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Abstract: In recent years, the overwhelming growth of solar photovoltaics (PV) energy generation as
an alternative to conventional fossil fuel generation has encouraged the search for efficient and more
reliable operation and maintenance practices, since PV systems require constant maintenance for
consistent generation efficiency. One option, explored recently, is artificial intelligence (AI) to replace
conventional maintenance strategies. The growing importance of AI in various real-life applications,
especially in solar PV applications, cannot be over-emphasized. This study presents an extensive
review of AI-based methods for fault detection and diagnosis in PV systems. It explores various fault
types that are common in PV systems and various AI-based fault detection and diagnosis techniques
proposed in the literature. Of note, there are currently fewer literatures in this area of PV application
as compared to the other areas. This is due to the fact that the topic has just recently been explored, as
evident in the oldest paper we could obtain, which dates back to only about 15 years. Furthermore,
the study outlines the role of AI in PV operation and maintenance, and the main contributions of the
reviewed literatures.

Keywords: artificial intelligence; photovoltaics; fault detection; machine learning; operation and
maintenance; renewable energy

1. Introduction

The rapid development of technology and social advancements has led to the skyrock-
eting of energy demand, which has, in turn, resulted in an increase in fossil fuel generation
of energy [1,2] This has raised concerns of high CO2 emission into the atmosphere due
to the combustion of fossil fuels [3,4], which leads to global warming, GHG emissions,
climate change, and other environmental issues [5]. Owing to the global commitment to
overcome these issues by reducing fossil fuel energy generation to the bare minimum, the
renewable industry has experienced an exponential growth and development in recent
years. Renewable energy sources, especially solar [6,7], have been increasingly adopted
for residential, commercial, and industrial applications [8–10]. The 2020 first quarter (Q1
2020) report of the National Renewable Energy Laboratory (NREL) stated that at the end of
2019, the installed solar PV capacity totaled 627 GWDC, an increase of 115 GWDC from the
previous year [11].

Solar PV systems, however, need constant maintenance in order to efficiently operate
over time. Therefore, strategies have to be in place to effectively monitor and maintain these
systems. Various conventional methods are deployed by experts to carry out preventive,
corrective, and predictive maintenance activities [12]. These methods usually equip the
PV system with ground fault detection interrupters (GFDI) and overcurrent protection
devices (OCPD). However, most of the time, they are not sufficient enough for detecting
certain faults due to low irradiance conditions, nonlinear output characteristics, PV inverter
maximum power point trackers (MPPT) or high fault impedances [13]. The need for more
adequate and intelligent strategies of detecting and diagnosing faults in PV systems has
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encouraged the adoption of AI-based methods. These methods utilize machine learning to
train models to detect and locate various faults, monitor the general health status, and help
the maintenance engineers of PV systems to rapidly expedite system recovery [13].

