed. After a systematic literature review, this paper describes a possible 
structure of the in-plant supply in matrix production environment. The mathematical model of the 
mentioned matrix production system is defined. The optimization problem of the described model 
is an integrated routing and scheduling problem, which is an NP-hard problem. The integrated 
routing and scheduling problem are solved with a hybrid multi-phase black hole and flower polli-
nation-based metaheuristic algorithm. The computational results focusing on clustering and rout-
ing problems validate the model and evaluate its performance. The case studies show that matrix 
production is a suitable solution for smart manufacturing. 

Keywords: cyber-physical system; heuristics; logistics; matrix production; optimization; smart 
manufacturing 
 

1. Introduction 
Thanks to digitization and Industry 4.0 technologies and solutions, today’s economy 

is in the middle of significant transformation processes regarding the fulfilment of cus-
tomers’ demands. Production companies must apply the solutions of the fourth industrial 
revolution to improve their efficiency. The ever-changing production and service sector 
requires the improvement of these attributes. Logistics and material handling operations 
have more and more importance related to the purchasing, production, distribution, and 
reverse processes, and they have a significant impact on the strategic, tactical, and opera-
tive level of enterprise systems. 

As Figure 1 shows, Industry 4.0 technologies offer new innovation accelerators, like 
augmented and virtual reality, cloud and fog computing related to big data problems, 
additive manufacturing, Internet of Thing (IoT), autonomous standardized production 
and material handling resources, smart tools, gentelligent products, simulation and digi-
tal twin solutions, cyber security, and system integration. These Industry 4.0 technologies 
are important influencing factors for manufacturing processes [1,2] and they lead to the 
appearance of dynamic manufacturing networks [3]. 

Augmented and virtual reality is a key technology for smart manufacturing because 
it makes it possible to realize an interactive human–machine interaction in a real-world 
environment while the components of the physical world are extended by perceptual in-
formation. Augmented and virtual reality can be used in training, design, manufacturing, 
operation, services, sales, and marketing. In the field of manufacturing, the most im-
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portant applications are quality control and total quality management; maintenance op-
erations, especially in a dangerous environment; assembly work instructions; and perfor-
mance monitoring [4]. 

 
Figure 1. Industry 4.0 technologies as new innovation accelerators and their impact on matrix pro-
duction. 

Complex manufacturing systems generate unprecedented amounts of data that are 
difficult to handle with traditional computing methods. Cloud, edge, and fog computing 
make it possible to manage big data problems. Big data is coming from a wide range of 
sensors from manufacturing systems. Cloud and fog computing integrate servers, stor-
ages, databases to support efficient networking, analytics, and intelligence solutions [5]. 

The introduction of additive manufacturing will have a great impact on the supply 
chain processes and logistics solutions, because both external and in-plant material flow 
solutions will change dramatically. It is caused by the fact that this technology is based on 
the building of 3D objects by adding layer-upon-layer of various materials, like plastic, 
metal, or organic materials [6]. 

The new concept of gentelligent products aims to develop genetically intelligent 
products and components, which collect data through their lifecycle and bequeath them 
to the next generation in various time spans. The appearance of gentelligent products has 
a great impact on big data problems [7]. 

The application of digitalization-based technologies enables the virtualization of 
product and process planning and control [8]. Digital twins represent an integrated prob-
abilistic simulation of complex products or processes using physical models, sensor up-
dates, and cloud-based information to mirror the product or process of its corresponding 
twin [9,10]. Digital twin technology makes it possible to convert conventional manufac-
turing systems into cyber-physical systems, and this transformation can lead to the im-
provement of the design process of in-plant material supply, adding a real-time phase to 
the conventional in-plant supply process. In conventional manufacturing systems, the real 
time optimization is almost impossible, because real time optimization is based on real 
time data and status information. Using digital twin technology and smart sensor net-
works, real time data and status information can be collected from the physical system, 
and a real time model for discrete event simulation can be generated to perform scenario 
analysis for real time decision making. 

The Internet of Things describes an integrated system of computers and mechanical 
machines provided with unique identifiers. The IoT in manufacturing systems makes it 
possible to transfer data through a network among manufacturing equipment (standard-
ized production cells and assembly cells), materials handling machines (autonomous mo-
bile robots and automated guided vehicles), intelligent tools, gentelligent products, and 
ERP systems [11]. 
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The Industry 4.0 technologies make it possible to transform conventional manufac-
turing processes to cyber-physical manufacturing processes to aim for higher flexibility, 
productivity, availability, cost-efficiency, energy-efficiency, and sustainability. The fulfil-
ment of more and more diverse customers’ demands requires more and more sophisti-
cated, flexible, and intelligent solutions based on these technologies both inside and out-
side of the production plants in all fields of industry including automotive industry as a 
flagship. 

The in-plant material supply solutions are commonly based on milk-run material 
supply, especially in the field of automotive industry. KUKA AG (one of the world’s lead-
ing specialists in automation) offered a new, revolutionary solution for flexible manufac-
turing, transforming conventional manufacturing into cyber-physical manufacturing with 
the application of Industry 4.0 technologies. This new solution is the matrix production. 
With its new demonstration plant opened on March 2018 in Augsburg, KUKA demon-
strates the advantages of this matrix production under real conditions. In a matrix pro-
duction system, standardized configurable production or assembly cells are arranged in 
a grid layout. Manufacturing and logistics are separated and fully automatized. The ma-
trix production system uses various Industry 4.0 technologies, like robots and turntables 
in the production and assembly cells, autonomous guided vehicles, digital twin support 
for real time control, prediction, and performance analysis. However, as a journalist wrote 
[12], “However, all theory is gray.” There is a huge number of open questions focusing on 
manufacturing and logistics. 

Manufacturing systems of increased complexity face a number of new design and 
operation problems that can be addressed by the opportunities provided by the Fourth 
Industrial Revolution. In the case of matrix production, the material supply of standard-
ized configurable production or assembly cells is one of the most important tasks of logis-
tics, because the separated manufacturing and logistics and the increased flexibility re-
quire new models and methods. This article focuses on the optimization of in-plant supply 
in matrix production. The highlights of the article are the following: (1) integrated model 
to solve the in-plant material supply problem in matrix production system, which enables 
both the conventional and real time planning of in-plant material supply; (2) integrated 
solution of assignment and routing problems based on heuristic optimization algorithms. 

The article is organized as follows. Chapter 2 presents a systematic literature review, 
which summarizes the research background of in-plant supply optimization in manufac-
turing systems. Chapter 3 is the problem description including the mathematical model 
of integrated assignment and routing problem in matrix production systems. Chapter 4 
presents a metaheuristic optimization algorithm to solve the integrated assignment and 
routing problem, based on flower pollination and black hole heuristics. Chapter 5 demon-
strates the numerical results. Conclusions, managerial impacts, and future research direc-
tions are discussed in the remaining part of the article. 

2. Literature Review 
Within the frame of the systematic literature, the main scientific results, scientific 

gaps, and bottlenecks are identified and described [13]. The optimization of logistics and 
supply chain design and control of manufacturing systems has been researched in the past 
30 years. The first articles in this field were published before 2000, focusing on heuristic 
optimization of rough-mill yield with production priorities [14], optimum allocation of 
jobs on machine-tools [15], and facility location problem for large-scale logistics [16]. The 
number of published research papers has increased; it shows the importance of the opti-
mization of manufacturing-related supply chain solutions. 

The literature introduces a wide range of design methods used to solve problems of 
manufacturing-related processes, like unified decomposition, decision-making methods, 
queuing theory, data-driven modelling, fuzzy description, and heuristic and metaheuris-
tic algorithms and simulation. 
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Researchers solved a simultaneous planning task of an integrated production, inven-
tory, and inbound transportation problem as a mixed-integer linear program and pro-
posed a three-phase unified decomposition heuristic [17]. A bi-objective nonlinear pro-
gramming model was proposed as a decision-making tool to select the carriers between 
supply chain levels with emphasis on the environmental factors [18], and the problem was 
solved with a multi-objective meta-heuristic imperialist competitive algorithm. For the 
solution of coordination problems of production planning and transportation planning, a 
mixed-integer linear programming model and a non-linear programming model were 
supposed, with a decomposition-based heuristic and a Lagrangian relaxation method [19]. 
Service load balancing, task scheduling, and transportation optimization problem were 
formulated as a new queuing network for parallel scheduling of multiple processes and 
orders from customers to be supplied [20]. Data-driven decision-making models are more 
and more important in manufacturing, especially in the field of cyber-physical manufac-
turing and logistics. The design and operation of manufacturing-related logistics and sup-
ply problems can be managed using data-driven models and methods [21]. Simulation 
models can be used both for the design of machines [22] and for the optimization of sys-
tems and processes. Simulation techniques can be used as a decision support method for 
process improvement of intermittent production systems [23]. A hybrid approach of dis-
crete event simulation integrated with location search algorithm was used to solve a cells 
assignment problem in an assembly facility [24]. An ontology-driven, component-based 
framework shows the application of Jellyfish-type simulation models [25]. The suggested 
integration of simulation and encompassing mathematical optimization reduced the com-
plexity of the assembly facility and generated alternative assignments in two phases. 

Various heuristic and metaheuristic algorithm make it possible to solve NP-hard op-
timization problems in manufacturing systems. Service load balancing, scheduling, and 
logistics optimization in cloud manufacturing are solved with a genetic algorithm [26]. A 
supply chain configuration problem of manufacturing plants, distributors, and retailers is 
formulated as an integer-programming model and solved with an ant colony optimiza-
tion-based heuristic [27]. A new mathematical model for multi-product economic order 
quantity model with imperfect supply batches was supposed by researchers. They devel-
oped three robust possibilistic programming approaches and solved the problems with 
two novel meta-heuristic algorithms named water cycle and whale optimization algo-
rithms [28]. The whale optimization algorithm was also used to solve a production-distri-
bution network problem [29]. A novel integrated bacteria foraging algorithm embedding 
a five-phase based heuristic was supposed to solve an integrated model of facility transfer 
and production planning in dynamic cellular manufacturing-based supply chain [30]. The 
design problems of closed-loop supply chains represent a special form of manufacturing-
related supply problems, where disassembly operations are performed instead of manu-
facturing. An optimized disassembly process is required for efficient remanufacturing 
and recycling of returned products. The dynamic lot-sizing and vehicle routing problem 
of this integrated process was solved with a two-phase iterative heuristic [31]. Time- and 
capacity-related constraints of manufacturing-related logistics are usually taken into con-
sideration as hard constraints, but they are in truth soft constraints, because they are in-
fluenced by more external factors and their stochastic environment. Soft constraints can 
be taken into consideration using biased-randomized algorithms as an effective method-
ology to cope with NP-hard and non-smooth optimization problems in many practical 
applications [32]. One optimization approach uses set partitioning and another approach 
employs the concept of seed routes to determine the solution of an integrated production, 
inventory, and distribution model for supplying retail demand locations from a produc-
tion facility [33]. Iterated greedy algorithm solved the optimization problem of makespan 
for the distributed no-wait flow shop scheduling problem [34]. Other interesting solutions 
are represented by hybrid algorithms, like a hybrid genetic algorithm for multi-product 
competitive supply chain network design with price-dependent demand [35], a hybrid 
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firefly-chaotic simulated annealing approach for facility layout problem [36], or a priori-
tized K-mean clustering hybrid genetic algorithm for discounted fixed charge transporta-
tion problems [37]. Manufacturing and in-plant supply processes are typical uncertain 
environments, where fuzzy modelling and fuzzy optimization offer suitable tools, and 
fuzzy approach can easily integrate with other analytical or heuristic algorithms [38]. 

