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Abstract: Studying gear power loss theoretically and determining the efficiency of a helical gear drive
depend on many geometrical and working parameters, such as rotation speed, tooth number, gear
ratio, helix angle, and torque, among others. In this paper, the Plackett–Burman screening design and
the Box–Behnken response-surface method are used to consider how the above parameters influence
gear drive efficiency, and experimental models are provided to evaluate these influences. The present
results can be used to select the efficiency when calculating and designing gear transmissions and to
choose the parameters for improving gear transmission efficiency.

Keywords: response surface; gear efficiency; power loss

1. Introduction

Gears are used extensively in many applications, such as automotive, drive trains,
industrial gearboxes, and machine tools. They are designed to transmit power and ro-
tation from an input shaft to an output shaft. In this process, some of the power is
unavoidably lost because of friction in the system and oil churning. As prime movers,
internal combustion engines were the main focus of efficiency improvement efforts in the
past. However, now that most of the potential efficiency improvements for such engines
have been understood and implemented, the focus on improving efficiency has shifted
to the remaining elements of the drive train, such as the gear transmission. Because of
continuously increasing petroleum prices, fuel economy is now an important demand.
Furthermore, national regulations and environmental pressures have become stricter in
terms of emission-related regulations.

For this reason, any improvement in gear transmission efficiency is very important and
can reduce fuel consumption and air pollution significantly. As well as these main reasons,
improving the efficiency of gear transmissions comes with other benefits. In this respect,
because several types of gear failure (e.g., scoring and contact fatigue) are influenced by
the heat generated inside the gearbox, more efficient gears would generate less heat, and
so their performance in terms of failure resistance would improve. To calculate these
losses, one must know the loads in every contributing machine element. A literature
review [1–5] indicates that the sources of power loss are divided into load-dependent and
load-independent components. The load-dependent power losses are the tooth friction
and bearing friction, while the load-independent ones are the friction in the contact seals
and the losses due to oil churning, windage, and oil squeezing during gear meshing.

Overall, the gear transmission efficiency is determined by individual components loss
or, equally, the power losses of the individual components of the powertrain: gearing losses,
bearing losses, sealing losses, synchronizing losses, clutch losses, torque converter losses,
and auxiliary units. Gear power losses are strongly related to lubrication. Load-dependent
losses are caused by the frictional effects in the lubricant film and load-independent losses
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are caused by squeezing, churning, and windage effects. In scientific publications, certain
values of gear efficiency are often assumed [6]. These values are often based on calculations
and simulations and are then used for other calculations. For example, Ref. [7] lists values
of gear efficiency from 95–98%; the paper also mentions the values from 86–94% with
load values of 5 Nm. Additionally, the paper also cites the thesis of Tehrani, who worked
with gearbox efficiency values above 98% in some areas of speed and load. The losses
associated with meshing gears are important in the design of many industrial, marine, and
gas turbine applications. Gear efficiency varies from 98% to 99% for the best-designed,
high-power applications.

2. Gear Power-Loss Analysis and Equations

The gear meshing, windage, and support bearings are the main sources of power loss
in a spur–gear system. In the present analysis, it is assumed that the gears are made of
steel and are jet lubricated. Furthermore, no oil-churning losses are considered because
the gears do not come into contact with the oil in the sump, nor are any secondary losses
(e.g., momentum transfer from oil hitting the gear teeth and noise generation) taken into
account. The windage and bearing losses can be computed using approximation equations
in a simple method.

The efficiency calculation approach used herein is detailed in [8] and is applied to
spur gears of typical proportions. In the analysis, the following factors are considered:
(i) the sliding losses caused by friction forces created as the teeth slide across each other,
(ii) the rolling losses caused by the production of an elastohydrodynamic (EHD) film, and
(iii) the windage losses of both gears spinning in an oily environment. By mathematically
integrating the instantaneous values of these losses along the contact path, the sliding and
rolling losses are computed. The friction coefficient used to quantify the sliding loss is
derived from Benedict and Kelly’s disk machine data.

