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Abstract: The bearing temperature forecasting provide can provide early detection of the gearbox
operating status of wind turbines. To achieve high precision and reliable performance in bearing
temperature forecasting, a novel hybrid model is proposed in the paper, which is composed of three
phases. Firstly, the variational mode decomposition (VMD) method is employed to decompose raw
bearing temperature data into several sub-series with different frequencies. Then, the SAE-GMDH
method is utilized as the predictor in the subseries. The stacked autoencoder (SAE) is for the low-
latitude features of raw data, while the group method of data handling (GMDH) is applied for the
sub-series forecasting. Finally, the imperialist competitive algorithm (ICA) optimizes the weights
for subseries and combines them to achieve the final forecasting results. By analytical investigation
and comparing the final prediction results in all experiments, it can be summarized that (1) the
proposed model has achieved excellent prediction outcome by integrating optimization algorithms
with predictors; (2) the experiment results proved that the proposed model outperformed other
selective models, with higher accuracies in all datasets, including three state-of-the-art models.

Keywords: bearing temperature forecasting; hybrid model; data decomposition; optimization algorithm

1. Introduction

With the increasing clean energy demand and the crisis of fossil energy, wind energy,
as a renewable and green type, has attracted more attention than ever and has become
important in the world’s energy structure [1]. Wind turbines are mostly located in areas
of rich wind energy resources such as wilderness and mountains, where the operating
environment is relatively harsh and will have a certain impact on the operation of the wind
turbines. Among the different wind turbine components, the gearbox is one of the critical
components and the most fault-prone parts in the wind energy conversion system, which
directly affects the reliability of wind turbines [2]. The wind turbine gearbox bearing failure
is a commonly-appeared fault, which may cause the low efficiency of the wind turbine and
rotating stop and even cause the wind turbine structure to be completely scrapped [3]. The
bearing temperatures fluctuate with the operation of the wind turbines and the deviations
in wear, deform, lubrication, etc., will present dynamic trends of bearing temperature
and cause bearing failure when it is worn or damaged by high temperature [4]. If the
potential bearing failures are speculated based on collected before the system warning, the
active maintenance can be conducted [5,6]. Therefore, the research of the early warning
under predictable conditions in gearbox bearing failure is of great significance to the
safe operation and reasonable system dispatching in advance for maintenance and repair
measures and to improve the reliability and utilization of wind farms [7,8]. Based on the
data from the Supervisory Control and Data Acquisition (SCADA) system, the bearing
temperature forecasting model can be established to provide an investigation basis for
energy supply [9].

Machines 2021, 9, 248. https://doi.org/10.3390/machines9110248 https://www.mdpi.com/journal/machines

https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-9053-4625
https://orcid.org/0000-0001-8314-8251
https://doi.org/10.3390/machines9110248
https://doi.org/10.3390/machines9110248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/machines9110248
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines9110248?type=check_update&version=2


Machines 2021, 9, 248 2 of 21

1.1. Related Works

With the fast development of data-driven technology, a variety of models are effec-
tively proposed in the research of components fault diagnosis, which include the regression
analysis methods and the time series analysis methods [10].

The regression analysis methods aim to find the regression equation between two or
more variables with statistical correlation to establish a mathematical model and conduct
statistical analysis and prediction [11]. The independence of the data is reflected in the
regression analysis that the order of the data can be exchanged. By modeling process,
researchers can randomly select data for sequential model training or select a part of data to
split the training set and the validation set [12]. Astolfi et al. proposed a regression model
based on the artificial neural networks (ANN) for fault diagnosis, in which the input data
are power output, external temperature and wind speed, the output data are rotor bearing
temperature and vibration amplitude [13]. Zaher et al. also used the neural network
structure to handle the multiple input [14]. Integrated with the multi-agent systems (MAS),
the proposed techniques can reduce the overall volume of data and effectively improve
data processing ability and robustness.

The time series analysis method is a quantitative forecasting method that uses the
historical time sequence data of the forecast target, to conduct statistical analysis and
construct a mathematical model [15]. The difference between the time series analysis
and the regression analysis lies in the assumption of data that the regression analysis
assumes that each data point is independent, while time series analysis focuses on the
correlation between data for research and take advantage of current data in the absence of
other external data [16]. Therefore, time series analysis must search for the corresponding
correlation through modeling and use it to predict the future data trend. The time series
forecasting models run forward-looking predictions of temperature through effective
analysis of data depth information and change trends and then generate real-time early
warning [17]. The work of data fitting is then carried out by learning the rules of the
training set and the verification set. The direct application of the measured temperature
can effectively simplify the workload and avoid the impact of complex data on a real-time
early warning.

In recent years, the commonly used time series forecasting models mainly include
statistical predictors and artificial intelligence (AI) based models. The models based on
artificial intelligence have become popular among researchers by their advanced predictive
power [18]. Xiao et al. applied the Least-Square Support Vector Machine (LSSVM) for
temperature forecasting of output shaft gearbox in wind turbines [19]. Xiao et al. pro-
posed a stacked sparse autoencoder improved multi-layer perceptron (MLP) in a new
framework layer for main bearing temperature prediction of large-scale wind turbines [20].
Abdusamad et al. designed the multiple linear regression (MLR) to analyze the tempera-
ture trends with the model residual in wind turbine generators [21]. Chen et al. utilized
the radial basis function neural network (RBFNN) with the principal component analysis
(PCA) for the predicted output power in early warning [22].

