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Abstract: Most industrial parts are instantiated from different parametric templates. The 6DoF
(6D) pose estimation tasks are challenging, since some part objects from a known template may be
unseen before. This paper releases a new and well-annotated 6D pose estimation dataset for multiple
parametric templates in stacked scenarios donated as Multi-Parametric Dataset, where a training set
(50K scenes) and a test set (2K scenes) are obtained by automatical labeling techniques. In particular,
the test set is further divided into a TEST-L dataset for learning evaluation and a TEST-G dataset for
generalization evaluation. Since the part objects from the same template are regarded as a class in
the Multi-Parametric Dataset and the number of part objects is infinite, we propose a new 6D pose
estimation network as our baseline method, Multi-templates Parametric Pose Network (MPP-Net),
aiming to have sufficient generalization ability for parametric part objects in stacked scenarios. To
our best knowledge, our dataset and method are the first to jointly achieve 6D pose estimation and
parameter values prediction for multiple parametric templates. Many experiments are conducted
on the Multi-Parametric Dataset. The mIoU and Overall Accuracy of foreground segmentation and
template segmentation on the two test datasets exceed 99.0%. Besides, MPP-Net achieves 92.9% and
90.8% on mAP under the threshold of 0.5cm for translation prediction, achieves 41.9% and 36.8%
under the threshold of 5◦ for rotation prediction, and achieves 51.0% and 6.0% under the threshold of
5% for parameter values prediction, on the two test set, respectively. The results have shown that our
dataset has exploratory value for 6D pose estimation and parameter values prediction tasks.

Keywords: automation; deep learning; pose estimation; robotic grasping

1. Introduction

Parametric techniques have been widely used in the field of industrial design [1]. The
assembly of an industrial product usually requires many parametric part objects from
different parametric shapes. A parametric shape is a parametric template described by a
set of driven parameters, which can be instantiated as many parametric part objects [2,3].
For example, many common industrial products comprise a variety of screw parts and nut
parts generated from the screw template and the nut template.

When we disassemble the recyclable part objects from products into the recycling bins,
it is common that there is a stacked scene including parametric part objects from multiple
templates. Then, the part objects from the same template are sorted into their own bins
according to their parameter values. In recent years, robots guided by visual systems are
often used to sort the part objects automatically. However, due to the varied templates, the
frequent changes of parameter values, heavy occlusion, sensor noise, etc., the accurate 6D
pose estimation and parameter values prediction in such stacked scenes are challenging.

Accurate 6D pose estimation, i.e., 3D translation and 3D rotation, is very essential
for robotic grasping tasks. Existing 6D pose estimation methods based on deep learning
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can be roughly classified into instance-level and category-level methods. Some instance-
level 6D pose estimation methods [4–12] established 2D-3D or 3D-3D correspondence to
solve the 6D pose with exact 3D models for each object. However, these methods cannot
generalize to the unseen objects from the same category which have no exact 3D models.
Category-level 6D pose estimation methods [13–17] regarded the objects from the same
category as a class and they had sufficient generalization ability to estimate the unseen
objects’ pose. In addition, they also estimated the size of the object, e.g., Refs. [13–15]
estimated a scale value as the size, which was different from the parameter values in
parametric templates. However, since a parametric template is considered as a class in
this paper and the parameter values prediction is necessary for the sorting tasks, there are
no existing category-level methods to jointly achieve 6D pose estimation and parameter
values prediction of part objects from multiple templates in stacked scenarios. Besides, the
lack of datasets for such tasks is a barrier for learning-based methods to research further.

To solve the lack of dataset, we construct a new dataset for stacked scenarios of
parametric part objects from multiple templates, donated as Multi-Parametric Dataset. As
shown in Figure 1a, we first select four templates from Zeng’s database [1], which well
represent the geometric features and rotation types. Then we sample the parameter values
to instantiate each template into different part objects, and they are randomly selected
to form a stacked scene. Through automatically labeling technique, we generate a large
RGB-D dataset (50K training set, 2K test set) with ground truth annotations of each instance
in the stacked scenes, including template label, segmentation mask, 6D pose, parameter
values, and visibility.

Figure 1. Pipeline of our dataset and baseline method: (a) Multi-Parametric Dataset, (b) Multi-templates Parametric Pose
Network (MPP-Net). The foreground segmentation, instance segmentation and template segmentation shown in figure
above are the segmentation results on the raw point cloud. To visualize 6D pose estimation and parameter values prediction,
we reconstruct the part objects’ models from the template segmentation results and the parameter values prediction results,
and the models are transformed in the scene by the 6D pose estimation results to overlap on the raw point cloud.