The data from roller test machines, where friction due to sliding and rolling has
been observed under various operating conditions, are used to calculate the sliding and
rolling power loss. The gear contact in the meshing cycle can be described as a continually
changing roller contact, with the size, speed, and load derived from involute gear geometry
under the required operating conditions. Many discrete EHD contacts are then used
to mimic the gear meshing cycle. To derive an average gear contact power loss, the
instantaneous rolling and sliding forces for each contact can be calculated and the results
summed along the contact path for the entire meshing cycle.

The abscissa in Figure 1 represents the contact path and serves as a simple coordinate
system for computing gear meshing losses. As three sequential pairs of gear teeth come
into contact, Figure 1 shows the assumed immediate gear tooth loading. The sites where
teeth enter or depart a meshing cycle are indicated by the coordinates on the route of
contact. The instantaneous contact point between two mating gear teeth maps out the path
of contact, which is actually a line in space with a set inclination (the pressure angle).
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Figure 1. Tooth load-sharing diagram [9]. 
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The load transmitted between the gears is generally borne by one or two teeth at a
certain point during the meshing cycle. The contact ratio refers to the average number of
teeth that are engaged in a bite. The tooth loading pattern used in this study is shown in
Figure 1. For the majority of the contact route, two teeth share the load. With no profile
adjustment, this gear meshing loading is based solely on involute gear geometry. Dynamic
loading is not accounted for, but its impact on efficiency is thought to be minor.

The gearbox efficiency η is evaluated as [10]:

η =
Pout

Pin
= 1− Ploss

Pin
, (1)

where Pout is the gearbox output power, Pin is the gearbox input power, and Ploss is the
gearbox power loss. As mentioned above, the total power loss in a gearbox is represented
by the sum of all the losses in each gearbox element. According to [6], the total power loss
of a gearbox can be calculated as:

Ploss = PS + Pb + Pd + PR + Pw, (2)

where PS and PR are the sliding and rolling gear power losses, respectively, due to the
friction between the gear flanks; Pd is the no-load gear power loss due to windage, oil
churning, and oil squeezing during gear meshing; Pb is the bearing loss, and Pw is the
auxiliary loss from other gearbox components (e.g., pumps, fans, heating, clutches and
control systems).

The power loss comprises load-independent and load-dependent losses [9,11]. Windage
losses [12], churning losses, bearing churning losses, and seal losses are all examples of load-
independent losses [13], while the load-dependent losses are the sliding friction loss [10],
rolling friction loss, and bearing loss. In the simplified method used in the present study,
the following equations are used to calculate load-independent losses such as windage
loss, churning loss, and bearing churning loss.

2.1. Windage Loss

The windage power loss can be expressed as [9]:

Pw = C2

(
1 + 2.3

b
R

)
n2.8R4.6(0.028µ0 + C3)

0.2, (3)

where C2 = 2.82 × 10−7, C3 = 0.019, b and R are the face width and pitch radius [m], n is
the rotation speed [rpm], and µ0 is the dynamic viscosity [cP (centipoise)].

2.2. Bearing Churning Loss

The mechanical power loss of a bearing is defined as [14]:

Pb = Tbω, (4)

where Tb is the bearing friction torque [N·m] and ω is the angular speed [rad/s]. Without
a seal, the bearing friction moment of a rolling element bearing can be written as [15]:

Tb = TP + TL, (5)

TP = 0.5 f Fd, (6)

TL =

{
10−7 fL(vn)2/3D3

m, vkn > 2000,
1.6× 10−5 fLD3

m, vkn < 2000,
(7)

where Tp is the load-dependent moment in a loaded rolling contact due to rolling and
sliding friction, TL is the viscous part of the bearing friction torque, d is the bearing bore
diameter [mm], f is the bearing coefficient of friction, F is the bearing load [N], fL is a factor
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that varies based on the bearing type and lubrication method, n is the bearing speed [rpm],
Dm is the bearing mean diameter [mm], and v is the lubricant kinematic viscosity [cm2/s].