Several scenarios and case studies related to the research field were assessed and 
evaluated in various articles. The case studies of manufacturing-related logistics and sup-
ply chain problems are generally focusing on traditional manufacturing, cloud manufac-
turing [26], or dynamic cellular manufacturing [30], and only a few of them are discussing 
the logistics and in-plant supply problems of cyber-physical manufacturing systems, es-
pecially the matrix production concept. The most important fields of case studies are from 
the automotive industry, but valuable case studies have been published in the fields of 
perishable inventory systems [39], biofuel supply [40], fast moving parts [41], garment 
manufacturing [42], rice supply chain [43], luxury watches [44], or winery [45]. 

In this article, black hole and flower pollination heuristic is used. Albert Einstein was 
the first scientist who predicted the existence of black holes in 1916. American astronomer 
John Wheeler was the denominator of black holes. When a star burns out, it may collapse, 
or fall into itself. In the case of smaller stars, they become a neutron star or a white dwarf, 
while in the case of larger stars they will create a stellar black hole. Black holes are invisi-
ble, but the environment outside of the Schwarzschild radius can be analyzed. The black 
holes have a great impact on particles near them. If the distance between the particle and 
the core of the black hole is smaller than the Schwarzschild radius, the particle can move 
in any direction, but in the other case, the space-time is deformed and the particle will be 
absorbed by the black hole. The black hole heuristic is based on this phenomenon of black 
holes in the outer space [46]. There are various applications of the black hole heuristic, like 
discrete sizing optimization of planar structures [47], feature selection and classification 
on biological data [48], and optimization of consignment-store-based supply chain [49] or 
for urban traffic network control [50]. 

Flower pollination-based heuristic belongs to the bio-inspired algorithms [51]. This 
algorithm is used in various fields, like identifying essential proteins [52], multi-level im-
age thresholding [53], visual tracking [54], EEG-based person identification [55], or dou-
ble-floor corridor allocation problem [56]. The solutions of the mathematical problems are 
represented by pollen grains, and the optimization process is based on the moving of these 
grains in the search space modelled by biotic, probiotic, and self-pollination. The algo-
rithm can be described in four important steps. 

As the above-mentioned content analysis shows, existing studies focus on the ana-
lytical and heuristic optimization of both conventional and cyber-physical manufacturing 
systems, while only a few of them consider the energy efficiency aspects of in-plant mate-
rial supply in cyber-physical systems. 

More than 50% of the articles were published in the last 5 years. This result indicates 
the scientific potential of the design of in-plant supply solution of cyber-physical manu-
facturing environment. The articles that addressed the design and control problems of the 
manufacturing system and their material supply problems are focusing on conventional 
manufacturing, and only a few of them describe the logistic problems of cyber-physical 
manufacturing. Therefore, this research topic still needs more attention and research. Ac-
cording to that, the focus of this research is the modelling and optimization of in-plant 
supply of the matrix production system, focusing on cell assignment and routing prob-
lems. 

Table 1 summarizes the main contributions of the related research works from the 
main contribution and the focus on manufacturing, optimization method, and sustaina-
bility point of view. As the analysis shows, a wide range of research works focus on the 
optimization of conventional manufacturing systems from technology and in-plant sup-
ply point of view, and these works are using both analytical methods and heuristics. There 
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are some research works related to the in-plant supply optimization in cyber-physical sys-
tems, but these researches are focusing on KPIs (Key Performance Indicators). The table 
identifies a research gap, because the in-plant material supply of cyber-physical systems 
has not been extensively published until now. As a consequence related to the analysis 
shown in Table 1, the main contributions of this article are the followings: (1) model frame-
work of autonomous guided vehicles-based supply of matrix production; (2) mathemati-
cal description of cell assignment and routing problem in matrix production; (3) compu-
tational method based on flower pollination algorithm to solve the assignment and rout-
ing problem in matrix production; and (4) computational results of the described model 
to validate the models and the methods. 

Table 1. Authors’ contributions related to the optimization of cyber-physical production systems including I4.0 and heu-
ristic optimization approaches. 

Research Contribution 
Optimization Manufacturing 

Sustain-
ability Analyti-

cal 
Heuris-

tics 
Conven-

tional 
Cyber-

physical 
Rosin et al., 2020 [1] Application of principles and tools of I4.0 in lean management    ✓  

Skapinyecz et al., 2018 [2] Optimal selection of logistics service providers in Industry 4.0 ✓   ✓  
Tchoffa et al., 2019 [3] Extension of federated interoperability framework in I4.0 ✓   ✓  
Alcácer et al., 2019 [4] Information and communication technologies in I4.0    ✓  

Dastjerdi et al., 2016 [5] Impact of fog computing on IoT solutions    ✓  
Huang et al., 2013 [6] Additive manufacturing and sustainability    ✓ ✓ 

Wu et al., 2010 [7] Magnetic magnesium for data storage in gentelligent products   ✓ ✓ ✓ 
Guo et al., 2019 [8] Modular based flexible digital twin for factory design    ✓  
Tao et al., 2018 [9] Digital twin-enabled product design, manufacturing, and service    ✓  

Ding et al., 2019 [10] Digital twin-based cyber-physical production system    ✓  
Cui et al., 2020 [11] Big data applications   ✓ ✓  

Schahinian, 2020 [12] Concept of matrix production    ✓  
Bányai et al., 2019 [13] Real time optimization of matrix production systems  ✓  ✓  

Azarm et al., 1991 [14] 
Production priorities in the heuristic optimization of rough-mill 

yield  ✓ ✓   

Kops et al., 1994 [15] Optimum allocation of jobs on machine tools ✓  ✓   
Hidaka et al., 1997 [16] Facility location for large-scale logistics using heuristics  ✓ ✓   
Chitsaz et al., 2019 [17] Joint optimization of production and distribution  ✓ ✓   

Eydi et al., 2020 [18] Decision making for supplier and carrier selection  ✓ ✓  ✓ 
Feng et al., 2018 [19] Integrated production and transportation planning  ✓ ✓  ✓ 

Ghomi et al., 2019 [20] Optimization in cloud manufacturing  ✓  ✓  
Sadati et al., 2018 [21] Identification of significant control variables in manufacturing  ✓ ✓ ✓  

Haberer et al., 2016 [22] Optimization of a crawler track unit ✓  ✓   
Tamás, 2017 [23] Simulation-enabled decision making in manufacturing processes ✓  ✓   

Saez-Mas et al., 2020 [24] Hybrid approach for cell assignment problems  ✓ ✓   
Bohács et al., 2017 [25] Ontology-driven framework for Jellyfish-type simulation ✓ ✓ ✓   
Ghomi et al., 2019 [26] Optimization of queueing problems in cloud manufacturing  ✓  ✓  
Hong et al., 2018 [27] Multi-stage supply chain optimization  ✓ ✓  ✓ 

Khalilpourazari et al., 2019 [28] Analysis of impact of defective supply batches  ✓ ✓   
Mehranfar et al., 2019 [29] Sustainability oriented product distribution  ✓ ✓  ✓ 

Liu et al., 2017 [30] Impact of facility transfer on cellular manufacturing  ✓ ✓ ✓  
Habibi et al., 2017 [31] Integrated optimization f collection and disassembly  ✓ ✓   
Juan et al., 2020 [32] Soft constraints in production optimization  ✓ ✓ ✓  

Russel, 2017 [33] Optimization in production routing  ✓ ✓   
Shao et al., 2017 [34] No wait flow shop scheduling optimization  ✓ ✓   

Saghaeeian et al., 2018 [35]M Multi-product competitive supply chain network design  ✓ ✓ ✓  
Tayal et al., 2018 [36] Facility layout optimization from big data point of view  ✓ ✓ ✓  
Tari et al., 2018 [37] Discounted fixed charge transportation problems  ✓ ✓  ✓ 

Sakalli et al., 2018 [38] Integrated stochastic production and distribution planning  ✓ ✓   

Abouee-Mehrizi et al., 2019 [39] 
Design of perishable inventory systems with Markov decision 

process ✓  ✓   

Aboytees et al., 2020 [40] Optimization of hub-and-spoke network problems  ✓ ✓  ✓ 
Behfard et al., 2018 [41] Optimization of last time buy problem for fast moving parts  ✓ ✓   

Ma et al., 2018 [42] Resource sharing optimization  ✓ ✓   
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Cheraghalipour et al., 2019 [43] 
Agricultural supply chain optimization for wide geographic 

range 
 ✓ ✓  ✓ 

Respen et al., 2017 [44] Perturbations in production plan, demand, and dispatching  ✓ ✓   
Varas et al., 2018 [45] Lot sizing for uncertain demands  ✓ ✓   
Hatamlou, 2013 [46] Heuristic data clustering  ✓    

Gholizadeh et al., 2019 [47] Discrete sizing optimization with heuristics  ✓    
Pashaei et al., 2017 [48] Binary black hole heuristics  ✓    
Bányai et al., 2017 [49] Consignment-store-based supply chain optimization  ✓ ✓  ✓ 

Khooban et al., 2017 [50] Fuzzy logic-based urban traffic network control  ✓    
Lei et al., 2019 [51] Flower pollination heuristics  ✓    
Lei et al., 2018 [52] Application of flower pollination heuristics  ✓    

Shen et al., 2018 [53] Multi-level image thresholding with flower pollination heuristics  ✓    
Gao et al., 2018 [54] Visual tracking with flower pollination heuristics  ✓    

Rodrigues et al., 2016 [55] Binary flower pollination algorithm  ✓    
Guan et al., 2019 [56] Double-floor corridor allocation  ✓    

Kherabadi et al., 2017 [57] Gravitational search algorithm in Fuzzy controllers  ✓    
Szentesi et al., 2021 [58] Process optimization for distribution logistics ✓  ✓   
Bányai et al., 2017 [59] Optimization of blending technologies ✓  ✓   
Hardai et al., 2021 [60] Logistics aspects of I4.0   ✓   

Kundrák et al., 2019 [61] Efficiency improvement in manufacturing technologies   ✓   
This proposal Optimization of in-plant supply for matrix production  ✓  ✓ ✓ 

3. Materials and Methods 
The optimization problem of the matrix production-based in-plant supply has two 

stages. Within the frame of the first stage, the various production orders must be assigned 
to the available standardized production cells, while the second phase focuses on the op-
timal routing of automated guided vehicles. The structure of the integrated assignment 
and routing model can be seen in Figure 2. 
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Figure 2. Integrated model of assignment and routing problem in a cyber-physical manufacturing 
environment. 