To solve the lack of method for stacked scenarios of parametric part objects from
multiple templates, we propose a new network with residual modules as our baseline
method, Multi-templates Parametric Pose Network, donated as MPP-Net. MPP-Net can
jointly achieve foreground segmentation, instance segmentation, template segmentation,
6D pose estimation and parameter values prediction. As shown in Figure 1b, MPP-Net
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takes unordered point cloud as the input, and first predicts the foreground points in the
scene. Then, similar to [3,18,19], we predict point-wise template, parameter values and 6D
pose. To improve the accuracy of our method, we also design the residual modules for
the prediction of translation, rotation and parameter values. In our experiments, MPP-Net
is evaluated on our Multi-Parametric Dataset for the learning and generalization abilities
evaluation, respectively.

To the best of our knowledge, compared with existing datasets and methods for 6D
pose estimation, we propose the first public RGB-D dataset and the first deep learning
network to jointly achieve 6D pose estimation and parameter values prediction. Besides,
we set the evaluation metrics and provide the benchmark results for our dataset.

In summary, the main contributions of our work are:

• We construct a new dataset with evaluation metrics for stacked scenarios of parametric
part objects from multiple templates.

• We propose a new network to provide benchmark results, which jointly achieves
foreground segmentation, instance segmentation, template segmentation, 6D pose
estimation and parameter values prediction.

2. Related Works
2.1. Dataset

Recent 6D pose estimation methods based on deep learning become a trend and
have shown remarkable performance. Dataset is one of the key factors that determines
the performance of deep learning networks. There are many public datasets used for
instance-level and category-level 6D pose estimation learning-based methods, as shown in
Table 1.

Instance-level tasks usually treat each object as a class and they need an exact 3D
model for each object. The LINEMOD dataset [20] is designed for the household cluttered
scenarios, providing about 18,000 RGB-D images with manual annotations, and it contained
15 texture-less objects. Tejani et al. [21] proposed a dataset (IC-MI dataset) designed for
the household cluttered scenarios which contain two textureless and four textured objects
with 5000 RGB-D images. The Rutgers APC dataset [22] contains 24 textured objects from
the Amazon Picking Challenge 2015 [23] with 10,000 RGB-D images, which is designed
for household cluttered scenarios. The YCB-Video dataset [24] is also constructed for
the household cluttered scenarios, which provides 133,827 frames observed in 92 videos
with manual annotations by using an RGB-D camera. The dataset contains 21 daily life
objects with varying textures and shapes chosen from the YCB dataset [25]. The StereOBJ-
1M dataset [26] provides 396,000 frames of 18 household objects, which are constructed
in 11 different environments to form cluttered scenes. Different from the dataset for
the household cluttered scenarios, the dataset for the industrial stacked scenarios has
more occlusion and higher pose variability of objects, since the objects are piled into a
bin together. The T-LESS dataset [27] is an industrial stacked scenario dataset, which
contains 30 textureless industrial objects with strong inter-object similarity and provided
47,762 frames captured by cameras. The Siléane dataset [28] is a typical dataset for the
industrial stacked scenarios, including 8 objects and providing 1922 synthetic RGB-D
images with noise by using automatic annotating technique and 679 real-world RGB-
D images. The Fraunhofer IPA dataset [29] is an extension of the Siléane dataset with
extra 2 industrial objects, providing 206,000 synthetic and 520 real-world RGB-D images.
These datasets treat an object as a class and the objects in their test set are seen in the
training phrase.

Category-level tasks target at generalization for the unseen objects without exact 3D
models. There are also many datasets for category-level tasks, which treat the objects from
the same category as a class, so their test set with unseen objects focuses on evaluation
for the generalization ability. The CAMERA dataset [13] is designed for the household
cluttered scenarios, comprising 300,000 real scenes with about 1000 synthetic objects within
six daily life categories generated by a new Context-Aware MixEd ReAlity approach. The
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REAL dataset [13] is also constructed for the household cluttered scenarios, providing 8000
RGB-D frames of 18 real-world scenes, 42 unique objects within 6 daily life categories. For
the industrial stacked scenarios, Parametric Dataset [3] is a synthetic dataset consisting
of 374,400 depth images, 416 part objects within 4 industrial templates. However, each
scene in the Parametric Dataset contains instances of a single part object only and there is
a lack of dataset for industrial stacked scenarios of parametric part objects from multiple
templates.

Table 1. Comparison of public datasets.