In recent studies, the deep learning models as the advanced neural network have been
widely recognized by scholars. Fu et al. established a new wind turbine gearbox bearing
temperature analysis framework based on the convolutional neural network (CNN) and
the long short-term memory (LSTM) [23]. The prediction results show that the forecasting
performance of LSTM is the best among alternative algorithms. Lu et al. proposed a deep
belief network (DBN) for the condition monitoring of wind turbine planetary gearbox [24].
The results of the DBN are better than other regression prediction models. Wang et al.
utilized the gated recurrent unit (GRU) to construct the predictor in the bearing residual
life prediction of wind turbines [25]. The GRU network outperforms other algorithms
and achieves the best prediction results. Heydari et al. applied the group method of
data handling (GMDH) method to achieve accurate gearbox bearing temperature and
lubrication oil temperature [26].
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According to the above literature, AI models have been frequently applied for pre-
diction study, the single predictors, however, are not adaptive to all complex nonlinear
series data. For further improvement in adaptability and accuracy of forecasting models,
researchers have proposed hybrid smart models in the time series field to get higher pre-
diction accuracy, which integrates intelligent algorithms like the data decomposition, the
feature extraction and ensemble learning method:

(a) In data preprocessing, the decomposition algorithms are used to eliminate the
non-stationarity of the collected data and to make the raw series more predictable with
better accuracy. Yu et al. utilized the wavelet packet decomposition (WPD) into the hybrid
model to decompose the raw data into several subseries and obtain relatively independent
forecasting by the Elman neural network (ENN) [27]. In the paper of Mi et al., the empirical
mode decomposition (EMD) is employed with the singular spectrum analysis (SSA) method
to decompose the original data into more stationary signals. The experimental results
proved that the decomposition model increased the forecasting accuracy of the proposed
hybrid model. Wang et al. used the ensemble empirical mode decomposition (EEMD), an
upgraded version of EMD, to solve mode-mixing problems and achieve higher prediction
accuracy [28]. Gendeel et al. applied the variational mode decomposition (VMD) to
handle the variability from the raw power data and the weighted LS-SVM is adopted for
deterministic prediction [29].

(b) The feature extraction method aims to alleviate the data redundancy after de-
composition, which improves the input for the predictors in the hybrid structure. Khan
et al. designed a new wind power forecasting model for large-scale wind turbines, which
includes the PCA method to mine the hidden features from raw data and to identify useful
information to reduce the dimension [30]. Liang et al. chose the minimal redundancy maxi-
mal relevance (MRMR) [31]. The MRMR used the mutual information to obtain the best
feature set by the correlation analysis and redundant information among each decomposed
IMF and the features. Liu and Li introduced the interpretative structural modeling (ISM) to
combine random forest (RF) for the short-term load forecasting of wind power [32]. Jaseena
and Kovoor applied the stacked autoencoder (SAE) to extract more meaningful and brief
features from the original dataset for better improvement in the optimal stacked LSTM
network of the hybrid model [33].

(c) Ensemble learning can generate feature extraction results and integrate the multiple
predictors to have better performance in hybrid models. Nie et al. used the multi-objective
grey wolf algorithm (MOGWO) method to integrate three neural network predictors.
Experimental results presented that ensemble learning worked better than single predictive
models in power forecasting [34]. Zhang et al. proposed the tabu search (TS) into a hybrid
model for the integration of predictors and greatly raised the load forecasting accuracy [35].
Wen designed the ant colony optimization (ACO) algorithm with extreme learning machine
(ELM), in which the ACO improve the ELM by optimizing network connection weights in
the training process to avoid the local minima and obtain accurate forecasting results [36].
In the research of Li et al., particle-swarm optimization (PSO) is employed in an ensemble
mechanism to combine the prediction results from short-term and long-term predictors [37].

According to the literature survey, the integrated algorithms of the abovementioned
models effectively reduced the errors indexes of the hybrid models. The following points
can be elucidated: (1) the decomposition algorithms can greatly remove the non-stationarity
in the raw data and increase the recognition ability of the predictors as data preprocessing;
(2) the feature extract methods collect the meaningful information from decomposed
sub-series and improve the characteristics of the input features to the predictors; (3) the
ensemble learning methods can study the mutual influence and independent relationship
between data series for weight coefficient optimization with minimal error. Because of the
above conclusions, these useful methods can be specifically used in the new framework of
bearing temperature prediction.
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1.2. The Novelty of This Paper

Inspired by the abovementioned algorithms, a new hybrid ensemble prediction ap-
proach VMD-SAE-GMDH-ICA is firstly developed for wind turbine bearing temperature
prediction. The novelty of this study is concluded in detail as:

(a) In the study, a novel gearbox bearing temperature prediction model is proposed
to accomplish early status prediction of wind turbines. It can effectively achieve valuable
information from the SCADA data without additional sensors or measuring systems to
analyze the fluctuation tendency for potential failures. Based on the collected signals
from the normal working condition, the proposed model can offer practical detection and
accurate prediction for early warning and the wind turbine monitoring system can also
avoid the difficulty of collecting the information from faulty conditions.