Over the years, AI has been utilized in PV system’s design [14], MPPT [15], power
prediction [16], as well as failure detection and protection [17–21]. The authors of [22]
detailed the key characteristics that distinguish fault detection and diagnosis methods in
PV systems. According to the authors, these characteristics include rapidity in detecting
defects, input data (climate and electrical data), and selectivity (ability to distinguish
between different faults). In addition, the study divided AI-based fault detection and
diagnosis methods into two categories. First, visual and thermal methods for detecting
discoloration, browning, surface soiling, hotspot, breaking, and delamination. Second,
electrical methods for detecting and diagnosing faulty PV modules, strings, and arrays,
such as arc faults, grounding faults, and diode faults. In [17], the adaptive neuro-fuzzy
inference framework was adopted for the development of a smart fault detection approach
for PV modules, while in [18], a dual-channel convolutional neural network model with a
feature selection structure was proposed for PV array fault diagnosis. K-NN was used by
the authors of [19] for the modeling of PV systems based on experimental data for detection,
while in [20], a wavelet-based protection strategy was presented for the detection of a series
of arc faults interfered by multicomponent noise signals in grid-tied PV systems. In [21],
a PV fault detection algorithm that integrates two bi-directional input parameters based
on the artificial neural network was presented. A novel extreme learning machine (ELM)-
based modeling method, featuring high training speed and generalization performance
was proposed in [23], using current-voltage (I-V) curves measured at different operating
conditions, for the characterization of the electrical behavior of PV modules. The authors
in [24] attempted to improve the integration of PV systems into the electrical network by
controlling the converter and inverter. This is achieved through the introduction of an
adaptive reference PI (ARPI) for the inverter aimed at enhancing the system performance
by supporting low voltage ride through (LVRT) capability and smoothing of the PV power
fluctuations during variable environmental conditions. The authors of [25] proposed a
model based on the geographic information system (GIS)-based reinforcement learning, for
the optimal planning of rooftop PV system. The model considers the uncertainty of future
scenarios across the buildings lifecycle. Another AI application is PV systems, which is
utilized in [26] for the optimal dispatch of PV inverters in unbalanced distribution systems
using reinforcement learning, while the authors of [27] used AI for the optimal design of a
phase change material integrated renewable system with on-site PV, radiative cooling, and
hybrid ventilations. In addition, reinforcement learning with the fuzzified reward approach
was used in [28] for controlling the MPPT of PV systems. Another MPPT algorithm of
the PV system, which is based on irradiance estimation and the multi-Kernel extreme
learning machine, was presented in [29] in order to reduce investment costs and improve
PV system efficiency, while in [30], the deep reinforcement learning approach was used
for MPPT control of partially shaded PV systems in smart grids. Two other literatures
on the application of AI for MPPT control are provided in [31,32]. The authors of [31]
presented a new combined ELM variable steepest gradient ascent MPPT for the PV system,
while the authors of [32] presented a novel meta-heuristic optimization algorithm based
MPPT control technique for partially shaded PV systems. As stated earlier, AI was also
utilized for PV power prediction as in the case of [33], where the short-term PV power
prediction was achieved using a hybrid improved Kmeans-GRA-Elman model based on
multivariate meteorological factors and historical power datasets. Moreover, AI was used
for a similar application in [34], where the deep learning and wavelet transform integrated
approach was used for short-term solar PV power prediction. The authors of [35] developed
an intelligent real-time power management system, where an incremental unsupervised
neural network algorithm was used to predict the output power and then detect the power
fluctuations occurrence of a grid-tied PV system. A comparative study on short-term PV
power prediction using the decomposition based ELM algorithm was presented in [36],
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while in [37], a short-term PV power forecasting model using the hybrid deep learning
approach was proposed.

This study presents an extensive review of AI-based methods and techniques of fault
detection and diagnosis reported in various literatures. The contribution of the study is in
outlining the characteristics of the reviewed AI-based methods and their effectiveness in
rapidly and efficiently detecting faults with minimal error, since the effectiveness of a fault
detection and diagnosis method depends on the following factors: Its ability to detect a
fault and pinpoint its location in the shortest possible time; its relative affordability; and
ease of use [38]. The structure of the remaining part of the paper is as follows. Section 2
discusses the various types of faults that occur in PV systems; Section 3 introduces artificial
intelligence and machine learning; Section 4 provides a review of the AI-based fault
detection and diagnosis methods proposed in various literatures; and Section 5 concludes
the present work and discusses its perspective.

2. Types of PV System Faults

Over time, PV systems experience fault occurrences that affect the system’s operating
efficiency, may cause damage to the system components, and may also lead to dangerous
fire threats and safety hazards. PV system faults are classified as physical, environmental
or electrical faults [39]. Panel faults, such as PV cell internal damages, cracks in panels,
bypass diodes, degradation faults, and broken panels are classified as physical faults [39].
Shade faults due to bird dropping, dust accumulation, cloud movement, and tree shadows
are classified as environmental faults [39]. Faults that are classified as electrical faults
include MPPT faults, open-circuit faults, ground faults, line-line faults, short-circuit faults,
arc faults, and islanding operation [39,40]. This section briefly discusses the different types
of faults peculiar to PV systems.

2.1. Shading Faults

Shading occurs when objects, such as trees, neighboring buildings, and overhead
power lines, cast shadows on PV modules [41,42]. Shading in PV arrays could be ho-
mogeneous, where there is a balanced reduced irradiation across the PV panels or non-
homogeneous, where there is an unbalanced reduced irradiation across the panels [39].

2.2. Arc Faults

A frequent high-power discharge of electricity through an air gap between conductors
causes this type of fault [43–45]. The two forms of arc faults include first, the series arc
faults that usually originate from solder separation, connection corrosion, cell damage,
rodent damage or abrasion from numerous sources. Second, parallel arc faults that result
from insulation failure in current-carrying conductors [43,44].