Dataset Modality
Multiple

Categories
in a Scene

Pose
Variability Task Occlusion Types

LineMOD [20] RGB-D Yes Limited Instance-level Cluttered Household
IC-MI [21] RGB-D Yes Limited Instance-level Cluttered Household

Rutgers APC [22] RGB-D Yes Limited Instance-level Cluttered Household
YCB-Video [24] RGB-D Yes Limited Instance-level Cluttered Household

StereOBJ-1M [26] RGB-D Yes Limited Instance-level Cluttered Household
T-LESS [27] RGB-D Yes High Instance-level Cluttered Industrial
Siléane [28] RGB-D No High Instance-level Stacked Industrial

Fraunhofer IPA [29] RGB-D No High Instance-level Stacked Industrial
CAMERA [13] RGB-D Yes Limited Category-level Cluttered Household

REAL [13] RGB-D Yes Limited Category-level Cluttered Household
Parametric Dataset [3] Depth No High Category-level Stacked Industrial

Multi-Parametric Dataset RGB-D Yes High Category-level Stacked Industrial

2.2. Instance-Level 6D Pose Estimation

Many existing methods are designed for instance-level tasks. Methods [4–9] targeted
on training their network to learn the 2D–3D correspondence, i.e., the match between the
2D keypoints on RGB image and the 3D keypoints on the 3D model. Then, the object
pose was solved by Perspective-n-Point algorithm [30]. However, due to the lack of depth
information in RGB images, these methods performance were deteriorated in the stacked
scene with heavy occlusion. Recently, He et al. [10,11] and Liu et al. [12] took RGB-D
images as the input, predefined the keypoints on the 3D model in different ways and
predicted the keypoints of the object in the scene. Then the 6D pose was solved by the least-
square fitting algorithm [31] with the 3D-3D correspondence. Although these methods
explored the way to fully leverage RGB-D information to achieve a better performance,
they cannot be generalized to the category-level unseen objects since the selections of
keypoints are based on the known 3D models.

2.3. Category-Level 6D Pose Estimation

Compared with instance-level tasks, category-level tasks are more challenging due
to the large number of shape and size variations of objects from the same category. To
address the challenges, Wang et al. [13] innovatively proposed a canonical representation,
i.e., normalized object coordinate space (NOCS), for all the objects from a category. They
directly predicted the 3D coordinates in NOCS for each pixel of the object on the RGB image.
Then the Umeyama algorithm [32] was used to solve the 6D pose and size of the objects.
However, it is difficult to predict 3D coordinates in NOCS directly from RGB images, and
the predicting deviation will make the results worsen. Tian et al. [14] explored the NOCS
method by adding a shape prior and RGB-D fusion feature to reconstruct the canonical
representation. Wang et al. [15] also adopted the NOCS method and proposed a cascaded
relation network to exploit the RGB-D fusion feature and the relation between instance and
category features. In addition, a recurrent reconstruction network is designed to refine the
canonical shape reconstruction of the objects. Chen et al. [16] consider both geometric and
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category information to produce dense-fusion features to regress 6D pose and to calculate
the size of objects by reconstruction. Chen et al. [17] proposed a network with an online
3D deformation mechanism for data augmentation to increase the generalization ability,
which directly regress the 6D pose and size of objects. However, the size predicted by these
methods is the 3D bounding box size of the object, or the ratio between the object shape in
their unified space and that in the scene. So, there are no suitable methods to predict exact
driven parameter values of parametric part objects.

3. Dataset

In this section, we will introduce our new dataset, Multi-Parametric Dataset, targeting
6D pose estimation and parameter values prediction for stacked scenarios of parametric
part objects from multiple parametric templates.

3.1. Dataset Description

Our dataset is completely generated automatically by simulation techniques. The
synthetic stacked scenes are constructed by the physics engine, and the annotations are
obtained by the virtual camera in the rendering engine. As mentioned in [29], the simulation
dataset can perform well on the real test set through the domain transfer.

We select four parametric templates in Zeng’s database [1], including TN06, TN16,
TN34, and TN42, as shown in Figure 2. They represent the symmetry types commonly
existing in industrial scenarios. For a parametric template with p parameters, we sample k
(k = 4) values for each one within a certain range. Then we instantiate it into kp different
part objects to construct a 3D model library where the models are selected to construct our
synthetic stacked scenes.

(a) TN06 (b) TN16 (c) TN34 (d) TN42

Figure 2. The selected four templates with commonly existing symmetry types in industrial scenarios:
(a) TN06: Finite; (b) TN16: Revolution with rotoreflection invariance; (c) TN34: Revolution without
rotoreflection invariance; (d) TN42: None.

The dataset is divided into a training set (50K scenes) and a test set (2K scenes).
The test set comprises TEST-L (1K scenes) where part objects’ parameter values are the
same as those of the training set and TEST-G (1K scenes) where part objects’ parameter
values are different from those of the training set. The two test datasets are set up to
evaluate the learning ability and generalization ability, respectively. The parameter values
distribution of part objects in the dataset is shown in Figure 3. The rectangular regions
represent the sampling ranges of the parameter values, and the lines represent the sampled
parameter values.