(b) Previous wind turbine temperature research barely studied the VMD decompo-
sition model for the predictors in hybrid structures. VMD can avoid the shortcoming of
mode-mixing of the traditional EMD with better decomposition ability and noise resistance
and effectively reduce the non-stationary original temperature data in the study.

(c) The SAE-GMDH is used as the predictor to conduct the independent prediction
in each subseries decomposed by VMD. SAE is used to extract the primary features with
detailed information of the raw temperature series. Compared with a single predictor, the
SAE-GMDH has a significant increase in accuracy.

(d) The ICA is first applied in bearing temperature prediction to combine the results
by optimizing the weight coefficients. The ICA has been proven to be effective in the opti-
mization process, in which this method has higher convergence accuracy speed and better
global optimization than the traditional biological heuristic algorithms PSO and genetic
algorithm (GA) [38–40]. Therefore, the internal correlation of the bearing temperature
series of gearbox can be further investigated, which improves the time-series prediction
performance of the wind turbine monitoring system.

2. The Proposed Methodology
2.1. Topology Framework of the Applied Bearing Temperature Model

The topology modeling process of the applied hybrid model is presented in Figure 1,
which includes the decomposition methods, the feature extraction methods and the ensem-
ble learning methods. The specific process can be described as follows:

Part A: The raw bearing temperature data will be preprocessed into training sets,
validation sets and testing sets. The VMD is firstly used to preprocess the raw data by
decomposing bearing temperature data into independent sub-series, which are then used
to train SAE-GMDH. The validation sets are for the training of ICA and test sets are for the
testing of the whole model.

Part B: The SAE-GMDH is used to conduct predictions for the sub-series. Based on
the principle of unsupervised learning, SAE can obtain plenty of characteristic information
from the extraction process of sub-series, which is transmitted into the GMDH network in
the next step.

Part C: The ICA method can integrate all the sub-series in the hybrid mechanism. The
ensemble learning process is enforced by matching the suitable weight coefficient to the
sub-series for the best ensemble results. The ICA method analyzes the features of sub-series
results and calculates the weights in eight sub-series to obtain the satisfying final results in
all cases.
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Figure 1. The structure of the proposed model (A) decomposition method (B) improved predictor
(C) optimization method.

2.2. Variational Mode Decomposition

The variational mode decomposition (VMD) was first designed by Dragomiretskiy
and Zosso [41], which decomposes the basic data into N band-limited intrinsic mode
functions. Different from EMD-based methods, VMD can overcome the issues of the end
effects and modal component aliasing and decrease the non-stationarity of complex raw
data, aiming at comparatively stable sub-sequences containing multiple different frequency
scales [42]. In the VMD algorithm, the raw data f(t) is separated into N parts to ensure
that the decomposed result is a modal component on a limited distribution with a specific
frequency. Moreover, the sum of the approximated distribution should be the smallest and
equal to the raw data and the constraint condition is the same for all modes. Then, the
related constraint variational equation can be given as follows [43]:

min
gn,wn

{
N
∑

n=1
‖∂t

[(
δ(t) + j

πt

)
⊗ gn(t)

]
e−jwnt‖

2

2

}
s.t.

N
∑

n=1
gn = f(t)

 (1)

where t represents the time script; gn and wn are the set of sub-signals and the specific
frequencies; N counts for the number of sub-series; δ(t) means Dirac distribution; and ⊗ is
the convolution operator. The penalty term and Lagrangian multipliers are introduced to
transform the optimization into unconstrained condition, which is expressed as [44]:

L(gn, wn, λ) = β
N
∑

n=1
‖∂t

[(
δ(t) + j

πt

)
⊗ gn(t)

]
e−jwnt‖

2

2

+‖f(t)−∑
n

gn(t)‖
2

2
+

〈
λ(t), f(t)−∑

n
gn(t)

〉 (2)

where β is a secondary penalty factor and its function is to decrease the disturbance from
Gaussian noise and λ is the Lagrange multiplication operator. The alternate direction
method of multipliers obtains each modal component and center frequency. The saddle
point of the augmented Lagrangian will also be searched. Therefore, the corresponding
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unconstrained situation can be solved. The gn, wn and λ after alternate optimization
iteration can be updated as [45]

ĝm+1
n (w) =

f̂(w)− ∑
i 6=n

ĝi(w) +
λ̂(w)

2

1 + 2β(w−wn)
2 (3)

ŵm+1
n =

∫ ∞
0 w

∣∣∣ĝm+1
n (w)

∣∣∣2dw∫ ∞
0

∣∣∣ĝm+1
n (w)

∣∣∣2dw
(4)

λ̂m+1(w) = λ̂m(w) + γ

(
f̂(w)−∑

n
ĝm+1

n (w)

)
(5)

where m is the number of iterations, γ is the noise tolerance to meet the fidelity requirement
of signal decomposition; f̂(w), ĝi(w), λ̂(w) and ĝm+1

n (w) are Fourier transforms of f(t),
gi(t), λ(t) and gm+1

n (t).