2.3. Line-Line Faults

A line-line fault is an unintentional short-circuit between two points with differing
voltage potentials [46–48]. These faults are more difficult to detect than other faults and
are frequently misinterpreted as short-circuit faults in grounded PV systems, since the
fault current is determined by the voltage differential between two fault spots [39]. The
most common types of line-line faults are intra string faults, which are short-circuit faults
between two locations on the same string, and cross string faults, which are short-circuit
faults between two places on separate threads [39].

2.4. Ground Faults

To protect users from a possible electric shock, it is common practice that the metallic
parts of the PV array are grounded using earth-grounding conductors (EGC) [39]. The
term “ground fault” refers to any unintentional connection between a current-carrying
conductor and an EGC that results in a current flow to the ground [45,46,49,50].
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2.5. Other Faults

This refers to any fault that cannot be categorized under any of the previously dis-
cussed faults. These types of faults include MPPT and inverter faults that mostly occur
due to inverter components failure, such as IGBTs, capacitors, and converter switch fail-
ure [51–53]; bypass diode faults resulting from a massive reverse current flow during faults,
which leads to short-circuits [54,55]; blocking diode faults, also as a result of a reverse
current flow [39]; open-circuit faults caused by items falling on PV panels, physical failure
of panel-panel cables or joints, and sloppy termination of cables, plugging, and unplugging
connectors at junction boxes [56]; faulty connections damage of connecting cables or a
wrong connection of panels [57]; battery bank failures due to abnormal charging condi-
tions [39]; and blackouts caused by natural disasters, such as a storm and lightning [58].
Most of these mentioned faults are usually due to an after effect of the other faults [39].

3. Artificial Intelligence and Machine Learning

Machine learning (ML) is a subsection of AI, which, in turn, is one of the most recent
branches of science and engineering that emerged shortly after the Second World War, in
order to attempt to understand and build intelligent entities [59]. ML thrives on extracting
meaning from a large amount of data. Therefore, ML refers to the tools and technology that
can be used to answer questions using the currently available data. Philosophy, statistics,
biology, computational complexity, information theory, artificial intelligence, cognitive
science, and control theory are some of the fields that machine learning draws on concepts
and results [60]. In recent years, numerous machine learning algorithms and applications
have been successfully created and utilized for different applications from autonomous
vehicles, where these algorithms learn to drive on public highways, detect fraudulent
transactions using data-mining programs, and are applied to information-filtering systems.
This has led to critical advancements in the foundations of this field, which are theory and
algorithms.

According to [61–63], machine learning is a branch of artificial intelligence (AI) that
allows a system to learn from experience and improve without the need to be explicitly
programmed. Its goal is to create computer programs that can access data and learn on their
own [61]. Basically, the concept of ML is the use of fed-in data and algorithm to generate
artificial knowledge, which is guided by sets of pre-defined analytical rules for pattern
recognition in collected data [60]. In simple clear terms, ML is the use of quantitative and
qualitative data to answer questions with ease and precision. Using ML, computers and
IT systems are able to perform tasks, such as discovering, extracting, and summarizing
relevant data, making predictions based on analyzed data, independently adapting to
certain developments, calculating probabilities for specific results, and optimizing processes
based on recognized patterns [61].

AI and ML are found in our everyday activities from transportation in the form of self-
driving and self-parking cars, image recognition, google searches, fraud detection in the
banking and finance sector, diagnosis and prescription in medical fields, recommendation
systems, as well as social media applications [59]. In PV system applications, ML and
AI are used in predicting solar radiation, sunshine duration, and clearness index; mean
temperature; and insolation and diffusion fractions [64]. In addition, they are used for
the sizing, configuring, modeling, simulation, and control of PV systems, detection and
diagnosis of faults, and the forecasting of the output electricity from standalone and
grid-connected PV systems [22,64–72].