Phase 1 includes the assignment of production orders to the grid cells. Production 
orders are generated by the Enterprise Resource Planning (ERP) using the results of Ma-
terial Requirement Planning (MRP-I) and Manufacturing Resource Planning (MRP-II). 
The ERP is connected to the sensors and data collection units of cyber-physical environ-
ment through a digital twin solution, which makes it possible to make real time analysis, 
controlling, and forecasting. The size of the AGV pool defines the number of available 
AGVs, which has a great impact on the in-plant supply process from an availability and 
efficiency point of view. The more available AGV in the AGV pool, the higher the flexibil-
ity and availability, which can influence the utilization of technological resources caused 
by the changeover time. The second part of the matrix production system includes the 
storages for tools and components required for the manufacturing. The more the available 
tool set for required changeover operation, the higher the flexibility and resource utiliza-
tion for technological resources. 

Phase 2 includes the routing of AGVs available in the AGV pool. A typical route of 
an AGV includes the following tracks: (1) from AGV pool to the warehouse, (2) from the 
warehouse to the first cell grid of the scheduled route, (3) tracks among cells grids, and 
(4) from the last cell grid back to the AGV pool. The objective function is either resource- 
or sustainability-based. Resource-based objective function means the minimization of 
numbers of required AGVs, while sustainability-based objective means the minimization 
of energy-consumption of material supply operations. The input parameters of the inte-
grated assignment and routing problem are the followings: 
• ߬௜௝௣  is the production lead time of production order i at production cell j, where ݅ =1 … ݉ and ݆ = 1 … ݊; 
• ߬௜௞௝௖  is the changeover time among production orders between production order i 

and production order k at production cell j, where ݇ = 1 … ݉, and ߬௜௞௝௖ ≥ 0 if it is 
possible to perform a change between production order i and k at production cell j, 
otherwise ߬௜௞௝௖ = −1; 

• ܽ௜௝ is the availability matrix, which takes a value of 1 if the production order i can be 
assigned to matrix cell j, otherwise 0. 

• ܽ௜௞௝௖  is the changeover availability matrix, which takes a value of 1 if it is possible to 
change from production order i to production order k at matrix cell j, otherwise 0; 

• ߬௜௟௢௪௘௥ଵ and ߬௜௨௣௣௘௥ are the lower and upper time limits of finishing operation i in the 
first phase (assignment) of the optimization; 

• ߬௜௟௢௪௘௥ଶ and ߬௜௨௣௣௘௥ଶ are the lower and upper time limits of finishing operation i in 
the second phase (routing) of the optimization; 

 ;௝௨௣௣௘௥ଵ is the upper limit of operations at production cell jݏ •
 ௜௝ is the required toolset for production order i at matrix cell j; andݖ •
 .௚௠௔௫ is the available number of required toolset gݎ •

3.1. Assignment of Production Operations to Matrix Cells 
Within the frame of this phase, the assignment problem of required production op-

erations (production orders) to available standardized flexible production cells is de-
scribed. The decision variable of the assignment problem is the assignment matrix ݔ௝௞, 
which defines that operation ݔ௝௞ production order is assigned to the matrix cell j as kth 
operation. 

The objective function of the first phase of the optimization problem is the minimi-
zation of the total operation time within a predefined timeframe, which can be calculated 
as a sum of the production operations and changeover times: ߬ = ߬௣ + ߬௖, (1) 
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where ߬௣ is the production lead time, and ߬௖ is the changeover time among the various 
production operations of the standardized production cells. The first part of the objective 
function represents the total operation time, which can be calculated as follows: ߬௣ = ∑ ∑ ߬௫ೕೖ௝௣ధ௞ୀଵ௡௝ୀଵ , (2) 

where ߸௝ is the number of assigned production orders to production cell j. 
The second part of the objective function describes the changeover time among the 

scheduled operation of matrix cells depending on the assignment: ߬௖ = ∑ ∑ ߬௫ೕೖ௫ೕೖశభ௝௖ధೕିଵ௞ୀଵ௡௝ୀଵ . (3) 

As an alternative objective function, it is also possible to take into consideration the 
minimization of the required time spans to fulfil all production orders: 

߬௔ = ௝ݔܽ݉ (෍ ߬௫ೕೖ௝௣ధ
௞ୀଵ + ෍ ߬௫ೕೖ௫ೕೖశభ௝௖ధೕିଵ

௞ୀଵ ) → ݉݅݊. (4) 

Within the frame of the assignment problem, various constraints must be taken into 
consideration, like time- and capacity-related constraints. The solution of the assignment 
problems is limited by these constraints. 

Constraint 1 defines that production orders can be assigned to suitable production 
cells: ∀݆, ݇: ܽ௫ೕೖ௝ = 1 → ௝௞ݔ > 0, (5) 

Constraint 2 describes that there are production operation pairs and matrix cells, 
where it is not possible to perform a changeover: ܽ௜௞௝௖ = 1 → ߬௜௞௝௖ ≥ 0 and ܽ௜௞௝௖ = 0 → ߬௜௞௝௖ = −1. (6) 

Constraint 3 describes that the operation of production orders must be finished be-
tween the lower and upper limit of end time, so it is not allowed to exceed these time-
related constraints: ∀݅ = :௝௞ݔ ߬௜௟௢௪௘௥ଵ ≤ ∑ ߬௫ೕ೗௝௣௞௟ୀଵ + ∑ ߬௫ೕ೗௫ೕ೗శభ௝௖௞ିଵ௟ୀଵ ≤ ߬௜௨௣௣௘௥ଵ. (7) 

Constraint 4 describes that the number of operations is limited at each production 
cell, so it is not allowed to exceed the upper limit of operations at a chosen production 
cell: ∀݆: ௞ݔܽ݉ ௝௞ݔ) > 0) ≤  ௝௨௣௣௘௥. (8)ݏ

Constraint 5 describes that one production order can be assigned exactly to one pro-
duction cell: ∀݆ ≠ ݆∗ ∧ ݇ ≠ ݇∗: ௝௞ݔ ≠  ௝∗௞∗. (9)ݔ

Constraint 6 describes that it is not allowed to exceed the available number of toolsets 
within a time frame: 

:ݐ∀ ෍ ௡(ݐ)௫ೕೖ௝ݖ
௝ୀଵ ≤  ௚௠௔௫. (10)ݎ

3.2. Routing of AGVs in Cell Grid 
Within the frame of this phase, the assignment of production orders to matrix cells is 

given (the production plan is defined) and the optimal routing of available automated 
guided vehicles must be solved based on the results of the assignment problem. The de-
cision variable of this routing problem is a matrix including permutation arrays, where 
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one permutation array represents the optimal route of an automated guided vehicle. The ݕ௔௕ routing matrix defines that the bth station of AGV a is the matrix cell assigned to pro-
duction order ݕ௔௕. 

The objective function of the second phase routing problem is the minimization of 
vehicle fleet size and the minimization of energy consumption of in-plant supply: ݇஺ீ௏ → ݉݅݊. and ܿ → ݉݅݊. (11) 

where ݇஺ீ௏ is the required number of AGVs and c  is the calculated energy consump-
tion. 

The minimization of the fleet size can be described as the maximum size of fleet 
within the frame of the time frame: ݇஺ீ௏ = ௕ݔܽ݉ ௔௕ݕ) > 0) → ݉݅݊. (12) 

The minimization of the energy consumption cannot be defined as the minimization 
of the routes, because energy consumption depends on the weight of the load: ܿ = ܿூ + ܿூூ + ܿூூூ (13) 

where Ic  is the energy consumption of the AGVs from the warehouse to the first station 
(matrix cell) of the in-plant supply route, IIc  is the energy consumption of the AGVs 
among the stations (matrix cells), while IIIc  is the energy consumption of the AGVs from 
the last station (matrix cell) to the warehouse. 

The energy consumption of the AGV from the warehouse to the first station (matrix 
cell) of the in-plant supply route can be defined as a function of length of the route and 
the weight of the load: ܿூ = ∑ (݈଴௝(௬ೌభ) ∑ ௬ೌ್)௕೘ೌೌೣ௕ୀଵ௞ಲಸೇ௔ୀଵݍ , (14) 

where ܾ௔௠௔௫ is the number of stations of in-plant supply route a, ݍ௬ೌ್ is the weight of the 
load for production order scheduled as station b of route a, and ݈଴௝(௬ೌభ) is the length of the 
transportation between the warehouse and the first matrix cell of the route. 

The energy consumption of the AGV among matrix cells can be defined as follows: ܿூூ = ∑ ቀ∑ ቀ ௝݈(௬ೌ್)௝(௬ೌ್శభ) ∑ ௬ೌ೏௕೘ೌೌೣௗୀ௕ݍ ቁ௕೘ೌೌೣିଵ௕ୀଵ ቁ௞ಲಸೇ௔ୀଵ , (15) 

where ݆(ݕ௔௕) is the matrix cell ID assigned to the production order, which is scheduled 
to route a as station b. 