2.3. Stacked Autoencoder

An autoencoder is a feedforward neural network of unsupervised learning algorithms.
The model can obtain a good representation of data dimension reduction [46]. The AE can
be stacked to construct a deep predictor, which is called stacked autoencoder (SAE). It is
composed of multi-layer AEs and output from the previous layer of AEs will be used as
input of the next layer to calculate the errors by subtracting the reconstructed data from the
input. The specific training process of feature extraction can be summarized as follows [47]:

Step 1: Using the original data as input, the parameters of the first hidden layer will
be trained and applied to obtain the output by calculation.

Step 2: Using the result from the first hidden layer as the input of the second hidden
layer, the same calculation will be run to get the output of the second layer.

Step 3: Repeat step 2 to initialize the parameters of the deep network through layer-
by-layer unsupervised learning pre-training for all automatic encoders.

Step 4: Find the parameter value close to the minimum of the above loss function and
transmit it as the final optimal parameter value into the predictor. Then, the supervised
learning process will start to train the predictors.

2.4. Group Method of Data Handling

The group method of data handling (GMDH) is a heuristic self-organizing algorithm to
obtain the optimal complex model [48]. The generic connection between input and output
in the GMDH follows the principle of Kolmogorov–Gabor polynomial approximation as
below [48]:

ŷ = A +
n

∑
i=1

Bixi +
n

∑
i=1

m

∑
j=1

Bijxixj +
n

∑
i=1

n

∑
j=1

n

∑
k=1

Dijkxixjxk + . . . (6)

where {x1, x2, x3 . . . , xn} are the input variables of the network, {A, B, C, . . .} are the
weights and the ŷ represents the output of the system.

The K-G polynomial construction of the nonlinear system is realized by adding input
variables in each layer of the neural network. To obtain the regression polynomial, the
following equation will be used for each pair of input and the output of the training set [49]:

ŷn = a0 + a1xni + a2xnj + a3x2
ni + a4x2

nj + a5xnixnj (7)
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where xni and xnj represent the input variables of the network. The calculation of the
weights a1, a2, a3, a4, a5 is obtained from the minimum value of the mean square error
(MSE) between the actual values and the output values [50]:

MSE =
n

∑
i=1

(ŷi − yi)
2/n (8)

2.5. Imperialist Competitive Algorithm

The Imperialist Competitive Algorithm (ICA) was designed by Atashpaz-Gargari and
Lucas in 2007, which is an evolutionary algorithm with the principle of imperialist colonial
competition mechanism [51]. The ICA is one of the socially inspired random optimization
methods and has higher accuracy and better global convergence than the common PSO
and GA algorithms to find the global highest or lowest value [52]. The individuals of ICA
are called countries, which are divided into two sections parts: the colony and imperialist.
Similar to the chromosomes in the genetic algorithm (GA), the countries of the two parts
create an empire. To solve a multivariate optimization problem, a country in ICA consists
of 1 × N array which is described as following formula [17]:

country = [v1, v2, v3 . . . , vN] (9)

where vi is the optimized variable. The variables are regarded as the social and political
attributes of the country. The cost of each country is determined by a function f composed
of variables as follows:

cost = f(country) = f([v1, v2, v3 . . . , vN]) (10)

The process of ICA optimization begins with initializing of countries of size Ncountry
and the imperialists Nimperialist. Other countries are used as the colonies Ncolony, which
are divided by initial strength to form the original empires. Therefore, the normalized
imperialist cost for colonization of the counties is defined in the following formula:

Cn = max
i
{ci} (11)

where cn represents the cost of the n-th imperialist and Cn stands for normalized cost of
n-th imperialist. The max

i
{ci} is the imperialist of the highest cost. The normalized power

from the imperialist (vn) is:

vn =

∣∣∣∣∣∣ Cn

∑
Nimperialist
i=1 Ci

∣∣∣∣∣∣ (12)

The distribution of the original colonies depended on the power of the imperial group
to which they belonged. Thus, the number of the colonies owned by the N-th empires:

N.Cn = round
{

Pn.Ncolony

}
(13)

where round means a function for the round numbers. N.Cn stands for colonies owned by
the nth empire and Ncolony represents the initial colonies [53].

The next assimilation is the approaching of the colony to the empire by the language
and culture. After the assimilation is completed, the cost functions of the empire and the
colony will be compared. If the cost function from an empire is higher than a colonized
country, the empire will become a colony and the colony will become an empire. Figure 2
shows the trajectory of colonies to the appropriate imperialist, in which the colony goes
through x units towards the imperialist, is described as:

x ∼ U(0, θ × d) (14)
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where d represents the interval from the colony towards the imperialist and θ represents a
random number between 1 and 2 [54].
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The overall strength of an imperialist can be described as

T.Cn = f(impn) + β× ∑N.Cn
i=1 f(coli)

N.Cin
(15)

where the impn is the imperialist country of the nth empire; T.Cn is the entire cost of the
n-th empire; 0 < β < 1 the size of β determines the degree of influence of the colonial
country on the entire empire. The weakest colony will be chosen among the weakest
empires as the object of empire competition. The competition between empires makes
powerful empires stronger by taking the colonies from other empires. Meanwhile, the
colonies of weak empires keep decreasing. An empire will be destroyed when it has lost all
the colonies. With the demise of the empires, only one empire is left and the ICA algorithm
stops running [55].