2.3. Churning Loss

The expression for the churning loss Pd is divided into three parts as shown below [16]:

Pd = Pdt + Pdb + Pdr, (8)

where the churning loss Pdt for smooth outside diameters [16] is:

Pdt =
7.37 fgvn3d4.7L

Ag1026 , (9)

The churning loss Pdb for smooth-sided discs [16] is:

Pdb =
1.474 fgvn3d5.7

Ag1026 , (10)

The churning loss Pdr for tooth surfaces [16] is:

Pdr =

7.37 fgvn3d4.7b
(

R f√
tanβ

)
Ag1026 , (11)

where v is the kinematic viscosity at the operating temperature, Rf is a roughness factor, β
is the gear helix angle, Ag = 0.2 is the arrangement factor, n is the rotation speed [rpm], L is
the length of the element immersed in oil, and fg is the dip factor (fg = 0 if the gear is not
dipped in oil; fg = 1 if it is fully dipped in oil).

2.4. Meshing Losses

Various approaches can be used to determine the sliding and rolling losses [10,11].
The meshing losses were computed by numerically integrating the sliding and rolling
losses throughout the contact path in the following load-dependent loss calculation using
the complex approach [8]:  PS =

(PS(l1)+PS(l2))l3+
PS(l4)

2 l5
l6

,

PR = (PR(l1)+PR(l2))l3+PR(XP)l5
l6

,
(12)

Calculating the sliding power loss PS and the rolling power loss PR requires six
additional lengths along the contact path [8]:

l1 = X1+X2
2 ,

l2 = X3+X4
2 ,

l3 = X4 − X3 + X2 − X1,
l4 = X2,

l5 = X3 − X2,
l6 = X4 − X1,

(13)

The instantaneous sliding and rolling power losses can be expressed as sliding and
rolling power losses [8]: {

PS(x) = C3VS(x)FS(x),
PR(x) = C3VT(x)FR(x),

(14)

where C3 = 10−3.
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The instantaneous frictional force caused by two gear teeth sliding against each other
is a sliding force [8]:

FS(x) = µ(x)F(x), (15)

µ(x) = 0.0127 log
C1

F(x)
b

µ0VS(x)V2
T(x)

, (16)

where µ(x) is the friction coefficient used to quantify sliding loss and is derived from
Benedict and Kelly’s disk machine data, and F(x) is the tooth normal load [N].

The instantaneous force due to the build-up of the EHD film is a rolling force [8]:

FR(x) = C2h(x)ϕt(x)b, (17)

h(x) = 2.05× 10−7[VT(x)µ0]
0.67[F(x)]−0.067[Req(x)

]0.464, (18)

where C2 = 9 × 107, h(x) is the gear contact film thickness calculated using the method of
Hamrock and Dowson, ϕt(x) is a thermal reduction factor used to limit h(x) at high speeds,
and Req(x) is two equivalent radii of curvature in contact, which can approximate the gear
contact. The equivalent radius of curvature varies with the contact path and is calculated
as [8]: 

R01 = d2 sin αw
2 + |X− XP|,

R02 = d1 sin αw
2 − |X− XP|

Req(x) = R01R02
R01+R02

,
, (19)

2.5. Rolling and Sliding Velocities

The difference in surface velocity between the two gears at the point of contact is the
sliding velocity, which changes direction at the pitch point and varies along the contact
route. We eliminated the change of the sign by obtaining the absolute value of X − Xp
because we were only concerned about the magnitude of the sliding velocity.

The rolling and sliding velocities as defined in the Benedict and Kelley friction coeffi-
cient [8]:  VS(x) =

0.1047(1+u)n|X−Xp|
103u ,

VT(x) = 0.1047nd1

(
sin α− |X−XP |(u−1)

d2

)
,

(20)

where X is the path of contact and is a line drawn in space by the point of contact between
two mesh gears. For the involute gear geometry, the contact route is a straight line from X1
to X4 and Xp, representing the following sequence of events: X1 is the start of the meshing
cycle, when two teeth share the load, X2 is the start of single-tooth contact, X3 is the end of
single-tooth contact, X4 is the end of the meshing cycle, and Xp is the pitch point [8]:

X′A = d1+d2
2 sin αw,

X1 = X′A − 0.5
√

d2
a2 − d2

b2,
X3 = X1 + pb

X4 = 0.5
√

d2
a1 − d2

a2,
X2 = X4 − pb,

XP = d1
2 sin αw = X4 − d2

2 sin αw,

(21)

Consequently, we can calculate the gear efficiency using the above formulas. The
geometrical and working parameters that influence gear efficiency are as follows:

• the lubricant absolute viscosity η, dynamic viscosity µ, and kinematic viscosity v,
which remain constant;

• the geometrical parameters da1, da2, db1, db2, etc., calculated from the specified quantities;



Machines 2021, 9, 264 6 of 13

• the numbers z1 and z2 of teeth, the normal pressure angle α, the helix angle β, the gear
ratio u, the module m, the normal force F exerted on the teeth, the torque T, and the
rotation speed n, all of which are changeable parameters.

Of these parameters, it was found that (i) rotation speed n, (ii) tooth number z,
(iii) gear ratio u, (iv) helix angle β, (v) pressure angle α, (vi) module m and (vii) torque T
had significant effects on efficiency, and these seven factors were used for the subsequent
research and optimization.

3. Design of Experiments

The gear efficiency is determined via the various geometrical and working parameters
of the gears.

3.1. Screening Design

The Plackett–Burman design (PBD) is a saturated orthogonal experimental design
built with all the experimental numbers N that are multiples of four, e.g., N = 8, 12, 16, 20,
24, 32, and 36. The corresponding maximum number of variable factors is 7, 11, 15, 19, 23,
31, and 35, respectively [17].

Herein, we use the PBD method with N = 12 to evaluate seven factors: (i) tooth number
z1, (ii) gear ratio, (iii) helix angle, (iv) torque, (v) pressure angle, (vi) module, and (vii)
rotation speed. The levels of these factors are given in Table 1, and the design matrix and
experimental calculation results of the 12 experiments are given in Table 2.

Table 1. Initial levels of factors influencing gear efficiency.

Level
N Factor Unit Symbol Code −1 0 +1
1 Rotation speed rpm n x1 200 400 600
2 Gear ratio - u x2 1 2 3
3 Tooth number - z1 x3 20 25 30
4 Helix angle ◦ β x4 0 15 30
5 Normal pressure angle ◦ α x5 20 25 30
6 Module mm m x6 2 2.5 3
7 Torque N·m T x7 8 20 32

Table 2. Design matrix of Plackett–Burman design.

Coded Uncoded

N x1 x2 x3 x4 x5 x6 x7 n u z1 β α m T Efficiency

1 +1 −1 +1 −1 −1 −1 +1 600 1 30 0 20 2 32 96.2245

2 +1 +1 −1 +1 −1 −1 −1 600 3 20 30 20 2 8 96.5375

3 −1 +1 +1 −1 +1 −1 −1 200 3 30 0 30 2 8 96.9777

4 +1 −1 +1 +1 −1 +1 −1 600 1 30 30 20 3 8 95.4477

5 +1 +1 −1 +1 +1 −1 +1 600 3 20 30 30 2 32 97.0477

6 +1 +1 +1 −1 +1 +1 −1 600 3 30 0 30 3 8 94.7501

7 −1 +1 +1 +1 −1 +1 +1 200 3 30 30 20 3 32 97.5257

8 −1 −1 +1 +1 +1 −1 +1 200 1 30 30 30 2 32 96.8106

9 −1 −1 −1 +1 +1 +1 −1 200 1 20 30 30 3 8 95.4031

10 +1 −1 −1 −1 +1 +1 +1 600 1 20 0 30 3 32 95.6499

11 −1 +1 −1 −1 −1 +1 +1 200 3 20 0 20 3 32 95.7151

12 −1 −1 −1 −1 −1 −1 −1 200 1 20 0 20 2 8 93.8570
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After processing the experimental results in the Minitab software, we obtained the
following regression equation in coded units:

µ = 95.996 − 0.053x1 + 0.430x2 + 0.294x3 + 0.466x4 + 0.111x5 − 0.247x6 + 0.500x7. (22)

According to the PBD experiment, the most influential elements on gear efficiency
µ were torque T (x7), helix angle β (x4), gear ratio u (x2), and tooth number z (x3). These
parameters should be explored further using full fractional designs and more advanced
methods such as response surface methods, if necessary. In the next stage of experimenta-
tion, one should analyze the interactions between the torque T, tooth number z, gear ratio
u, and helix angle β, while setting the unimportant factors at their most economical levels.