The energy consumption of the AGV from the last matrix cell of the in-plant supply 
route and the warehouse can be defined as follows: ܿூூூ = ∑ ( ௝݈(௬ೌ್೘ೌೌೣ)଴ݍ௬ೌ್೘ೌೌೣ )௞ಲಸೇ௔ୀଵ , (16) 

where ݍ௬ೌ್೘ೌೣ( ೌ)  is the weight of the load for production order scheduled to the last sta-
tion of in-plant supply route a, and ௝݈(௬ೌ್೘ೌೌೣ)଴ is the length of the transportation between 
the last matrix cell of route a and the warehouse. 

Within the frame of this routing problem, various constraints must be taken into con-
sideration, like time-, capacity- and energy consumption-related constraints. The solution 
of the routing problem is limited by these constraints. 

Constraint 1 defines that it is not allowed to exceed the maximum number of stations 
within one supply route: ∀ܽ: ܾ௔௠௔௫ = ௕ݔܽ݉ ௔௕ݕ) >௔௠௔௫) ≤  ௔௠௔௫, (17)ݒ

where max
av  is the upper limit of the number of stations assigned to route a. 

In the case of electric AGVs and heavy loadings, it is important to take into consider-
ation the impact of weight and route length on the energy consumption, because in the 
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case of heavy loadings the transportation route can be limited. Energy consumption con-
straints can be transformed to material flow intensity constraints, because we can define 
a proportion of energy consumption and material flow intensity (product of length and 
weight). 

Constraint 2 defines that it is not allowed (and not possible) to exceed the material 
flow intensity, which depends on the weight of loading and length of route: ∀ܽ: ௔ூݍ + ௔ூூݍ + ௔ூூூݍ ≤  ௔௠௔௫, (18)ݍ

where ݍ௔ூ = ݈଴௝(௬ೌభ) ∑ ௬ೌ್௕೘ೌೌೣ௕ୀଵݍ   (19) 

௔ூூݍ = ∑ ( ௝݈(௬ೌ್)௝(௬ೌ್శభ)௕೘ೌೌೣ௕ୀଵ ∑ ௬ೌ್௕೘ೌೌೣௗୀ௕ݍ ௔ூூூݍ (20)  ( = ௝݈(௬ೌ್೘ೌೌೣ)଴ݍ௬ೌ್೘ೌೌೣ ≤  ௔௠௔௫ (21)ݍ

Constraint 3 defines that it is not allowed to exceed the upper and lower limit of 
arrival time at the matrix cells: ∀ݕ௔௕: ߬௜௟௢௪௘௥ଶ ≤ ∑ ௝߬(௬ೌ೏)௝(௬ೌ೏శభ)௧ + ௝߬(௬ೌ೏శభ)௧௕ିଵௗୀ଴ ≤ ߬௜௨௣௣௘௥ଶ  (22) 

where ௝߬(௬ೌ೏)௝(௬ೌ೏శభ)௧  is the transportation time between matrix cells assigned to the sta-
tion b of route a, and ௝߬(௬ೌ೏శభ)ℎ  is the material handling time (loading and unloading) at 
matrix cell assigned to the station d+1 of route a. The lower and upper limit for arrival 
time depends on the assignment matrix. 

Constraint 4 defines that it is not allowed to exceed the upper limit of capacity 
(weight or volume) of automated guided vehicles: ∀ܽ: ∑ ௬ೌ್ݍ ≤ ௔௠௔௫௕೘ೌೌೣ௕ୀ଴ݍ   (23) 

where ݍ௔௠௔௫ is the upper limit of capacity of route (or vehicle) a. 
Constraint 5 defines that supply demands can be transported only with appropriate 

vehicles: ∀ݕ௔௕: (௔௕ݕ)ܽ ∈  ௬ೌ್  (24)ߌ

where ߌ௬ೌ್ is the set of vehicles appropriate for transportation of required materials and 
tools of production order ݕ௔௕ from the warehouse to the assigned matrix cell. The de-
scription of nomenclatures used in the mathematical model can be seen in Appendix A. 

To solve the above-described integrated assignment and routing problem, a multi-
phase optimization algorithm will be described. 

4. Results 
The multiphase solution algorithm includes the optimization of assignment of pro-

duction orders to matrix cells and the routing of autonomous guided vehicles among AGV 
pool, warehouse, and matrix cells. The solution of the assignment problem is based on a 
black-hole heuristic, while the routing (which also includes a virtual scheduling of pro-
duction orders) is solved with a flower pollination-based heuristic. 

4.1. Black-hole Heuristic for the Assignment Problem 
This population-based heuristic can be summarized in five major steps. The first step 

is the generation of an initial population of stars representing the initial solutions of the 
real problem. The coordinates of the generated stars describe the decision variables of the 
optimization problem. The decision variable of the above-described assignment problem 
is the assignment matrix, which defines the assignment of production orders to matrix 
cells, so the initial solutions of the black hole algorithm can be defined as follows: 
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ܺ଴ఈ =  ௝௞଴ఈ൧ (25)ݔൣ

where ݔ௝௞଴ఈ is the ID of the production order assigned to the matrix cell j as kth operation 
of the initial solution ߙ. The initial solution matrix has m numbers, where ݔ௝௞଴ఈ ≥ ߙ .1 =1. . .  .is the number of initial solutions ߣ and ,ߣ

The second step is the evaluation of the initial solutions with the objective function 
and calculate the gravity force of the star. 

௝݁௞ఓఈ = ௝ݔܽ݉ (∑ ߬௫ೕೖ௝௣ధ௞ୀଵ + ∑ ߬௫ೕೖ௫ೕೖశభ௝௖ధೕିଵ௞ୀଵ )   (26) 

where μ  is the iteration step and 0μ =  directly after the initialization of the solution 
matrix. We can write that ݔ௝௞ఓఈ ≥ 1 → ௝݁௞ఓఈ > 0  (27) 

The third phase is to find the best solution in this iteration step. This best solution is 
dedicated as the black hole of the search space and all other stars representing worst so-
lutions will move toward this solution. We can also define more black holes, but in this 
case the algorithm is like gravity force algorithm [57]. ݁஻ுఓ = ఈݔܽ݉ ( ௝݁௞ఓఈ) = ఈݔܽ݉ ௝ݔܽ݉) (∑ ߬௫ೕೖ௝௣ధ௞ୀଵ + ∑ ߬௫ೕೖ௫ೕೖశభ௝௖ధೕିଵ௞ୀଵ ))  (28) 

The fourth phase of the black hole heuristic is to move the stars towards the black 
holes. The speed and distance of moving depends on the value of objective function, 
which is represented by the gravity force of the star. ݔ௝௞ఓఈ = ௝௞ఓିଵ,ఈݔ + ஻ுఓିଵݔห݀݊ݎ൫݀݊ݑ݋ݎ −  ௝௞ఓିଵ,ఈห൯  (29)ݔ

Stars reaching the event horizon described by the value of Schwarzschild radius will 
be absorbed and a new star will be initialized. After this step, various termination criteria 
can be taken into consideration, like computational time or the measure of convergence. 

Within the frame of a scenario including 16 production orders and 9 matrix cells, this 
paper will demonstrate the described model and the results of the black hole heuristic-
based assignment optimization. We can define both the availability matrix of matrix cells 
and the operation time of matrix cells for each production order. Table 2 shows the oper-
ation time of production orders. It is not necessary to describe both matrices, because the 
operation time can be defined as a ∞ value if the production order cannot be fulfilled in 
the matrix cell. 

Table 2. Operation time of production orders [min]. 

Production Order ID 
Matrix Cell ID 

1 2 3 4 5 6 7 8 9 
1 2.5 3.3 4.0 5.6 7.9 1.2 9.5 4.8 1.5 
2 5.4 4.8 7.4 8.6 6.1 1.3 9.8 9.7 3.6 
3 8.0 1.0 9.6 9.9 9.9 1.6 8.8 6.5 5.7 
4 9.1 1.1 2.7 2.1 6.9 1.5 9.2 3.9 9.9 
5 7.6 1.8 2.0 4.8 5.4 1.3 8.5 4.9 5.5 
6 6.8 1.6 7.2 3.8 4.3 1.6 9.3 2.3 5.3 
7 9.2 8.0 6.9 8.0 7.5 .17 8.6 1.5 5.6 
8 4.5 7.1 8.0 1.7 2.1 1.3 9.0 8.7 8.0 
9 6.8 5.3 9.5 4.2 2.6 1.2 8.5 7.2 9.0 

10 4.6 6.1 4.1 6.6 2.4 1.2 9.0 6.1 5.0 
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11 8.3 5.6 5.0 3.9 8.7 1.1 9.6 8.3 5.2 
12 7.6 9.1 8.2 8.8 5.6 1.1 9.6 2.5 5.9 
13 2.0 4.5 6.3 7.7 3.1 1.1 9.6 3.4 5.8 
14 4.4 5.9 3.2 2.7 1.0 1.5 8.8 6.5 2.6 
15 7.9 6.9 6.7 8.3 1.8 1.4 9.1 4.6 6.5 
16 8.1 4.5 9.0 8.4 8.3 1.4 9.2 8.2 4.9 

We can define the changeover time of matrix cells between production orders. This 
changeover time is caused by the various required tool sets of production orders. If the 
production orders are changed at a matrix cell, the following operations are required: (1) 
take down the used tool set of the matrix cell, (2) collect remaining components of previ-
ous production order, (3) transport the old tool set to the tool storage and the remaining 
components to the warehouse, (4) transport the new required tool set to the next produc-
tion order from the tool store to the matrix cell, (5) transport the required components 
from the warehouse to the matrix cell, and (6) set up the new tool set of the production 
order. These changeover times for this scenario are summarized as a total changeover time 
in Table 3. 

Table 3. Changeover time between production operations (OID = Production order ID) [min]. 