The ground truth annotations comprise template labels, segmentation masks, trans-
lation labels t ∈ R3 and rotation matrix labels R ∈ SO(3) relative to the camera frame,
visibility labels v ∈ [0, 1], and parameter values labels, for each instance in a scene.

3.2. Synthetic Data Generation

We build a 3D model of the bin with a size of 50 × 50 × 15 cm which is randomly
rotated at an angle around the axis perpendicular to the ground in each scene to increase
the variety of the dataset. Then we extract randomly one part object from the model library
n (n ∈ [35, 45]) times with the place back. So the number of objects in a scene is n and
the number of each part object in a scene may be more than one. A physical simulation
engine, i.e., Bullet, is used to simulate the free fall motion and collision of the objects to
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generate a typical stacked scene, where the labels of the bin and part objects are obtained
automatically. Repeating the above process, we can generate different synthetic scenes.
After rendering each scene through the render engine, i.e., Blender, we obtain an RGB
image, a depth image, a segmentation image, and a set of images with each individual
object for each scene. All the results are saved for the perspective and orthogonal version,
as shown in Figure 4.

Figure 3. Overview of parameter value distribution of the part objects, where θ is angle-type
parameter and others are distance-type parameters.

The RGB information of the synthetic scenes is stored in the RGB images. The depth
information of each pixel is stored in the depth image as 16 bit unsigned integer format
(unit16). The segmentation images store the instance information to its corresponding
pixels. In addition, we save a set of mask images for each individual instance without
occlusion in a scene to calculate their corresponding pixel number. Intuitively, we regard
the degree of visible surface of the ith (i = 1, 2, . . . , n) instance in the scene as its visibility vi:

vi =
Nscene

i

Ntotal
i

, i = 1, 2, . . . , n (1)

where Nscene
i is the pixel number of the ith instance in the segmentation image, and Ntotal

i
is the pixel number of the ith instance in its own mask image.

3.3. Evaluation Metrics

Our dataset is designed for the evaluation of foreground segmentation, template
segmentation, 6D pose estimation, and parameter values prediction.

For evaluation of foreground segmentation and template segmentation, we use mean
Intersection over Union (mIoU) as the evaluation metric, which is calculated by the ratio
between the intersection and the union of ground truth and predicted segmentation results.
The IoUs are calculated on each class and averaged to get mIoU as follows:

mIoU =
1

Nc + 1

Nc

∑
i=0

pii

∑Nc
j=0 pij + ∑Nc

j=0 pji − pii
(2)

where Nc is the number of the class, pij is the point which is predicted as jth class and the
ground truth is ith class.
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For evaluation of 6D pose estimation, we regard the instances as true positive, whose
error is less than m cm for translation and n◦ for rotation similar to [33,34]. Given the
rotation label R and translation label t, and the predicted rotation R̂ and translation t̂, the
error of rotation and translation eR and et can be, respectively, computed by:

eR = arccos
tr(R̂RT)− 1

2
(3)

et = ‖t̂− t‖2 (4)

Figure 4. The content of our dataset (Multi-Parametric Dataset). From up to down: (a) perspective
or orthogonal view, the left column is perspective view, and the right column is orthogonal view;
(b) RGB image; (c) depth image; (d) point cloud; (e) segmentation image; (f) mask images containing
individual object only for calculating visibility.
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In particular, for the template with finite symmetry, eR can be computed by:

eR = min
G∈G

arccos
tr(R̂GRT)− 1

2
(5)

where G ⊂ SO(3) is the set of rotation matrix G that has equivalent effect on a object. For
the template with revolution symmetry, we assume that the object is symmetric on the z
axis of the object’s local frame. So we can abstract it as a unit vector z = [0, 0, 1]T along the
z axis, and eR can be computed by:

eR = arccos
R̂z · Rz
|R̂z| · |Rz|

(6)

For evaluation of parameter values prediction, we regard the instance as true positive
whose relative error of all the parameter values are less than q%. Given the ground truth
of the sth parameter paras, and the predicted sth parameter pâras, the error of the sth
parameter eps can be computed by:

eps =
|pâras − paras|

paras
× 100% (7)

For 6D pose estimation and parameter values prediction, only the poses of objects
that are less than 60% occluded are relevant for the retrieval. The metric breaks down
the performance of a method to a single scalar value named average precision (AP) by
taking the area under the precision-recall curve. Then the mean average precision (mAP)
is adopted as the final evaluation metric computed by the average of the APs of all the
parametric templates.