In this paper, the mean square error (MSE) is applied as the objective function,

MSE = (
N

∑
t=1

[r(t)− r̂(t)]2)/N (16)

where r(t) is the original data, r̂(t) is the predictive result and N represents the samples in
the raw datasets. Corresponding to the n decomposed subsequences from VMD, the state
matrix W can be constructed as the weight matrix,

w = [w1, w2 . . . wn] (17)

where w1, w2 . . . wn is the corresponding weight and n is the number of the decomposed
subsequences after the VMD. The product of each subserie forecasting result matrix and
weight matrix will be compared to original data by the optimization algorithm to get
the satisfying results in the objective function. The iteration ends up with a satisfying
condition. The test set is inputted into the trained framework for the results. The ICA
method determines the optimal weight according to the data characteristics of the test set.

3. Case Study
3.1. Description of Bearing Temperature Data

Three SCADA datasets of 1500 samples, with the 10 min interval of wind turbine
bearing temperatures, were applied to test the prediction performance of the designed
hybrid models in the paper. The SCADA system in the wind turbine can accomplish the
functions such as data acquisition, components monitoring and system control, etc. [56,57].
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The datasets #1, #2 and #3 were collected from different wind turbine gearbox bearings
without data filtering by production requirements to analyze the forecasting performance.
The original data are continuously sampled at 10 min intervals under the continuous
working state of the wind turbine with the operating power of 2 MW. Table 1 illustrates the
statistical results of the temperature time series. The data fluctuation in the time series is
shown in Figure 3. The first 900 samples are selected as a training set. The 901st–1200th
samples are regarded as the validation set. The last 300 samples are used as the testing
set. The training set is used for the data samples for model fitting. The validation set
can be used to adjust the optimization algorithm parameters of the model and to make a
preliminary assessment. It is usually applied to verify the generalization ability such as
the accuracy rate of the proposed model during iterative training of the model to decide
whether to stop training. The test set is used to evaluate the predictive ability of the final
model framework. The prediction results, which are the outcome from the proposed hybrid
model, are applied to compare with the testing set to test the accuracy. All experiments in
the study will be established and tested on the Matlab2020a platform, using Windows 10
operating system of a personal computer.

Table 1. The statistical results of the temperature time series #1, #2 and #3.

Bearing Temperature Time Series
Temperature Time Series #1 #2 #3

Data resolution (min) 10 10 10
Minimum (◦C) 15.3 23.6 29.6

Mean (◦C) 28.2761 32.8573 43.1788
Maximum (◦C) 70.1 51.8 59

Standard derivation 7.3962 5.6234 6.3141
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3.2. The Evaluation Indexes

The evaluation indexes will comprehensively show the ability of the proposed model.
In this study, three evaluation indexes, which include the mean absolute error (MAE),
the root mean square error (RMSE) and the mean absolute percentage error (MAPE), are
applied to evaluate the prediction accuracy. To better compare the pros and cons of different
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models, the promoting percentages of the RMSE, MAPE and MAE are also utilized. The
equations of indexes are described as

MAE = (
N
∑

t=1
|r(t)− r̂(t)|)/N

MAPE = (
n
∑

t=1
|(r(t)− r̂(t))/r(t)|)/N

RMSE =

√
(

n
∑

t=1
[r(t)− r̂(t)]2)/N

(18)


PMAE = (MAE1 −MAE2)/MAE1

PMAPE = (MAPE1 −MAPE2)/MAPE1
PRMSE = (RMSE1 − RMSE2)/RMSE1

(19)

where r(t) is the measured denotes the raw bearing temperature data, r̂(t) is the predicted
bearing temperature data and N represents the samples in the raw datasets. From the
above formulas, it can be seen that the smaller values of the evaluation indexes mean
smaller deviations between the real data and the prediction results and better prediction
accuracy of the models. The bigger values of promoting percentages represent a greater
improvement of the prediction accuracy between different models.

3.3. Comparative Analysis with Experiments
3.3.1. Comparison and Analysis of Individual Predictors

To analyze the predictive performance of individual group method of data handling
(GMDH) in depth, it will be compared with some traditional predictors and deep learning
predictors including the long short-term memory (LSTM), gated recurrent unit (GRU),
Elman neural network (ENN), deep belief network (DBN), multi-layer perceptron (MLP),
extreme learning machine (ELM), general regression neural network (GRNN), GMDH
and radial basis function neural network (RBFNN) for specific research. According to the
information Table 2, it is concluded that:

(a) The forecasting accuracy of the GRNN, ELM, MLP and ELM methods are lower
than deep learning predictors in all cases, which may be affected by the high volatility and
nonlinear features of the raw data series. The deep networks could increase the power
to deal with the special features of the raw temperature data by iterative calculation to
achieve better robustness than the shallow neural networks.