OID 
OID 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 0 1.8 3.0 3.5 2.9 8.3 2.0 7.5 7.0 1.1 1.0 2.1 4.3 6.5 7.7 7.8 
2 7.3 0 4.1 7.2 5.0 8.3 8.9 8.7 7.5 4.0 9.5 3.4 8.2 9.7 9.7 2.6 
3 1.1 9.6 0 2.6 1.1 6.8 7.9 5.9 4.1 5.8 8.2 7.4 8.1 6.5 1.7 7.2 
4 5.5 1.1 7.1 0 7.1 6.1 9.1 8.4 7.6 8.3 7.1 5.4 2.7 4.3 9.3 2.1 
5 8.3 4.4 1.2 7.9 0 4.9 7.8 1.2 8.7 4.2 9.1 8.5 8.2 7.1 9.3 9.9 
6 5.6 2.5 3.4 8.2 4.4 0 1.9 2.9 6.5 6.8 4.8 9.2 9.0 7.9 5.5 4.0 
7 5.4 3.9 9.4 9.6 5.4 5.2 0 1.5 9.7 5.6 2.5 2.8 6.2 5.4 2.1 9.9 
8 5.3 8.1 2.8 5.6 5.4 9.8 4.5 0 1.5 2.0 4.0 3.1 2.6 8.8 8.2 3.6 
9 9.4 6.1 9.0 4.2 6.0 2.4 7.6 1.2 0 8.6 9.1 2.5 8.4 2.7 1.0 5.1 

10 1.5 4.7 7.7 8.8 1.6 8.2 1.5 9.0 3.1 0 3.5 6.2 1.8 3.9 2.6 5.4 
11 4.4 5.1 1.1 8.6 3.1 8.6 5.7 6.2 5.5 3.3 0 3.8 2.2 5.7 1.9 3.9 
12 6.4 4.0 2.2 5.6 1.6 8.0 5.0 5.2 7.8 3.2 5.0 0 1.8 5.8 8.2 3.6 
13 3.0 3.6 1.0 8.8 3.6 8.6 9.2 2.0 9.5 7.0 8.1 6.8 0 3.0 9.0 8.3 
14 1.2 1.5 4.4 8.0 6.3 6.9 4.4 6.9 5.4 5.2 1.9 5.6 4.2 0 2.8 4.6 
15 7.4 1.2 4.6 1.7 9.2 7.2 8.3 9.9 2.3 9.6 9.4 9.0 4.2 5.9 0 5.5 
16 2.1 6.7 5.8 6.8 2.2 7.9 5.3 9.2 1.0 8.9 8.4 3.7 4.4 6.0 1.3 0 

The time constraints can be defined as the lower and upper limits of the beginning 
and finishing of production order-related operations. Table 4 shows the time-based con-
straints of the scenario. The ∞ value of upper time limit defines that there is no time limit 
for this production order. 

Table 4. Time constraints of production time (PTC = production time constraints. OID = Production order ID. BMIN = 
beginning time lower limit. BMAX = beginning time upper limit. FMIN = finishing time lower limit. FMAX = finishing 
time upper limit) [min]. 

PTC 
OID 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Bmin 0 2.6 6.3 0 0 0 0 2.2 0 2.2 0 4.4 7.1 0 0 0 
Bmax 2.3 5.3 ∞ ∞ ∞ 9.4 2.2 7.2 8.7 3.9 5.5 7.3 9.1 ∞ ∞ 2.1 
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Fmin 2.1 5.6 3.4 2.2 8.1 3.2 1.1 5.5 4.1 7.6 4.2 6.1 6.6 2.4 8.1 1.1 
Fmax 3.2 ∞ ∞ ∞ 9,8 ∞ 5.5 8.8 8.9 9.1 6.3 7.9 ∞ ∞ ∞ 3.8 

Figure 3 shows the result of the black hole heuristic-based solution algorithm. The 
value of the objective function is 9.1 min, which means that the last production order will 
be finished in 9.1 min, which is the cycle time of the 16 production orders. This numerical 
result shows that the described optimization algorithm can take the time-related con-
straints into consideration and the algorithm makes it possible to find an optimal solution 
for the in-plant supply optimization problem. As Figure 3 shows, in the case of the first 
scenario the algorithm takes a wide range of the predefined constraints into consideration, 
including the production time (or lead time) constraint, and the upper and lower limit of 
beginning and ending time for the production process. At first glance, it may seem that 
the changeover time in matrix cell 6 could be relocated to the matrix cells 3 or 5, thereby 
reducing the total manufacturing time, but this is not the case as changeover operations 
and idle times are not freely moveable due to technological limitations. 

 
Figure 3. Gantt chart of the working process resulting from the optimal assignment of production 
orders to matrix cells in scenario A. 

The total idle time of the matrix cells within the time window of the fulfilment of the 
16 production demands is 18.4 min. The distribution of the idle time among the matrix 
cells is shown in Figure 4. 
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Figure 4. Idle time distribution among matrix cells within the cycle time of the 16 production or-
ders in scenario A. 

The technological and logistics resources of the matrix production system are usually 
state-of-the-art technologies and have expensive operation costs; therefore, it is important 
to optimize their idle time in order to increase their utilization. In the case of an even 
distribution of idle time, the production time could be reduced in this case as well, how-
ever, as in the case of the changeover time, the time-related constraints and the availability 
of technological resources do not allow this. The distribution of idle time and the change-
over time depends on the flexibility and availability of matrix cells. Higher availability 
and flexibility makes it possible to produce a wider range of products, which can lead to 
increased changeover time. 

Figure 5 shows the results of a second scenario, where the same operation and 
changeover times were used, but the number of available matrix cells was reduced to six 
and the solution was not limited by the time constraints of the previous scenario. The 
value of the objective function is 13.8 min, which means that the last production order will 
be finished in 13.8 min. As Figure 5 shows, the number of available standardized config-
urable productions or assembly cells has a great impact on the results of in-plant supply 
processes from a time and capacity point of view. However, in the matrix production sys-
tem, the processes of technology and logistics are separated, but the decreased number of 
available technological resources influences the required logistics resources and the com-
putation result shows a higher time span for the working process. In this case, the techno-
logical resources must have an increased flexibility and availability for the same manu-
facturing time. If the availability and flexibility of matrix cells does not increase, the de-
creased number of technological resources will result in a longer time period being re-
quired to complete production, even with a better distribution of idle times. 

 
Figure 5. Gantt chart of the working process resulting from the optimal assignment of production 
orders to matrix cells in scenario B. 

The total idle time of the matrix cells within the time window of the fulfilment of the 
16 production demands is 9.6 min. The distribution of the idle time among the matrix cells 
is shown in Figure 6. The result shows that the decreased available technological resource 
influences also the idle time. In this case, the distribution of idle time is more even, but 
this change in the distribution of idle time has no positive impact on the required manu-
facturing time because of the decreased number of technological resources. 
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Figure 6. Idle time distribution among matrix cells within the cycle time of the 16 production orders 
in scenario B. 

4.2. Flower Pollination Heuristic for Routing Problem 
The first step of the optimization algorithm is the initialization steps, where the basic 

parameters of the algorithm regarding the real problem and the process of optimization 
will be defined. The parameters of the real problem are the size and dimension of the 
search space, as well as the impact of constraints on the search space. The parameters of 
the algorithm are the followings: switching process between global and local search (biotic 
and probiotic pollination), termination criteria (computation time, iteration steps, or con-
vergence), and the number of initial solutions (pollen grains). 

The second step is the initialization of the solutions, which means the definition of 
the pollen grains in the search space (pastureland). ܻ଴ఈ = ሾݕ௔௕଴ఈሿ  (30) 

where ݕ௔௕଴ఈ is the ID of the matrix cell assigned to route a as bth station as the initial solution ߙ. The initial solution matrix has m numbers, where ݕ௔௕଴ఈ ≥ ߙ .1 = 1. . .  is the ߣ and ,ߣ
number of initial solutions. 

The next step is the evaluation of the pollen grains, which is based on the objective 
function of the routing problem describing the minimization of the energy consumption 
of the routes defined by solution ߙ in iteration step ߤ: ݁௔௕ఓఈ = ∑ ቀ∑ ቀ ௝݈(௬ೌ್)௝(௬ೌ್శభ) ∑ ௬ೌ೏௕೘ೌೌೣௗୀ௕ݍ ቁ௕೘ೌೌೣିଵ௕ୀଵ ቁ +௞ಲಸೇ௔ୀଵ+ ∑ (݈଴௝(௬ೌభ) ∑ ௬ೌ್)௕೘ೌೌೣ௕ୀଵ௞ಲಸೇ∑௔ୀଵݍ + ∑ ( ௝݈(௬ೌ್೘ೌೌೣ)଴ݍ௬ೌ್೘ೌೌೣ )௞ಲಸೇ௔ୀଵ   

(31) 

where ߤ is the iteration step and ߤ = 0 directly after the initialization of the solution ma-
trix. We can write that ݕ௔௕ఓఈ ≥ 1 → ݁௔௕ఓఈ > 0  (32) 

The third phase is the initialization of a decision number that defines the switch-pos-
sibility between biotic and probiotic pollination. The fourth step is the pollination depend-
ing on the type of search. In the case of global search, a biotic pollination is performed: ݕ௔௕ఓାଵ,ఈ = ௔௕ఓ,ఈݕ + ,௔௕௕௘௦௧ݕ)(ߣ)ܮ ఈ −  ௔௕ఓ,ఈ)  (33)ݕ

where ( )L λ  is the Levy-distribution. 
In the case of local search, an abiotic pollination is performed: ݕ௔௕ఓାଵ,ఈ = ௔௕ఓ,ఈݕ + ௥భ௥మఓ,ఈݕ)ߴ − ௥య௥రఓ,ఈݕ ) (34) 

where ݕ௥భ௥మఓ,ఈ  and ݕ௥య௥రఓ,ఈ  are random solutions in the iteration step ߤ, and ߴ is a random 
number between 0 and 1. To transform the continuous representation to a discrete per-
mutation representation, the smallest position value rule was used. 



Machines 2021, 9, 220 17 of 25 
 

 

Within the frame of a scenario including 15 production orders and 9 matrix cells, this 
paper demonstrates the described routing model of the matrix production and the results 
of the flower pollination-based routing optimization. The optimal assignment of produc-
tion orders is given, so we can define the lower and upper time limits of production or-
ders, as shown in Table 5. 

Table 5. Optimal assignment of production orders to matrix cells and their lower and upper time limits as input parame-
ters if there is a routing problem in the matrix grid (OID = production order ID. AMC = assigned matrix cell ID. MHT = 
material handling time of the production order at the matrix cell. BMin = beginning time lower limit. BMax = beginning 
time upper limit). 

 
OID 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
AMC 3 2 7 4 6 5 8 1 6 9 1 9 5 6 2 
MHT 0.8 1.3 0.85 0.9 0.45 0.4 1.2 1.1 0.45 0.3 1.1 0.3 0.4 0.45 1.3 
Bmin 1.1 0.3 1.1 4.2 5.1 3.2 2.2 0.4 1.1 2.2 6.5 4.5 5.1 3.7 7.8 
Bmax 3.4 3.4 5.4 8.5 6.9 8.4 6.2 3.3 4.4 5.1 10.3 6.7 7.5 6.5 9.9 

The distances among matrix cells, warehouses, and storages are shown in Table 6. 