4. Baseline Method

In this section, we propose a new network with residual modules, Multi-templates
Parametric Pose Network, donated as MPP-Net. This baseline method can jointly achieve
foreground segmentation, instance segmentation, template segmentation, 6D pose estima-
tion, and parameter values prediction. The architecture of our network is shown in Figure 5.
Firstly, the point-wise features of the point cloud are extracted by a backbone network, e.g.,
Pointnet [35], Pointnet++ [36], and PointSIFT [37]. The backbone network takes unordered
point cloud of the scene with size of Np × 3 as input to produce a point-wise feature
Fe with size of Np × N f . Then foreground segmentation and template segmentation are
achieved with Fe and Fef, respectively. Furthermore, the 4 branches which consume the
enhanced feature Fefc with shared multi-layer perception (MLP) and residual modules, can
jointly obtain foreground segmentation result, template segmentation result, translation
prediction, rotation prediction, parameter values prediction, and visibility prediction for
each point. Thus, the loss function of our network is the sum of each part loss with their
own weight:

L = λ f g · L f g + λtem · Ltem + λt · Lt + λR · LR + λpara · Lpara + λv · Lv (8)

where L f g, Ltem, Lt, LR, Lpara, Lv are the loss of the parts, and λ f g, λtem, λt, λR, λpara, λv
are the loss weights for different parts.

4.1. Foreground Segmentation

For stacked scenes consisting of the bin and part objects, the point cloud in the scene
need to be divided into foreground and background, since only the foreground point cloud
are what we concern. We feed the embedded feature Fe into MLPs to produce point-wise
foreground segmentation result B̂ = {[b̂i0, b̂i1]}

Np
i=1 with size of Np × 2. The elements b̂i0, b̂i1
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are the probability of the ith point belonging to background and foreground, respectively.
The loss L f g is the binary cross entropy softmax loss:

L f g = − 1
Np

Np

∑
i=1

[bi · log b̂i1 + (1− bi) · log (1− b̂i1)] (9)

where bi represents foreground segmentation label of the ith point:

bi =

{
1, if the ith point belongs to foreground
0, if the ith point belongs to background

(10)

Figure 5. Architecture of Multi-templates Parametric Pose Network (MPP-Net).

4.2. Template Segmentation

It is one of the important tasks for recycling scenarios to distinguish parts belonging
to different templates, which is also an important prerequisite for 6D pose estimation
and parameter values prediction. Therefore, we design a template segmentation branch
to identify templates to which the point belongs. Since the foreground segmentation
information might be useful for other tasks, so we concatenate Fe and B̂ to produce a
feature Fef with size of Np × (N f + 2) as the input of the template segmentation branch.
Then we feed Fef into MLPs to produce point-wise template segmentation results Ĉ =

{[ĉi1, ĉi2, . . . , ĉiNc ]}
Np
i=1 with size of Np × Nc. The element ĉij represents probability of the ith

point belonging to the jth template. In order to avoid the influence of background points
during training phrase, only the foreground points are considered when applying the cross
entropy softmax loss Ltem:

Ltem = − 1
N f g

N f g

∑
i=1

Nc

∑
j=1

cij · log ĉij (11)
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where N f g is the number of the foreground points, Nc is the number of the templates, and
cij represents the template label of the ith point:

cij =

{
1, the ith foreground point belongs to the jth template
0, the ith foreground point belongs to other templates

(12)

Due to segmentation information may be beneficial to other tasks, so we concatenate
Fef and Ĉ to produce a feature Fefc with size of Np × (N f + 2 + Nc) as the input of the
following branches.

4.3. Translation Branch

This branch is used to predict the translation of instances and achieve instance segmen-
tation. Since the local frame origin of the object is its centroid in our dataset, the translation
is the centroid coordinate in the scene. We feed Fefc into MLPs to regress the point-wise
offsets to the centroid of the instance to which each point belongs. Then the predicted
centroids with size of Np × 3 is calculated by adding the offsets to the point cloud. The
loss Lt0 considering foreground points only is L1 loss between predicted centroids and
centroid labels:

Lt0 =
1

N f g

N f g

∑
i=1
|ti − t̂i| (13)

where ti and t̂i are point-wise labels and predicted centroids of the instance to which the
ith foreground point belongs. To make the most of the information we extract from the
backbone network, we add MLPs which consume Fefc to regress the residual δt̂i between
predicted centroids and centroid labels to improve our prediction results. However, in fact,
ground truth of the residual is unknown. Similar to [38], we set the optimal target of the
residual δt̂i = |ti − t̂i| by online learning and the loss Ltres is L1 loss:

Ltres =
1

N f g

N f g

∑
i=1
|(ti − t̂i)− δt̂i| (14)

Furthermore, the total loss of the translation branch is the sum of two loss:

Lt = Lt0 + Ltres (15)

The residual module comprises two independent MLPs to jointly regress the coarse
prediction and the residual prediction to obtain the accurate prediction t̂i + δt̂i, as shown
in Figure 6.