3.2. Box–Behnken Design

Response surface methods are used when a precise description of the relationship
between the objective function and the experimental parameters is required. Their goal is
to increase the number of experimental points to create a quadratic model that describes
the objective function. Practical experience shows that the quadratic function is sufficiently
accurate to characterize the objective functions in optimization problems with narrow-
bounded regions between the experimental levels.

The methods for quadratic experimental design include a face-centered, central com-
posite design (FCCCD); Box–Wilson (rotatable central composite design—RCCD); Box–
Hunter (central composite orthogonal design—CCOD), and Box–Behnken [18]. Herein, we
use Box–Behnken, and the design matrix and experimental results are presented in Table 3.
When analyzing an experiment, we fixed the rotation speed as n = 200 rpm, the normal
pressure angle as αw = 20◦, and the module as m = 2.5 mm.

Table 3. Design matrix and experimental results.

Code Uncode Efficiency with
Lubrication

FITS RESI1
N x1 x2 x3 x4 u z1 β T

1 −1 −1 0 0 1 20 15 20 94.2958 94.3992 −0.103402

2 +1 −1 0 0 3 20 15 20 95.7969 95.8505 −0.053582

3 −1 +1 0 0 1 30 15 20 96.0755 96.0418 0.033658

4 +1 +1 0 0 3 30 15 20 97.0976 97.0141 0.083479

5 0 0 −1 −1 2 25 0 8 96.0530 96.0562 −0.003234

6 0 0 +1 −1 2 25 30 8 96.5724 96.6252 −0.052775

7 0 0 −1 +1 2 25 0 32 96.0885 96.0557 0.032851

8 0 0 +1 +1 2 25 30 32 96.7691 96.7858 −0.016690

9 −1 0 0 −1 1 25 15 8 95.3570 95.3230 0.033981

10 +1 0 0 −1 3 25 15 8 96.4847 96.4670 0.017758

11 −1 0 0 +1 1 25 15 32 95.3303 95.3352 −0.004909

12 +1 0 0 +1 3 25 15 32 96.5937 96.6148 −0.021132

13 0 −1 −1 0 2 20 0 20 95.1904 95.1627 0.027651

14 0 +1 −1 0 2 30 0 20 96.7010 96.7319 −0.030912

15 0 −1 +1 0 2 20 30 20 96.0221 95.9783 0.043762

16 0 +1 +1 0 2 30 30 20 97.2006 97.2154 −0.014802

17 −1 0 −1 0 1 25 0 20 95.1816 95.1780 0.003620

18 +1 0 −1 0 3 25 0 20 96.4469 96.4769 −0.029977

19 −1 0 +1 0 1 25 30 20 95.9517 95.9146 0.037051
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Table 3. Cont.

Code Uncode Efficiency with
Lubrication

FITS RESI1
N x1 x2 x3 x4 u z1 β T

20 +1 0 +1 0 3 25 30 20 97.0428 97.0393 0.003454

21 0 −1 0 −1 2 20 15 8 95.4491 95.4077 0.041383

22 0 +1 0 −1 2 30 15 8 96.5850 96.6221 −0.037114

23 0 −1 0 +1 2 20 15 32 95.3432 95.2990 0.044188

24 0 +1 0 +1 2 30 15 32 96.8566 96.8909 −0.034309

25 0 0 0 0 2 25 15 20 96.2855 96.2855 0.000000

26 0 0 0 0 2 25 15 20 96.2855 96.2855 0.000000

27 0 0 0 0 2 25 15 20 96.2855 96.2855 0.000000

The regression equation can be written as:

µ = 85.0307 + 2.3495u + 0.5125z1 + 0.0298β− 0.0281T − 0.2895u2−
0.0068z2

1 + 0.0007β2 − 0.0004T2 − 0.024uz1 − 0.0029uβ + 0.0028uT−
0.0011z1β + 0.0016z1T + 0.0002βT,

(23)

To test the regression fit, we used an analysis of variance (ANOVA) to calculate the
significance of regression or the R-square (99.68%) (Table 4). With ANOVA, the regression
model is assumed to fit well if the calculated value of the F-ratio of the developed model
does not exceed the standard tabulated value of the F-ratio for a desired confidence level.

Table 4. Regression analysis results based on Box–Behnken design method.

Term Coef. SE Coef. T P

Constant 85.0307 0.804593 105.682 0.000

u 2.3496 0.185391 12.674 0.000

z1 0.5125 0.052719 9.722 0.000

β 0.0298 0.011422 2.611 0.023

T −0.0281 0.014983 −1.872 0.086

u2 −0.2895 0.025040 −11.561 0.000

z1
2 −0.0068 0.001002 −6.772 0.000

β2 0.0007 0.000111 6.239 0.000

T2 −0.0004 0.000174 −2.434 0.031

uz1 −0.0240 0.005783 −4.142 0.001

uβ −0.0029 0.001928 −1.506 0.158

uT 0.0028 0.002410 1.173 0.264

z1β −0.0011 0.000386 −2.871 0.014

z1T 0.0016 0.000482 3.263 0.007

βT 0.0002 0.000161 1.394 0.189

Model summary S R-sq. R-sq. (adj.) R-sq. (pred.)

0.0578286 99.68% 99.32% 98.18%

3.3. Highest and Lowest Gear Efficiencies

From the above results (Equation (23)), we find that the highest gear efficiency is
0.975252 when the ratio is u = 2.8182, the number of teeth is z1 = 30, the helix angle is
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β = 30◦, and the torque is T = 32 N·m; the lowest gear efficiency is 0.939146 when the ratio
is u = 1, the number of teeth is z1 = 20, the helix angle is β = 0, and the torque is T = 32 N·m.

In Figure 2, the factors that most affect the efficiency of the helical gear drive are the
ratio u, the number of teeth z1, followed by the helix angle β and the torque T that have
little effect on efficiency.
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4. Results and Discussion
4.1. Lookup Tables for Gear Ratio u and Gear Efficiency η

In the process of machine design, the gear drive efficiency η is chosen based on
the gear ratio u. From the research results, lookup tables for the gear ratio u and gear
efficiency η with a varying helix angle β are given in this section for both lubricated and
non-lubricated gears (Tables 5 and 6). The initial values of the parameters are a rotation
speed of n = 200 rpm, a normal pressure angle of αw = 20◦, a module of m = 2.5 mm, and a
torque of T = 8 N·m, Figures 4 and 5.
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Table 5. Lookup table for gear ratio and efficiency (with lubrication).

β Ratio

1 1.25 1.6 2 2.5 3.15 4 5 6.3

00 94.18 94.60 94.98 95.26 95.48 95.67 95.83 95.95 96.04

80 94.24 94.66 95.03 95.31 95.53 95.72 95.88 96.00 96.09

200 94.58 94.98 95.34 95.60 95.81 95.99 96.14 96.25 96.34

300 95.06 95.42 95.75 96.00 96.19 96.35 96.49 96.59 96.68

400 95.66 95.98 96.27 96.48 96.65 96.79 96.91 97.00 97.07

Table 6. Lookup table for gear ratio and efficiency (without lubrication).