(b) In the classic deep learning networks, the prediction accuracy of GRU and LSTM
in the results is better than others. The possible cause may be that the gated framework can
improve the calculation and extract more information of series to construct the framework
by multiple hidden layers, which help the GRU and LSTM for better learning capacity of
the deep information acquisition from the bearing temperature series.

(c) In comparison with other deep learning models, the GMDH method receives the
best prediction output in all datasets. It shows the GMDH has high forecasting ability
and application potential. The possible reason is that the GMDH has the self-organizing
mechanism of the multi-layer neural network, which improves their ability to automatically
retain useful variables and select the suitable parameters to avoid information redundancy
and local minimum.
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Table 2. The error evaluation results of different predictors.

Series Forecasting Models MAE (◦C) MAPE (%) RMSE (◦C)

#1

GMDH 0.3629 1.1417 0.6289
GRU 0.4678 1.2388 0.6175
LSTM 0.5475 1.0563 0.7308
DBN 0.5794 1.5643 0.6396
ENN 0.6706 1.6121 0.7831
ELM 2.0374 3.6405 2.9887

GRNN 1.1551 2.1820 1.6379
MLP 0.8472 1.8956 0.9860

RBFNN 0.7100 1.8539 0.9478

#2

GMDH 0.5465 0.7063 0.4372
GRU 0.6053 0.7378 0.5128
LSTM 0.6238 0.9128 0.7628
DBN 0.5925 0.8290 0.5931
ENN 0.6286 0.8070 0.6585
ELM 0.8254 1.9352 0.8224

GRNN 0.8002 1.2322 1.0628
MLP 0.6684 1.0518 0.8478

RBFNN 0.5672 0.8109 0.7466

#3

GMDH 0.5210 0.9591 0.7920
GRU 0.6435 0.9841 0.9429
LSTM 0.5798 1.2769 1.1923
DBN 0.5563 1.0056 0.8681
ENN 0.7350 1.1608 1.0105
ELM 0.8348 1.4873 1.2613

GRNN 0.9941 2.0563 1.4930
MLP 0.7663 1.4343 1.3829

RBFNN 0.6198 1.2269 0.9243

3.3.2. Comparison and Analysis of Different Hybrid Models

To comprehensively verify the predictive ability of the proposed model, the proposed
hybrid VMD-SAE-GMDH-ICA model will be analyzed with several selective models by
the following experiments:

(a) To evaluate the power in the data preprocess aspect of the decomposition algo-
rithms in bearing temperature prediction, the results of VMD are listed with that of the
EEMD and EMD methods by the promoting percentages.

(b) To test the significant improvement by SAE and ICA for the total accuracies, the
hybrid VMD-SAE-GMDH and VMD-SAE-GMDH-ICA models are compared with other
models in Tables 3 and 4.

Table 3. The promoting percentages of the SAE models.

Method Indexes Series #1 Series #2 Series #3

VMD-SAE-
GMDH vs.

VMD-GMDH

PMAE (%) 11.4276 17.1861 23.1070
PMAPE (%) 18.5000 13.4679 17.3433
PRMSE (%) 24.7714 29.2410 19.6399

SAE-GMDH vs.
GMDH

PMAE (%) 21.6864 25.4163 20.3223
PMAPE (%) 39.4149 21.9519 26.8168
PRMSE (%) 31.2768 13.1976 25.1736
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Table 4. The promoting percentages of the VMD-SAE-GMDH-ICA model by the VMD-SAE-GMDH-GA model and the
VMD-SAE-GMDH model.

Method Indexes Series #1 Series #2 Series #3

VMD-SAE-GMDH-ICA
vs.

VMD-SAE-GMDH-GA

PMAE (%) 11.1001 26.1251 19.5364
PMAPE (%) 6.0493 11.7997 13.5180
PRMSE (%) 21.6826 32.4309 13.2560

VMD-SAE-GMDH-ICA
vs.

VMD-SAE-GMDH

PMAE (%) 30.4921 54.3574 38.1904
PMAPE (%) 13.5825 19.3928 25.5384
PRMSE (%) 28.8642 49.8718 52.1262

(c) The experiments also compare the ICA with GA (genetic algorithm) to show the
research potential of ICA by ensemble learning. Figure 4 displays the changing trend of
loss values through the iterations of ICA and GA.
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From Tables 3–6 and Figure 4, it can be summarized that:
(1) Combining the decomposition algorithms in the hybrid structures, the models

could achieve better results with higher accuracy than the models without decomposition
methods in all datasets. The probable inference may be that decomposition algorithms
could decrease the fluctuation character by decomposing the raw data time series into
multiple sub-series. From Table 4, the experiment results can also clearly reflect that the
decomposition method can effectively improve the prediction accuracy of the predictor
GMDH. All the hybrid models with decomposition methods have improved accuracy
on the basis of GMDH. Compared with EEMD and EMD, the VMD can achieve better
temperature series preprocessing results. With extra noise of the EMD and EEMD function
may bring the residual noise when decomposing the original temperature series. VMD
presents excellent noise resistance and better decomposing performance, which enable the
extracted feature information of time series to be detailed and accurate for better results.
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Table 5. The error evaluation results of different methods.