Figure 6. The architecture of the designed residual module.
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Similar to [3,18,19], we believe that if the points belong to the same instance, then the
centroid predictions of these points will be close in the centroid space. During inference, we
cluster the points in the centroid space into D clusters, i.e., D instances, by the unsupervised
learning clustering method. Finally, the final centroid of each instance with the final size of
D× 3 is obtained by Hough voting in each cluster.

4.4. Rotation Branch

Similar to the translation branch, we feed Fefc into the residual module to regress
the point-wise rotation prediction of the instance to which each point belongs. There are
many representations for rotation, such as quaternion, rotation matrix, Euler angles, and
axis-angle. Gao et al. [39] proposed that the axis-angle representation is a better choice for
rotation, and Dong et al. [18] proved that their point-wise pose regression framework has
almost the same results by learning Euler angles and axis-angle. Therefore, Euler angles
are chosen to learn which is more intuitive for humans.

The loss function for rotation prediction adopts the pose distance proposed by Romain
Brégier et al. [40], which is calculated by the pose vectors with at most 12 dimensions in
Euclidean space for different types of object symmetry. Let the set R(R) represents the
vectors (at most 9 dimensions) of the equivalent poses of the rotation matrix R ∈ SO(3).
The distance between two rotation vectors, i.e., r1, r2, can be represented as follows:

D(R(R1),R(R2)) = min
r1∈R(R1),r2∈R(R2)

|r1 − r2| (16)

The rotation of the instances are obtained by a residual module which comprises of
two MLPs. One MLPs aims to regress point-wise Euler angles αi, βi, γi directly, and then
they are converted into the coarse predicted rotation matrix:

R̂i = Rz(γi)Ry(βi)Rx(αi) (17)

Therefore, the loss LR0 is the sum of rotation distance of different templates between
the coarse predicted rotation and the rotation labels:

LR0 =
Nc

∑
j=1

1

N j
f g

N j
f g

∑
i=1

D(R(R̂i),R(Ri)) (18)

where N j
f g is the number of the foreground points belonging to the jth template. The

other one MLPs aims to regress the residual Euler angles δαi, δβi, δγi, and then they are
converted into the accurate rotation matrix by adding them to αi, βi, γi:

R̂′i = Rz(γi + δγi)Ry(βi + δβi)Rx(αi + δαi) (19)

The loss LR′ is the sum of rotation distance of different templates between the accurate
predicted rotation and the rotation labels:

LR′ =
Nc

∑
j=1

1

N j
f g

N j
f g

∑
i=1

D(R(R̂′i),R(Ri)) (20)

Furthermore, the total loss of the rotation branch is the sum of the two loss:

LR = LR0 + LR′ (21)

During inference, the foreground point-wise rotation results with size of N f g × 3 are
divided into D clusters according to the instance segmentation result. Then, the final
predicted rotations with size of D× 3 is obtained by Hough voting in each cluster.
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4.5. Parameter Values Branch

When we recycle the parametric part objects, we need to sort them according to the
different parameter values. So we need to predict the value of each parameter for each part
object. The feature Fefc is fed into the residual module to regress k parameter values of the
instance to which each point belongs. The two loss considering only the foreground points
Lpara0 , Lparares are L1 loss and the sum is the total loss of this branch:

Lpara0 =
1

N f g

N f g

∑
i=1
|parai − pârai| (22)

Lparares =
1

N f g

N f g

∑
i=1
|(parai − pârai)− δpârai| (23)

Lpara = Lpara0 + Lparares (24)

where pârai, parai, δpârai are coarse predicted parameter vectors, ground truth parame-
ter vectors, and the residual parameter vectors with k parameter values for the instance to
which the ith foreground point belongs. Furthermore, we can obtain the accurate parameter
values pârai + δpârai. During inference, the foreground point-wise parameter values are
divided into D clusters in the parameter space according to instance segmentation result.
Then, each cluster’s points votes for the final predicted parameter values for each instance
with size of D× k.

4.6. Visibility Branch

In typical stacked scenarios, we are not interested in the instances with heavy occlusion
since they are difficult for robots to grasp. In addition, severely occluded instances only
have very limited local information, which is likely to damage the performance of the
network. So we filter out these instances by a visibility threshold Tv. Similar to other
branches, we feed Fefc into MLPs to regress the visibility result with size of Np × 1 of each
point, and divide the foreground point-wise results into D clusters. Then each cluster’s
points votes for the final predicted visibility for each instance with size of D× 1. The loss
Lv for the visibility branch is L1 loss:

Lv =
1

N f g

N f g

∑
i=1
|vi − v̂i| (25)

where vi and v̂i are the point-wise visibility labels and predicted visibility.