Table 6. Distances in the matrix grid [10m]. 

Production 
Order ID 

Matrix Cell ID 
WH/ST 1 2 3 4 5 6 7 8 9 

WH/ST 0 0.65 0.65 0.65 1.3 1.3 1.3 1.95 1.95 1.95 
1 0.65 0 0.65 1.3 0.65 1.3 1.95 1.3 1.95 2.6 
2 0.65 0.65 0 0.65 1.3 0.65 1.3 1,95 1,3 1,95 
3 0.65 1.3 0.65 0 1.95 1.3 0.65 2.6 1.95 1.3 
4 1.3 0.65 1.3 1.95 0 0.65 1.3 0.65 1.3 1.95 
5 1.3 1.3 0.65 1.3 0.65 0 0.65 1.3 0.65 1.3 
6 1.3 1.95 1.3 0.65 1.3 0.65 0 1.95 1.3 0.65 
7 1.95 1.3 1.95 2.6 0.65 1.3 1.95 0 0.65 1.3 
8 1.95 1.95 1.3 1.95 1.3 0.65 1.3 0.65 0 0.65 
9 1.95 2.6 1.95 1.3 1.95 1.3 0.65 1.3 0.65 0 

Figure 7 shows the optimal routing in the matrix grid. There are three routes in the 
matrix cell within the time span of routing. Six production orders are assigned to route 1 
(blue), five production order are assigned to route 2 (red), and three production orders 
are assigned to route 3 (green). This computational result shows that more AGVs are re-
quired in the matrix production system. As presented in the chapter discussing the opti-
mization algorithm, clusters must be formed from the manufacturing tasks. It can be seen 
in Figure 7 that the clustering algorithm, when designing the clusters of the production 
task forming each route, try to form clusters with an even number of production tasks, 
taking into account the time- and capacity-related constraints. The increased number of 
available AGVs can lead to decreased cluster, which influences the required manufactur-
ing time and lead time. 
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Figure 7. Three optimized in-plant supply routes in the matrix grid optimized with flower pollina-
tion-based heuristics. 

Figure 8 shows the efficiency of the flower pollination-based heuristics. The sched-
uled production orders are between the predefined lower and upper time limits. The re-
sults show that time-related constraints also can be taken into consideration. It is espe-
cially important from the production orders point of view, because the predefined time 
limits, which are based on ERP data, are assumptions of the high service level in matrix 
production system. The time frame defined by the lower and upper limits influences the 
solution. In the case of a narrow time frame defined for the manufacturing of production 
orders, both the availability of technological resources and the availability of logistics re-
sources must be increased to minimize the total required time frame for manufacturing 
all production orders. 

 
Figure 8. The distribution of scheduled production order between the related lower and upper time 
limits. 
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The assignment of production orders to matrix cells and the routing of production 
orders led to an optimal in-plant supply of matrix cells. The energy consumption, as the 
objective function of the design problem, can be calculated based on Equation (13) and is 
shown in Figure 9. As the computed energy consumption rates show, the energy con-
sumptions of the in-plant supply routes are quasi-uniform, because the state-space of the 
heuristic optimization model representing the potential solutions of the real problem 
makes it possible. In the case of a decreased number of AGVs, this uniform distribution is 
not possible. The energy consumption has a great impact on both the operation cost and 
on the environmental impact. Depending on the energy generation source (oil, wind, pho-
tovoltaic, water, nuclear, biomass, etc.), we can define the emission, and this emission can 
be taken into consideration as a virtual emission of the manufacturing process. The energy 
consumption of AGVs influences the required loading of batteries, therefore, the even dis-
tribution of energy consumption makes it possible to make a more transparent loading 
process for the AGVs. 

 
Figure 9. The distribution of energy consumption in each in-plant supply route (TEC = total energy 
consumption). 

4.3. Challenges and Applicability in Real Industrial Environment 
The above-described methodology is applicable in a real industrial environment, but 

there are challenges that may be faced while applying this proposed model in reality. The 
application is based on data from the ERP and from the digital twin. The conventional 
ERP data sets and real-time digital twin-enabled information for simulation-based sce-
nario analysis and forecasting are available using standard interfaces, because standard-
based interoperability is an important challenge for large, complex manufacturing sys-
tems. The optimization module for in-plant supply design can be implemented either as 
a part of the ERP or MES, or as an add-on software using standardized channels for infor-
mation sharing. The implementation cost of these solutions can vary, add-on solutions are 
cheaper, but ERP-integrated optimization can lead to a more robust and stable solution. 
The validation of input data for digital twin is also a challenge, because the smart sensor 
network must have stringent dependability, especially from a reliability and availability 
point of view, as sensor failures can cause bad data, which influences the results of digital 
twin-enabled simulation and influences real time decisions. In the case of a conventional 
manufacturing system, the development of digital twin solutions requires new business 
models considering expected costs and profit as well as the design, operation, and mainte-
nance requirements. These aspects are summarized in Figure 10. 

 
Figure 10. Challenges regarding the proposed model and method. 
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The practical application of the above-described methodology can be performed in 
many ways, depending on the available IT environment (ERP, sensor networks, simula-
tion software). As an example, Figure 11 shows a possible solution focusing on the inte-
gration of SAP and Technomatix Plant Simulation. Technomatix Plant Simulation is a dis-
crete event simulation software, which makes it possible to use SAP data and integrate 
real time data from the digital twin of the physical processes in the manufacturing system 
[62]. The SAP can generate a data file using Advanced Business Application Programming 
(ABAB) and this data file can be used by the Technomatix Plant Simulation for scenario 
analysis, especially in the field of production planning. The transformation of a conven-
tional manufacturing system into a cyber-physical manufacturing system using IoT tech-
nologies makes it possible to mirror the physical manufacturing system, and the real time 
data including failure data and status information from the smart sensor network makes 
it possible to create a digital twin, which is available for the Technomatix Plant Simulation 
using ODBC or SQL for Oracle. The SAP data is also available as an Excel file export using 
Dynamic Data Exchange (DDE), Visual Basic Script (VBS) or Component Object Model 
(COM). The Technomatix Plant Simulation provides a built-in optimization library (BiOL) 
for stochastic optimization problems, and it is possible to use this heuristics-enabled 
solver to perform the proposed optimization tasks. 

 
Figure 11. Practical applicability of the proposed methodology for integrating SAP and Techno-
matix Plant Simulation. 

The above-described scenarios validated the presented in-plant supply model in a 
cyber-physical production environment and justify the fact that the matrix production, as 
a new production concept, is suitable for the efficient production of diversified customers’ 
demands; not only the technology but also the logistic processes must be optimized. In 
this relation, efficiency means that the matrix production system makes it possible to fulfil 
diversified customers’ demands near to the efficiency of mass production. KUKA defines 
this efficiency in the following context: “It (matrix production) will thus become possible 
to implement the manufacture of customized series as an integral part of Industry 4.0 
without limitations in the context of industrial mass production [12].” The validation in-
cludes the following aspects: (1) the proposed functional model is suitable to support the 
in-plant supply optimization in a matrix production system; (2) the mathematical model 
includes time-, capacity-, and energy-related objective functions and constraints, and 
these objectives have a great impact on the cost-efficiency, availability, performance, en-
ergy consumption, and sustainability of the matrix production system; the computational 
results shows that the optimization algorithm resulted in valid solutions in the matrix 
production system, where time-, capacity- and energy-related constraints are taken into 
consideration. 
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To summarize, the proposed model based on assignment and routing problems of 
matrix production makes it possible to analyze the impact of assignment of production 
order to matrix cells and the routing of automated guided vehicles in the matrix grid on 
the energy efficiency, availability, and required resources of material handling. 

As the findings of the literature review show, the articles that addressed the analysis 
of in-plant supply are focusing on a conventional production environment, but only a few 
of them aimed to identify the optimization aspects of in-plant supply solutions in matrix 
production. 

The comparison of the results with those from other studies shows that the optimi-
zation of material handling processes in cyber-physical systems still need more attention 
and research. The reason for this is that, in the case of cyber-physical systems, where In-
dustry 4.0 technologies make possible the realization of flexible and efficient operation, 
the improvement of in-plant supply solutions and the optimization of their processes 
must be taken into consideration. 

5. Discussion and Conclusions 
The efficiency of manufacturing systems influences the efficiency of value chains, in-

cluding purchasing and distribution processes; therefore, it is important to analyze the 
influencing factors of manufacturing systems and transform them into smart manufactur-
ing systems using IoT technologies [58–60]. Within the frame of this research work, the 
authors developed an integrated model of in-plant supply based on the matrix production 
concept of KUKA. This model makes it possible to optimize the assignment and routing 
tasks of this new cyber-physical solution in the era of Industry 4.0. More generally, this 
paper focused on the mathematical description of the in-plant supply solutions in matrix 
production, including the assignment of technology and logistics (matrix cells as produc-
tion resources and production order) and routing of autonomous guided vehicles. Why is 
so much effort being put into this research? Conventional production environments have 
been transformed into cyber-physical production, and this new production environment 
needs more attention both from a technology [61] and logistics point of view. A compar-
ative table contrasted the proposed methodology in front of related analyzed research 
works, where the relationship between this solution and past literature was discussed. 
The existing studies include the optimization of both conventional and cyber-physical 
manufacturing systems, while only a few of them consider the sustainability-related as-
pects in matrix production and other cyber-physical manufacturing environments. 

The added value of the paper is in the description of the autonomous guided vehi-
cles-based in-plant supply in a cyber-physical environment, where production is based on 
standardized flexible manufacturing resources. The scientific contribution of this paper 
for researchers in this field is the mathematical modelling of in-plant supply in cyber-
physical production including assignment, routing, and virtually scheduling. The results 
can be generalized because the model can be applied for different production environ-
ments. Managerial decisions can be influenced by the results of this research, because the 
described method makes it possible to analyze various supply strategies and make deci-
sions regarding the size of AGV pool or strategy of warehousing of components or storage 
of tools and toolsets for the standardized flexible production cells. This managerial impact 
results from the fact that the above-mentioned algorithm takes different values of the size 
of the AGV pool as well as available tools required for changeovers into consideration, 
and the optimization results show whether or not the in-plant supply process can be per-
formed with the given parameters. 