3.1. Machine Learning Types
3.1.1. Supervised Learning

In this ML type, models are defined in advance and systems learn from the given input
and output pairs, i.e., the input data and desired output are labeled [61]. With enough data
knowledge, one can help the machine connect the dots with supervised learning using the
labeled sample data and correct output.
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3.1.2. Unsupervised Learning

Here, the AI learns without the aid of predefined target values, i.e., the model is
required to identify patterns in an unlabeled input data [61]. Learning and improving
by trial and error is key to unsupervised learning. Unlike supervised learning, here you
are not working with labeled data, you are not showing the machine the correct output.
You are using different algorithms to let the machine connect the dots by studying and
observing data. In unsupervised learning, the chances of the machine to find patterns or
classifications that humans can never see is very high.

3.1.3. Semi-Supervised Learning

This is a combination of supervised and unsupervised learning advantages [61].
Here, training starts with a small amount of dataset in order to allow the machine to
get familiarized with the data. In addition, the machine studies and observes the data
to expand its vocabulary/database using inductive reasoning. Another form of semi-
supervised learning is the transductive reasoning, which allows one to narrow down the
unlabeled data using unknown knowledge of collected data. Semi-supervised learning is
not very common in machine learning applications.

3.1.4. Reinforcement Learning

In this situation, the model is granted autonomy to engage with a dynamic environ-
ment that gives feedback based on rewards and punishments, i.e., the model is taught
through positive and negative interactions [61]. This method of learning differs signifi-
cantly from the other three methods. The machine iterates until the outcome is enhanced
each time, coming closer and closer to high-quality output.

3.1.5. Multitask Learning

Multitask learning helps several algorithms share their experience with each other,
thereby helping them learn concurrently rather than individually [73].

3.1.6. Ensemble Learning

Ensemble learning is a combination of two or more algorithms that form one single
algorithm [74]. Here, it has been observed that a collection of algorithms almost always
outperforms an individual algorithm when carrying out a particular task [75].

3.1.7. Neural Network Learning

Neural networks, also referred to as artificial neural networks (ANN), are derived
from the biological concept of brain cells called neurons. Therefore, to understand ANN,
one has to be familiar with how neurons work [74]. An ANN functions on three layers
(input layer, hidden layer, and output layer), in the same way as the brain neurons work
on four parts (dendrites, nucleus, soma, and axon) [74]. The input layer receives the data,
which is then processed by the hidden layer, before it is sent as a calculated output to the
output layer [76].

3.1.8. Instance-Based Learning

In this case, the algorithm learns a specific pattern and then applies it to new data [74].
This learning method becomes more sophisticated as the amount of data grows [77].

3.1.9. Evolutionary Computation

Evolutionary computation is currently a distinct branch of artificial intelligence in-
spired by nature [78,79], with smart methods based on evolutionary algorithms targeted at
solving various real life problems through natural processes involving live things [79]. It
is based on random processes, data regeneration, and data replacement within a system,
such as a personal computer or any other data center. A variety of evolutionary computa-
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tion approaches are utilized for different applications, including image processing, cloud
computing, and grid computing [79].

4. Artificial Intelligence-Based Failure Detection and Diagnosis Methods

Most of the AI-based methods used in failure detection and diagnosis adopt ML
models, such as support vector machines, wavelets, neural networks, fuzzy logics, decision
trees, graph-based semi-supervised learning (GBSSL), regression, etc. for the development
of models and algorithms that are trained to learn the relationships between the input and
output parameters of PV systems. The data are obtained from experimentally accurate
PV model measurements, and then split into training and test datasets. This section
reviews and discusses the AI-based detection and diagnosis techniques proposed in various
literatures. Figure 1 shows a distribution of the available literature on fault detection and
diagnosis methods for PV systems based on the mentioned ML models. It presents a rough
estimate of the number of conference and journal papers published to date. In general, the
amount of publications on the subject is relatively low, which is due to the fact that it is a
newly explored area of research that dates back to only about 15 years.
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Figure 1. Distribution of AI-based fault detection and diagnosis methods for PV systems found in
the available literature.

4.1. Neural Network-Based Methods

The study presents a literature review concerning the AI methods of fault detection
and diagnosis that are neural network based. Table 1 presents a summary of the different
methods presented in the subsection, pointing out the main contribution of each reviewed
literature.