β Ratio

1 1.25 1.6 2 2.5 3.15 4 5 6.3

0◦ 92.07 92.68 93.23 93.64 93.97 94.24 94.47 94.65 94.79

8◦ 92.17 92.78 93.32 93.72 94.05 94.32 94.55 94.72 94.86

20◦ 92.69 93.26 93.78 94.17 94.48 94.74 94.95 95.12 95.25

30◦ 93.43 93.97 94.45 94.80 95.08 95.32 95.52 95.67 95.80

40◦ 94.41 94.88 95.31 95.62 95.87 96.08 96.26 96.39 96.49
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Through the design of the experiment and optimization, we can determine the optimal
set of parameters and their influences on gear efficiency. The goal of the PBD experiment
was to establish which factors have the most influence on gear efficiency. The most
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important factors would then be investigated further using response-surface methods, such
as the Box–Behnken design, to build a second-order regression equation in order to find
the optimal set of parameters for gear efficiency.

4.2. Experimental Verification

We used the measurement model and instruments in Figure 6 for the experimental
study. As illustrated, the model (1) consists of an electric motor, a torque sensor (3), gears
and a coupling. The measurement model has two pairs of gears, a torque sensor is installed
in the system’s input shaft, a variable-speed electric motor drives the entire system and
digital indicator (2). In one of the couplings, the two gears are divided into two parts for
coupling with no relative movement between the two halves when working.
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The experiments were performed with two different sets of gears, and three different
load levels for each set of gears, and six rolling bearings and two sets of meshing gears
contributed to the gear efficiency. The results of the experiments with n = 3 repetitions are
given in Tables 7 and 8 with three different columns, Figure 7.

Table 7. Experimental results for first gear set.

Torque
[N·m]

Experimental Results [N·m]
Variances

Efficiency
[%]1st 2nd 3rd Average

8 0.683 0.661 0.674 0.673 0.0001225 91.59

14 1.108 1.120 1.094 1.107 0.0001695 92.09

20 1.611 1.583 1.552 1.583 0.0008725 92.08

Table 8. Experimental results for second gear set.

Torque
[N·m]

Experimental Results [N·m]
Variances

Efficiency
[%]1st 2nd 3rd Average

8 0.679 0.652 0.695 0.675 0.0004725 91.56

14 1.093 1.109 1.117 1.106 0.0001495 92.10

20 1.533 1.602 1.587 1.574 0.0013170 92.13
C test tests the null hypothesis (H0) and all variances are equal.
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4.3. Comparison of Experimental and Theoretical Regression Model Results

The experimental results contain errors when compared to the theoretical calculation
results, and those errors are due to the following factors:

• errors in size, parallelism, perpendicularity, concentricity, and other aspects during
manufacturing;

• assembly errors when putting parts together;
• there are many calculation steps in the theoretical calculation process, and rounding

at each step generates discrepancies in the theoretical calculation results;
• the torque is generated by weights, and the torque value is inaccurate;

The experimental method entails numerous steps, the experimenter’s actions can lead
to inaccuracies in the results.

5. Conclusions

In this paper, a theory on the efficiency of helical spur gears is studied, using the
experimental planning method, PBD, to select the factors that most affect efficiency, then
by using the experimental planning method, Box–Behnken, to determine the influence of
factors on the efficiency and selecting the parameter value to achieve the highest efficiency.
According to the PBD and BBD experiments, the most influential elements on gear efficiency
µ are the ratio u, the number of teeth z1, followed by the helix angle β and the torque
T, which have little effect on efficiency (Figure 2). The present results can potentially be
an alternative to experimental verification with a scope to improve productivity, increase
flexibility and decreasing capital expenses.

According to the tables of data on lubricating gear efficiency, the theoretical findings
demonstrate a good correlation. The sliding friction losses are clearly load-dependent,
increasing with the load. However, when the load increased, the rolling friction losses
dropped marginally because of a reduction in the oil film thickness. The theoretical results
for gears engaged in the air were compatible with the data from the open-gear lookup
table, albeit with less than a 5% difference between the theoretical and experimental results
due to manufacturing flaws.

To ensure maximum efficiency, the results of this study should be used to choose (i) the
gear efficiency when designing the transmission system and machine and for (ii) selecting
the reasonable parameters, gear ratio u, number of teeth z1 and helix angle, to increase
gear efficiency.

Future studies should focus on the effect of the tooth profile on the efficiency and
influence of the working and geometrical parameters of gear transmission vibration.
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