However, there are also limitations of the study and the described model, which pro-
vides direction for further research. Within the frame of this model, stochastic parameters 
were not taken into consideration. In further studies, the model can be extended to a more 
complex model including Fuzzy sets to describe stochastic processes. 
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Appendix A: Description of Nomenclatures 

Table A1. Description of nomenclatures used in the mathematical model. 

Nomenclature Description Dimension 
i Production order, ݅ = 1 … ݉ [-] 
j Production cell in the matrix grid, ݆ = 1 … ݊ [-] 

k 

Production order, which can be defined either as a 
unique order, or as a lot, depending on the customers’ 
demand. The customers’ demand is available from the 
ERP. ݇ = 1 … ݉ 

[-] 

߬௜௝௣  Production lead time of production order i at produc-
tion cell j 

[min] 

߬௜௞௝௖  

Changeover time, which is the required time for the 
process of converting a matrix cell from the initial pro-
duction process generated by the production order i to 
another generated by production order k at production 
cell j. 

[min] 

ܽ௜௝ 

Availability matrix, which takes value 1 if the produc-
tion order i can be assigned to matrix cell j, otherwise 0. 
The availability depends on technological and logistic 
conditions and parameters. 

[-] 

ܽ௜௞௝௖  
Changeover availability matrix, which takes value 1 if it 
is possible to converting matrix cell from production or-
der i to production order k at matrix cell j, otherwise 0 

[-] 

߬௜௟௢௪௘௥ଵ 
Lower time limit of finishing operation i in the first 
phase (assignment) of the optimization. 

[min] 

߬௜௨௣௣௘௥ଵ 
Upper time limit of finishing operation i in the first 
phase (assignment) of the optimization. 

[min] 

߬௜௟௢௪௘௥ଶ 
Lower time limit of finishing operation i in the second 
phase (routing) of the optimization. 

[min] 

߬௜௨௣௣௘௥ଶ 
Upper time limit of finishing operation i in the second 
phase (routing) of the optimization. 

[min] ݏ௝௨௣௣௘௥ଵ Upper limit of operations at production cell j. [-] 

 ௜௝ݖ

Required toolset for production order i at matrix cell j. 
The toolset is available from the tool storage and it in-
cludes tools and equipment for production and related 
measuring. 

[-] 

-௚௠௔௫ Available number of required toolset g. [pcs] ߬௣ Production lead time. [min] ߬௖ Changeover time among the various production operaݎ
tions of the standardized production cells. 

[min] 

߸௝ Number of assigned production orders to production 
cell j. 

[pcs] ݇஺ீ௏ Required number of AGVs. [pcs] 
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c  Calculated energy consumption.  

Ic  
Energy consumption of the AGVs from the warehouse 
to the first station (matrix cell) of the in-plant supply 
route. 

[kWh] 

IIc  
Energy consumption of the AGVs among the stations 
(matrix cells). 

[kWh] 

IIIc  
Energy consumption of the AGVs from the last station 
(matrix cell) to the warehouse. 

[kWh] ܾ௔௠௔௫ Number of stations of in-plant supply route a. [pcs] ݍ௬ೌ್ Weight of the load for production order scheduled as 
station b of route a. 

[kg] 

݈଴௝(௬ೌభ) Length of the transportation between the warehouse 
and the first matrix cell of the route. 

[m] 

 Matrix cell ID assigned to the production order, which (௔௕ݕ)݆
is scheduled to the route a as station b. 

[-] 

)௬ೌ್೘ೌೣݍ ೌ)  Weight of the load for production order scheduled to 
the last station of in-plant supply route a. 

[kg] 

௝݈(௬ೌ್೘ೌೌೣ)଴ Length of the transportation between the last matrix 
cell of route a and the warehouse. 

[m] 

max
av  Upper limit of the number of stations assigned to route 

a. 
[pcs] 

௝߬(௬ೌ೏)௝(௬ೌ೏శభ)௧  Transportation time between matrix cells assigned to 
the station b of route a. 

[min] 

௝߬(௬ೌ೏శభ)ℎ  Material handling time (loading and unloading) at ma-
trix cell assigned to the station d+1 of route a. 

[min] ݍ௔௠௔௫ Upper limit of capacity of route (or vehicle) a. [kg] ߌ௬ೌ್ 
Set of vehicles appropriate for transportation of re-
quired materials and tools of production order ݕ௔௕ 
from the warehouse to the assigned matrix cell. 

[-] 

References 
1. Rosin, F.; Forget, P.; Lamouri, S.; Pellerin, R. Impacts of Industry 4.0 technologies on Lean principles. Int. J. Prod. Res. 2020, 58, 

1644–1661. https://doi.org/10.1080/00207543.2019.1672902. 
2. Skapinyecz, R.; Illés, B.; Bányai, Á. Logistic aspects of Industry 4.0. IOP Conf. Ser. Mater. Sci. Eng. 2018, 448, 012014. 

https://doi.org/10.1088/1757-899X/448/1/012014. 
3. Tchoffa, D.; Figa1y, N.; Ghodous, P.; Exposito, E.; Apedome, K.S.; El Mhamedi, A. Dynamic manufacturing network-from flat 

semantic graphs to composite models. Int. J. Prod. Res. 2019, 270, 6569–6578. https://doi.org/10.1080/00207543.2019.1570375. 
4. Alcácer, V.; Cruz-Machado, V. Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. 

Eng. Sci. Technol. Int. J. Jestech 2019, 22, 899–919. https://doi.org/10.1016/j.jestch.2019.01.006. 
5. Dastjerdi, A.V.; Buyya, R. Fog Computing: Helping the Internet of Things Realize Its Potential. Computer 2016, 49, 112–116. 

https://doi.org/10.1109/MC.2016.245. 
6. Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. 

Manuf. Technol. 2013, 67, 1191–1203. https://doi.org/10.1007/s00170-012-4558-5. 
7. Wu, K.H.; Gastan, E.; Rodman, M.; Behrens, B.A.; Bach, F.W.; Gatzen, H.H. Development and application of magnetic magne-

sium for data storage in gentelligent products. J. Magn. Magn. Mater. 2010, 322, 1134–1136. 
https://doi.org/10.1016/j.jmmm.2009.07.055. 

8. Guo, J.; Zhao, N.; Sun, L.; Zhang, S. Modular based flexible digital twin for factory design. J. Ambient. Intell. Humaniz. Comput. 
2019, 10, 1189–1200. https://doi.org/10.1007/s12652-018-0953-6. 

9. Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing, and service with big 
data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. https://doi.org/10.1007/s00170-017-0233-1. 

10. Ding, K.; Chan, F.T.S.; Zhang, X.D.; Zhou, G.H.; Zhang, F.Q. Defining a Digital Twin-based Cyber-Physical Production System 
for autonomous manufacturing in smart shop floors. Int. J. Prod. Res. 2019, 57, 6315–6334. 
https://doi.org/10.1080/00207543.2019.1566661. 



Machines 2021, 9, 220 24 of 25 
 

 

11. Cui, Y.S.; Kara, S.; Chan, K.C. Manufacturing big data ecosystem: A systematic literature review. Robot. Comput. Integr. Manuf. 
2020, 62, 101861. https://doi.org/10.1016/j.rcim.2019.101861. 

12. Schahinian, D. Digital Ecosystems-KUKA Launches a Pilot Plant for Matrix Production. Homepage of Hannover Messe. Avail-
able online: https://www.hannovermesse.de (accessed on 22 April 2020). 

13. Bányai, Á.; Illés, B.; Glistau, E.; Machado, N.I.C.; Tamás, P.; Manzoor, F.; Bányai, T. Smart Cyber-Physical Manufacturing: Ex-
tended and Real-Time Optimization of Logistics Resources in Matrix Production. Appl. Sci. 2019, 9, 1287. 
https://doi.org/10.3390/app9071287. 

14. Azarm, S.; Harhalakis, G.; Srinivasan, M.; Statton, P. Heuristic optimization of rough-mill yield with production priorities. J. 
Eng. Ind. Trans. ASME 1991, 113, 108–116. https://doi.org/10.1115/1.2899608. 

15. Kops, L.; Natarajan, S. Time partitioning based on the job-flow schedule—A new approach to optimum allocation of jobs on 
machine-tools. Int. J. Adv. Manuf. Technol. 1994, 9, 204–210. https://doi.org/10.1007/BF01754599. 

16. Hidaka, K.; Okano, H. Practical approach to a facility location problem for large-scale logistics. J. Algorithm. Comput. Technol. 
1997, 1350, 12–21. https://doi.org/10.1007/3-540-63890-3_3. 

17. Chitsaz, M.; Cordeau, J.F.; Jans, R. A unified decomposition matheuristic for assembly, production, and inventory routing. Inf. 
J. Comput. 2019, 31, 134–152. https://doi.org/10.1287/ijoc.2018.0817. 

18. Eydi, A.; Fathi, A. An integrated decision making model for supplier and carrier selection with emphasis on the environmental 
factors. Soft Comput. 2020, 24, 4243–4258. https://doi.org/10.1007/s00500-019-04190-1. 

19. Feng, P.P.; Liu, Y.; Wu, F.; Chu, C.B. Two heuristics for coordinating production planning and transportation planning. Int. J. 
Prod. Res. 2018, 56, 6872–6889. https://doi.org/10.1080/00207543.2017.1351631. 

20. Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Service load balancing, scheduling, and logistics optimization in cloud manufacturing 
by using genetic algorithm. Concurr. Comput. Pract. Exp. 2019, 31, e5329. https://doi.org/10.1002/cpe.5329. 

21. Sadati, N.; Chinnam, R.B.; Nezhad, M.Z. Observational data-driven modeling and optimization of manufacturing processes. 
Expert Syst. Appl. 2018, 93, 456–464. https://doi.org/10.1016/j.eswa.2017.10.028. 

22. Haberer, C.; Wolfschluckner, A.; Landschützer, C. Analysis and optimization of a crawler track unit. Konstruktion 2016, 68, 76–
82. 

23. Tamás, P. Decision Support Simulation Method for Process Improvement of Intermittent Production Systems. Appl. Sci. 2017, 
7, 950. https://doi.org/10.3390/app7090950. 

24. Saez-Mas, A.; Garcia-Sabater, J.J.; Garcia-Sabater, J.P.; Maheut, J. Hybrid approach of discrete event simulation integrated with 
location search algorithm in a cells assignment problem: A case study. Cent. Eur. J. Oper. Res. 2020, 28, 125–142. 
https://doi.org/10.1007/s10100-018-0548-5. 