Series Forecasting Models MAE (◦C) MAPE (%) RMSE (◦C)

#1

GMDH 0.3629 1.1417 0.6289
EMD-GMDH 0.3004 1.0202 0.5077

EEMD-GMDH 0.2958 1.0041 0.4179
VMD-GMDH 0.2914 0.8600 0.3827
SAE-GMDH 0.2842 0.6917 0.4322

VMD-SAE-GMDH 0.2581 0.7009 0.2879
VMD-SAE-GMDH-GA 0.2018 0.6447 0.2615
VMD-SAE-GMDH-ICA 0.1794 0.6057 0.2048

#2

GMDH 0.5465 0.7070 0.4372
EMD-GMDH 0.4884 0.6699 0.4088

EEMD-GMDH 0.4023 0.5655 0.3577
VMD-GMDH 0.3561 0.5101 0.3307
SAE-GMDH 0.4076 0.5518 0.3795

VMD-SAE-GMDH 0.2949 0.4414 0.2340
VMD-SAE-GMDH-GA 0.1822 0.4034 0.1736
VMD-SAE-GMDH-ICA 0.1346 0.3558 0.1173

#3

GMDH 0.5211 0.9591 0.7921
EMD-GMDH 0.4555 0.8899 0.7637

EEMD-GMDH 0.3831 0.8617 0.6047
VMD-GMDH 0.3579 0.6798 0.5443
SAE-GMDH 0.4152 0.7019 0.5927

VMD-SAE-GMDH 0.2752 0.5619 0.4374
VMD-SAE-GMDH-GA 0.2114 0.4838 0.2414
VMD-SAE-GMDH-ICA 0.1701 0.4184 0.2094

Table 6. The promoting percentages of the EMD decomposition models and the VMD decomposition models.

Method Indexes Series #1 Series #2 Series #3

EMD-GMDH
vs. GMDH

PMAE (%) 17.2223 10.6313 12.5887
PMAPE (%) 10.6420 5.2475 7.2151
PRMSE (%) 19.2717 6.4959 3.5854

EEMD-GMDH
vs. GMDH

PMAE (%) 18.4900 26.3861 26.4824
PMAPE (%) 12.0259 20.0141 10.1553
PRMSE (%) 33.5506 18.1839 23.6586

VMD-GMDH vs.
GMDH

PMAE (%) 19.7023 34.8398 31.3184
PMAPE (%) 24.6475 27.8501 29.1211
PRMSE (%) 29.1477 24.3596 43.9086

(2) SAE and ICA are used to further increase the power of VMD-GMDH. SAE is
applied to obtain useful information from the sub-series and present a better feature
description than the original data to GMDH. The ICA ensemble method is applied to
analyze and select features of the subseries for weight coefficient and to give the optimal
output. In contrast to GA, ICA could get improved calculation results. Different from
the traditional biological heuristic algorithm, ICA, as a social heuristic algorithm, has
better convergence and faster calculation speed. The results prove that the ICA algorithm
has a better application value in optimization capacity than the conventional ensemble
methods, which enables the ICA algorithm to get great value in ensemble learning and
further increase the predictive precision.

3.3.3. Comparison and Analysis of Existing Models

To prove the availability and innovation of the designed VMD-SAE-GMDH-ICA
model, it is essential to essential the analysis with several existing advanced models in time
series prediction, including Mi’s model [58], Dong’s model [59] and Liu’s model [60], are
effective in time series forecasting. Other commonly used predictors are GRNN, MLP and
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LSTM. Figures 5–7 present the final prediction and residual error outcome of nine applied
models. Figures 8–10 show the statistical index results MAPE, MAE and RMSE of eight
applied models for the bearing temperature datasets #1, #2 and #3, respectively. From these
figures, it could be summarized as follows:
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(a) Among the abovementioned models, the hybrid models obtain better prediction
results with lower prediction errors than single models. As shown in the figure, it can be
observed that the MAEs of the hybrid models are all less than 0.5 ◦C. The classic single
model can explore the correlation between the input and output of the original data, but
it is difficult to capture the deep dynamic information. In addition, the decomposition
methods, feature extraction methods and ensemble learning methods all contribute to the
improvement of the predictor, which indicates that hybrid models are effective to handle
non-stationary bearing temperature series from multiple aspects. Therefore, the hybrid
methods have excellent application potential to deduce the tendency of bearing temperature
change and provide study aspects for early warning of wind turbine condition monitoring.