5. Experiments and Results
5.1. Implementation Details

We sampled Np = 16,384 points with only 3D coordinate information in each scene
by Furthest Point Sampling. PointSIFT [37] was chosen as our backbone network which is
the latest work compared with Pointnet [35] and Pointnet++ [36], and has stronger feature
extraction ability. We set N f = 128, Tv = 0.4, λ f g = λtem = 20, λt = λR = λpara = 200, and
λv = 50. We implemented our network by using Tensorflow 1.5 on a GeForce RTX2080Ti.
We optimized our network using the Adam optimizer with batch size 6 and initial learning
rate 0.001. The learning rate decayed every 200,000 steps by a factor of 0.5. The forward-
pass time of MPP-Net for a single scene was about 300 ms.

5.2. Results

For foreground segmentation and template segmentation, we evaluate the learning
and generalization ability on TEST-L and TEST-G, as shown in Table 2. Our experiment
results show that the segmentation performance of MPP-Net is good enough to meet the
segmentation requirements, and the generalization performance is almost the same as
the learning performance. Specifically, the background segmentation results on two test
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datasets exceed 99.9%. Besides, the IoU results of each template on TEST-L exceed 99.5%,
while the IoU results of each template on TEST-G exceed 98.5%. The mIoU and Overall
Accuracy on the two test datasets exceed 99.0%.

Learning and generalization ability evaluation on Multi-Parametric Dataset is shown
in Table 3. In general, if we adopt the stricter threshold, the performance of MPP-Net drops.
For translation evaluation, we select four thresholds, i.e., 0.5 cm, 1 cm, 2 cm, 5 cm. The mAP
evaluated on TEST-G will drop 2.1%, 0.7%, 0.2%, 0.2% under the 4 thresholds, compared
with mAP evaluated on TEST-L. For rotation evaluation, we select four thresholds, i.e.,
5◦, 10◦, 15◦, 20◦. The mAP evaluated on TEST-G will drop 5.1% under the threshold 5◦, and
increase 0.7%, 1.3%, 1.2% under the other 3 thresholds, compared with mAP evaluated on
TEST-L. For parameter values evaluation, we select four thresholds, i.e., 5%, 10%, 15%, 20%.
The mAP evaluated on TEST-G will drop 45.0%, 32.5%, 15.3%, 7.6% under the 4 thresholds,
compared with mAP evaluated on TEST-L.

Obviously, MPP-Net has excellent learning and generalization performance for transla-
tion prediction. However, learning and generalization performance for rotation prediction
are poor. As for the parameter values prediction, its generalization performance is much
lower than learning performance, especially if the threshold is strict. So the accurate predic-
tion for rotation and parameter value is very challenging. The visualization for predicted
results on our test set is shown in Figure 7.

Table 2. Background (BG) and foreground (FG) segmentation, and template segmentation in pre-
dicted foreground points.

Dataset

IoU (%)

mIoU (%) Overall
Accuracy (%)BG

FG

TN06 TN16 TN34 TN42

TEST-L 99.99 99.64 99.82 99.58 99.63 99.74 99.96
TEST-G 99.95 98.81 99.48 98.59 99.04 99.17 99.84

Table 3. Learning and generalization ability evaluation on the Multi-Parametric Dataset.

Translation

Dataset
mAP (%)

thres = 0.5 cm thres = 1 cm thres = 2 cm thres = 5 cm

TEST-L 92.9 99.1 99.6 99.5
TEST-G 90.8 98.4 99.4 99.3

Rotation

Dataset
mAP (%)

thres = 5◦ thres = 10◦ thres = 15◦ thres = 20◦

TEST-L 41.9 52.3 56.1 59.7
TEST-G 36.8 53.0 57.4 60.9

Parameter values

Dataset
mAP (%)

thres = 5% thres = 10% thres = 15% thres = 20%

TEST-L 51.0 76.2 86.3 91.2
TEST-G 6.0 43.7 71.0 83.6
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Figure 7. The visualization for predicted results of four scenes on our test set, (a) input point cloud;
(b) instance segmentation; (c) foreground segmentation; (d) template segmentation; (e) 6D pose
estimation and parameter values prediction. The foreground segmentation, instance segmentation,
and template segmentation shown in the figure above are the segmentation results on the raw point
cloud. To visualize 6D pose estimation and parameter values prediction, we reconstruct the part
objects’ models from the template segmentation results and the parameter values prediction results,
and the models are transformed in the scene by the 6D pose estimation results to overlap on the raw
point cloud.