25. Bohács, G.; Rinkács, A. Development of an ontology-driven, component based framework for the implementation of adaptive-
ness in a Jellyfish-type simulation model. J. Ambient. Intell. Smart Environ. 2017, 9, 361–374. https://doi.org/10.3233/AIS-170437. 

26. Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Service load balancing, task scheduling and transportation optimisation in cloud 
manufacturing by applying queuing system. Enterp. Inf. Syst. 2019, 13, 865–894. https://doi.org/10.1080/17517575.2019.1599448. 

27. Hong, J.T.; Diabat, A.; Panicker, V.V.; Rajagopalan, S. A two-stage supply chain problem with fixed costs: An ant colony opti-
mization approach. Int. J. Prod. Econ. 2018, 204, 214–226. https://doi.org/10.1016/j.ijpe.2018.07.019. 

28. Khalilpourazari, S.; Pasandideh, S.H.R.; Ghodratnama, A. Robust possibilistic programming for multi-item EOQ model with 
defective supply batches: Whale Optimization and Water Cycle Algorithms. Neural Comput. Appl. 2019, 31, 6587–6614. 
https://doi.org/10.1007/s00521-018-3492-3. 

29. Mehranfar, N.; Hajiaghaei-Keshteli, M.; Fathollahi-Fard, M. A Novel Hybrid Whale Optimization Algorithm to Solve a Produc-
tion-Distribution Network Problem Considering Carbon Emissions. Int. J. Eng. 2019, 32, 1781–1789. 
https://doi.org/10.5829/ije.2019.32.12c.11. 

30. Liu, C.F.; Wang, J.F.; Leung, J.Y.T. Integrated bacteria foraging algorithm for cellular manufacturing in supply chain considering 
facility transfer and production planning. Appl. Soft Comput. 2017, 62, 602–618. https://doi.org/10.1016/j.asoc.2017.10.034. 

31. Habibi, M.K.K.; Battaia, O.; Cung, V.D.; Dolgui, A. An efficient two-phase iterative heuristic for collection-disassembly problem. 
Comput. Ind. Eng. 2017, 110, 505–514. https://doi.org/10.1016/j.cie.2017.06.031. 

32. Juan, A.A.; Corlu, C.G.; Tordecilla, R.D.; de la Torre, R.; Ferrer, A. On the Use of Biased-Randomized Algorithms for Solving 
Non-Smooth Optimization Problems. Algorithms 2020, 13, 8. https://doi.org/10.3390/a13010008. 

33. Russell, R.A. Mathematical programming heuristics for the production routing problem. Int. J. Prod. Econ. 2017, 193, 40–49. 
https://doi.org/0.1016/j.ijpe.2017.06.033. 

34. Shao, W.S.; Pi, D.C.; Shao, Z.S. Optimization of makespan for the distributed no-wait flow shop scheduling problem with iter-
ated greedy algorithms. Knowl. Based Syst. 2017, 137, 163–181. https://doi.org/10.1016/j.knosys.2017.09.026. 

35. Saghaeeian, A.; Ramezanian, R. An efficient hybrid genetic algorithm for multi-product competitive supply chain network de-
sign with price-dependent demand. Appl. Soft Comput. 2018, 71, 872–893. https://doi.org/10.1016/j.asoc.2018.07.028. 

36. Tayal, A.; Singh, S.P. “Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout 
problem. Ann. Oper. Res. 2018, 270, 489–514. https://doi.org/10.1007/s10479-016-2237-x. 

37. Tari, F.G.; Hashemi, Z. Prioritized K-mean clustering hybrid GA for discounted fixed charge transportation problems. Comput. 
Ind. Eng. 2018, 126, 63–74. https://doi.org/10.1016/j.cie.2018.09.019. 

38. Sakalli, U.S.; Atabas, I. Ant colony optimization and genetic algorithm for fuzzy stochastic production-distribution planning. 
Appl. Sci. 2018, 8, 2042. https://doi.org/10.3390/app8112042. 



Machines 2021, 9, 220 25 of 25 
 

 

39. Abouee-Mehrizi, H.; Baron, O.; Berman, O.; Chen, D. Managing perishable inventory systems with multiple priority classes. 
Prod. Oper. Manag. 2019, 28, 2305–2322. https://doi.org/10.1111/poms.13058. 

40. Aboytes-Ojeda, M.; Castillo-Villar, K.K.; Roni, M.S. A decomposition approach based on meta-heuristics and exact methods for 
solving a two-stage stochastic biofuel hub-and-spoke network problem. J. Clean. Prod. 2020, 247, 119176. 
https://doi.org/10.1016/j.jclepro.2019.119176. 

41. Behfard, S.; Al Hanbali, A.; van der Heijden, M.C.; Zijm, W.H.M. Last Time Buy and repair decisions for fast moving parts. 
International J. Prod. Econ. 2018, 197, 158–173. https://doi.org/10.1016/j.ijpe.2017.12.012. 

42. Ma, K.; Thomassey, S.; Zeng, X.Y.; Wang, L.C.; Chen, Y. A resource sharing solution optimized by simulation-based heuristic 
for garment manufacturing. Int. J. Adv. Manuf. Technol. 2018, 99, 2803–2818. https://doi.org/10.1007/s00170-018-2677-3. 

43. Cheraghalipour, A.; Paydar, M.M.; Hajiaghaei-Keshteli, M. Designing and solving a bi-level model for rice supply chain using 
the evolutionary algorithms. Comput. Electron. Agric. 2019, 162, 651–668. https://doi.org/10.1016/j.compag.2019.04.041. 

44. Respen, J.; Zufferey, N.; Wieser, P. Three-level inventory deployment for a luxury watch company facing various perturbations. 
J. Oper. Res. Soc. 2017, 38, 1195–1210. https://doi.org/10.1057/s41274-016-0136-9. 

45. Varas, M.; Maturana, S.; Cholette, S.; Mac Cawley, A.; Basso, F. Assessing the benefits of labelling postponement in an export-
focused winery. Int. J. Prod. Res. 2018, 56, 4132–4151. https://doi.org/10.1080/00207543.2018.1431415. 

46. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. 
https://doi.org/10.1016/j.ins.2012.08.023. 

47. Gholizadeh, S.; Razavi, N.; Shojaei, E. Improved black hole and multiverse algorithms for discrete sizing optimization of planar 
structures. Eng. Optim. 2019, 51, 1645–1667. https://doi.org/10.1080/0305215X.2018.1540697. 

48. Pashaei, E.; Aydin, N. Binary black hole algorithm for feature selection and classification on biological data. Appl. Soft Comput. 
2017, 56, 94–106. https://doi.org/10.1016/j.asoc.2017.03.002. 

49. Bányai, Á.; Bányai, T.; Illés, B. Optimization of consignment-store-based supply chain with black hole algorithm. Complexity 
2017, 6038973. https://doi.org/10.1155/2017/6038973. 

50. Khooban, M.H.; Liaghat, A. A time-varying strategy for urban traffic network control: A fuzzy logic control based on an im-
proved black hole algorithm. Int. J. Bio Inspired Comput. 2017, 10, 33–42. https://doi.org/0.1504/IJBIC.2016.10004303. 

51. Lei, M.Y.; Zhou, Y.Q.; Luo, Q.F. Enhanced Metaheuristic Optimization: Wind-Driven Flower Pollination Algorithm. IEEE Access 
2019, 7, 111439–111465. https://doi.org/10.1109/ACCESS.2019.2934733. 

52. Lei, X.J.; Fang, M.; Wu, F.X.; Chen, L.N. Improved flower pollination algorithm for identifying essential proteins. BMC Syst. 
Biol. 2018, 12, 46. https://doi.org/10.1186/s12918-018-0573-y. 

53. Shen, L.; Fan, C.Y.; Huang, X.T. Multi-Level Image Thresholding Using Modified Flower Pollination Algorithm. IEEE Access 
2018, 6, 30508–30519. https://doi.org/10.1109/ACCESS.2018.2837062. 

54. Gao, M.L.; Shen, J.; Jiang, J. Visual tracking using improved flower pollination algorithm. Optik 2018, 156, 522–529. 
https://doi.org/10.1016/j.ijleo.2017.11.155. 

55. Rodrigues, D.; Silva, G.F.A.; Papa, J.P.; Marana, A.N.; Yang, X.S. EEG-based person identification through Binary Flower Polli-
nation Algorithm. Expert Syst. Appl. 2016, 62, 81–90. https://doi.org/10.1016/j.eswa.2016.06.006. 

56. Guan, C.; Zhang, Z.Q.; Li, Y.P. A flower pollination algorithm for the double-floor corridor allocation problem(dagger). Inter-
national J. Prod. Res. 2019, 57, 6506–6527. https://doi.org/10.1080/00207543.2019.1566673. 

57. Kherabadi, H.A.; Mood, S.E.; Javidi, M.M. Mutation: A new operator in gravitational search algorithm using fuzzy controller. 
Cybern. Inf. Technol. 2017, 17, 72–86. https://doi.org/10.1515/cait-2017-0006. 

58. Szentesi, S.; Illés, B.; Cservenák, Á.; Skapinyecz, R.; Tamás, P. Multi-Level Optimization Process for Rationalizing the Distribu-
tion Logistics Process of Companies Selling Dietary Supplements. Processes 2021, 9, 1480. https://doi.org/10.3390/pr9091480. 

59. Bányai, Á.; Illés, B.; Schenk, F. Supply Chain Design of Manufacturing Processes with Blending Technologies. Solid State Phenom. 
2017, 261, 509–515. https://doi.org/10.4028/www.scientific.net/SSP.261.509. 

60. Hardai, I.; Illés, B.; Bányai, Á. View of the opportunities of Industry 4.0. Adv. Logist. Syst. Theory Pract. 2021, 14, 5–14. 
https://doi.org/10.32971/als.2020.009. 

61. Kundrák, J.; Mamalis, A.G.; Molnár, V. The efficiency of hard machining processes. Nanotechnol. Percept. 2019, 15, 131–142. 
https://doi.org/10.4024/N05KU19A.ntp.15.02. 

62. SAP data in Plant Simulation. Homepage of Siemens. Available online: https://community.sw.siemens.com/s/article/sap-data-
in-plant-simulation (accessed on 17 September 2021). 

 