(b) Among the involved models, the proposed VMD-SAE-GMDH-ICA model achieves
the most satisfactory results than the state-of-the-art models and classical models in three
datasets. The MAEs of the proposed models are all less than 0.2 ◦C. It also fully verifies the
practicality and effectiveness of the proposed model in bearing temperature forecasting.
As for the state-of-the-art models, Dong’s model and Liu’s model ignore the decomposition
characteristics of the temperature series. Although Mi’s model contains the decomposition
methods, the optimization algorithm has a weaker decision-making ability than the ICA.
Compared with the state-of-the-art models, the proposed model demonstrates predictive
adaptability to bearing temperature data and effectively integrates the advantages of
multiple excellent algorithms, so that it can greatly optimize the prediction accuracy from
many aspects. The proposed VMD can effectively decrease the volatility features and
alleviate the non-stationarity of the original series. The SAE algorithm has an effective
identification ability to acquire information and filtrate the inputs for GMDH. Finally, the
ICA optimization algorithm can effectively integrate the results from sub-series by weight
selection and enhance the accuracy of the total model. Therefore, the VMD-SAE-GMDH-
ICA mechanism proves the best application potential than the other involved models in
the bearing temperature forecasting.

3.4. Sensitive Analysis of the Parameters and the Computational Time

In this section, the sensitivity of the parameters in the proposed model is analyzed.
The parameters are tested by five different values. The sensitivity analysis results of
the important parameters in the proposed model are presented in Figure 11. The MAEs
are applied to represent the forecasting accuracy. It can be observed from the analysis
results that the proposed model is generally stable and robust to the parameters with
some fluctuations. For example, when the colony average cost coefficient is 0.2, the MAEs
have the smallest values in all datasets, which means the best forecasting accuracy. As for
the maximum iterations of ICA, the changing of the parameter value has little impact on
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the maximum iterations. To save computational time, it is rational to set the maximum
iterations as 200. The optimal values of the important parameters are listed in Table 7.
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Table 7. The parameters with the optimal values by sensitive analysis.

Parameters Value

Noise tolerance 1
Maximum training epoch 500
Maximum Layerneurons 25

Maximum Layers 5
Colony average cost coefficient 0.2

Imperialist countries 10
Population size 50

Maximum iteration 200

The calculation cost of the proposed model is given. The forecasting process costs
only a few seconds by measurement function in software Matlab and the data intervals are
ten minutes. The training time is less than five minutes. The total computational time of
the proposed models in the study is shown in Table 8. Therefore, real-time monitoring can
be realized.
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Table 8. The main computational time of the proposed models.

Algorithms Computational Time

VMD 7.823 s
SAE-GMDH 155.794 s

ICA 118.526 s

Total 282.143

4. Conclusions and Future Work

The bearing temperature prediction can provide technical support for real-time failure
detection in wind turbines. In this study, a novel hybrid prediction model, which is
composed of a VMD, SAE, GMDH and ICA, is proposed for the bearing temperature of the
gearbox in the wind turbine. The study can be concluded as follows:

(a) The VMD algorithm can greatly increase the forecasting accuracy by preprocessing
and identification of raw data. The SAE can search for the deep information of decomposed
data and avoid data redundancy, which can provide better input for the GMDH to improve
the prediction ability. The proposed weight coefficient optimization method based on ICA
is effective to raise the prediction accuracy and achieve better ensemble results compared
with the traditional GA method.

(b) The proposed framework can deeply identify the fluctuation features of bearing
temperature data to forecast the changing trend. The existing single predictors cannot
extract deep nonlinear characteristics to establish accurate predictions, which can prove
the robustness of the proposed model.

(c) Combining all advantages of the chosen algorithms, the proposed model proved
to be better than other involved models and three state-of-the-art models, which has
demonstrated its excellent forecasting power and applicability for bearing temperature
time series. The datasets from the SCADA system present different temporal features
and the proposed VMD-SAE-GMDH-ICA can provide an accurate prediction of normal
changes and sudden rise or fall in bearing temperature.

The proposed model showed good predictive potential by the gearbox bearing tem-
perature series, whose forecasted results can be embedded in relevant early detection and
warning systems of wind turbine gearbox. For future work, more improvement may be
carried out from the following aspects:

(a) The experiments of the proposed model are established by single time series
forecasting. However, wind turbines are affected by many factors. Frequently updating the
data to adjust the model parameters can effectively guarantee the model learning ability.
After an effective establishment of fault detection and early warning system, other internal
and external variables can be analyzed to improve system functions and expand the scope
of research. In future work, the influence of other factors such as the ambient temperature
and wind speed on bearing temperature is also worthy of study.

(b) The efficiency and effectiveness of the proposed framework have been confirmed
in experiments. The real-time prediction model can be applied to detect the wind turbine
status in advance, analyze the possibility of reaching the thresholds. Based on the existing
algorithms, the scientificity and accuracy of the model need further improvement with lots
of detection knowledge and problem-solved abilities for the actual application fields, such
as the maintenance management by the external weather and output power [61,62], the
risk assessment by the mechanical friction and internal and external temperature [62] and
performance assessment [63].

(c) The simple time series prediction may not accurately present the overall fault
diagnosis of the whole wind farms with multiple wind turbines. Therefore, the spatial-
temporal forecasting model can be applied to improve this situation. The large amount of
collected data that follow can be handled by big data platforms such as Spark to strengthen
data processing power and to increase computing speed.
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