5.3. Ablation Study

In addition, we explore the influence of the residual module of our network. For
translation prediction, as shown in Table 4, the residual module has little improvement due
to the performance is saturated. As the predicted results converge to the ground truth, it
becomes harder for residual learning to improve the performance of translation prediction.
For rotation prediction, as shown in Table 5, the residual module can achieve improvements
by 5.9%, 8.1%, 8.0%, 9.1% under the four thresholds for learning performance, and 2.7%,
7.8%, 8.1%, 8.8% under the four thresholds for generalization performance. Obviously, it is
a large improvement for rotation prediction. When the network cannot directly regress
an exact prediction result, the residual module can further explore the information in
the embedding features, so as to make an improvement on the performance of rotation
prediction. For parameter values prediction, as shown in Table 6, the residual module can



Machines 2021, 9, 321 15 of 18

achieve improvements by 3.5%, 2.8%, 1.9%, 1.6% under the four thresholds for learning
performance, and 1.2%, 2.4%, 1.3%, 3.0% under the four thresholds for generalization
performance. It shows that the residual module slightly improves parameter prediction
results, due to this it may be difficult to explore the parameter information from the
embedding features.

Table 4. Ablation study on translation prediction (w/o residual: regress the prediction without
residual modules).

Dataset Method
mAP (%)

thres = 0.5 cm thres = 1 cm thres = 2 cm thres = 5 cm

TEST-L w/o residual 91.1 99.1 99.7 99.5
with residual 92.9 99.1 99.6 99.5

TEST-G w/o residual 88.4 98.4 99.4 99.3
with residual 90.8 98.4 99.4 99.3

Table 5. Ablation study on rotation prediction (w/o residual: regress the prediction without resid-
ual modules).

Dataset Method
mAP (%)

thres = 5◦ thres = 10◦ thres = 15◦ thres = 20◦

TEST-L w/o residual 36.0 44.2 48.1 50.6
with residual 41.9 52.3 56.1 59.7

TEST-G w/o residual 34.1 45.2 49.3 52.1
with residual 36.8 53.0 57.4 60.9

Table 6. Ablation study on parameter values prediction (w/o residual: regress the prediction without
residual modules).

Dataset Method
mAP (%)

thres = 5% thres = 10% thres = 15% thres = 20%

TEST-L w/o residual 47.5 73.4 84.4 89.6
with residual 51.0 76.2 86.3 91.2

TEST-G w/o residual 4.8 41.3 69.7 80.6
with residual 6.0 43.7 71.0 83.6

The experiments results show that the residual modules bring great benefits for the
rotation prediction, while the performance of parameter values prediction is improved
a little.

5.4. Further Discussion

In addition to the above experiments, we explored the learning and generalization
performance of each template under more threshold settings to show more analysis and
comparison details, as shown in Figure 8. For translation prediction, when the threshold is
lower than 1cm, the AP of each template is close to 100%, which means MPP-Net shows
excellent performance on TEST-L and TEST-G. For rotation prediction, the performance of
the four templates on TEST-L and TEST-G are close. Obviously, TN06 and TN16 perform
better, while TN34 and TN42 perform worse. For parameter values prediction, the network
generalization performance is much worse than the learning performance, since the main
difference between TEST-L and TEST-G lies in parameter values. Among the four templates,
TN06 is worse than the others. In the visualization for evaluation, the prediction results of
inner diameter r, outer diameter R, and height h of the part objects from the TN06 template
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are inaccurate. Therefore, we need more research works targeting the improvements
of rotation and parameter values prediction for various parametric templates, and our
dataset, Multi-Parametric Dataset, has exploratory value for 6D pose estimation methods
in the future.

Figure 8. Further experiment results on the evaluation of translation, rotation, and parameter val-
ues prediction. The images in the left column are the results evaluated on TEST-L for learning
performance, and the images in the right column are the results evaluated on TEST-G for generaliza-
tion performance.

6. Conclusions

In this paper, we proposed a new dataset Multi-Parametric Dataset for the lack of
recycling stacked scenarios containing parametric part objects from multiple templates.
Besides, we designed the evaluation metrics for the evaluation on the Multi-Parametric
Dataset. To provide benchmark results, a new 6D pose estimation network, MPP-Net, was
designed for such stacked scenarios as a baseline method for the Multi-Parametric Dataset.
The experiment results showed that the Multi-Parametric Dataset has exploratory value for
6D pose estimation and parameter values prediction tasks. In the future, our research will
focus on improving the generalization performance of different templates on the rotation
and parameter values prediction, and exploring more templates in the field of industry.
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