In [80], a simple and effective Bayesian neural network (BNN) model for estimating
power losses in PV plants owing to soiling was devised. Four models were built based on
the Bayesian neural network (BNN) to assess the performance of two plants for dirty and
clean module conditions under standard test conditions (STCs). The loss due to the soiling
impact is shown by the difference in the STC power between the two conditions. The study
found that utilizing a BNN model rather than a polynomial model for calculating the STC
power of a PV system is more successful due to various factors that affect the polynomial
model’s performance, including the database size. Figure 2 presents a schematic diagram
of the BNNs used for calculating the STC power, consisting of an input layer (which has
solar irradiance and cell temperature as input), a single hidden layer (estimated during the
training process), and an output layer (which provides the STC power output produced
by the plant). Bayesian regularization, a process of updating the weight and bias values
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according to the Levenberg-Marquardt optimization technique, which helps in reducing
a combination of squared errors and weights, and determining the correct combination
to produce a network that generalizes well, can greatly improve the generalization ability
of neural networks [81]. BNN is basically back propagation (BP) with an additional
ridge parameter added to the objective function [80]. The study provides an important
contribution as it helps the operation and maintenance personnel in decision making
between washing cost and losses in energy production.
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In order to successfully detect and categorize PV array faults, the authors of [82]
employed a deep two-dimensional convolutional neural network (CNN) to extract features
from two-dimensional scalograms generated from the PV system data. The study took into
account five different fault scenarios as well as the use of MPPT. There are two variations
of the proposed method. First, the last layers of a pre-trained AlexNet CNN [83] are fine-
tuned to generate a six-way classifier in the first configuration. In the second configuration,
features are extracted from a specific layer of a pre-trained AlexNet and then combined
with a classical classifier. The suggested model’s performance is compared to machine
learning- and deep learning-based models. The suggested method surpasses the previous
methods in terms of detection accuracies for both noisy and noiseless data, according to
the authors. They also illustrated the need of representative and discriminative features
for categorizing errors (rather than using raw data), especially in noisy environments.
Automatic feature extraction based on deep learning has been found to be superior to
manual feature extraction. In order to better explain the proposed method, Figure 3
presents a flowchart showing the proposed PV array fault diagnosis method and existing
methods. Another neural network-based method of fault detection and diagnosis in solar
PV systems, which uses Elman neural network (ENN), is presented in [84]. The study
examines the implicit mining link between original data and fault types, develops multiple
hypothesis models, and analyzes the mean and variance of diagnostic errors to determine
which diagnostic model is optimal. The suggested fault diagnosis approach based on ENN
overcomes the problem of PV system multi-source and multi-type defect identification by
minimizing the number of sensors, which only collects PV operation data and data from
the atmospheric environment.

The main contribution of [66] is the proposition of a technique for isolating and identi-
fying faults that occur in the PV system, and its implementation into a field programmable
gate array (FPGA) with real-life application effects. The proposed approach detects and
diagnoses faults that occur in PV bypass diodes, cells, modules, and strings. It accom-
plishes this by examining a set of parameters, such as current, voltage, and the number of
peaks in the I-V characteristics that indicate normal and abnormal PV system operation.
Two separate algorithms are used in this strategy. The first algorithm isolates defects with
different combination attributes using a signal threshold approach. The second technique
uses an ANN-based approach to identify errors that have the same mix of features. The
approach is low-cost and easily adaptable to large-scale PV systems. The block diagram
of the proposed fault detection technique based on the threshold approach and ANN is
presented in Figure 4.
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A method for detecting the islanding phenomenon in the PV system was introduced
in [85]. To detect islanding actions, the method employs a multi-variable method based on
an extended neural network that combines passive and active detection modes. The method
combines the extension theory’s extension distance with a neural network’s learning,
recalling, generalization, and parallel computing capabilities. The study used an extension
neural network to distinguish between power quality interference (voltage swells, voltage
dips, power harmonics, and voltage flickers) and actual islanding operations at the grid
power end, in order for the islanding phenomenon detection system to cut off the load
correctly and promptly when a real islanding operation occurs. The detection algorithm
is created and translated using a PSIM software package based on the C language and
written in dynamic-link library (DLL) modules. The signals sent by DLL are passed back to
the controller to complete the islanding detection control. An enhanced machine learning
based approach for the detection and diagnosis of short-circuit faults, and a complete
disconnection of the string from an array in the DC side of the grid-connected PV system is
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presented in [86]. The process uses a probabilistic neural network (PNN) classifier with
one diode model (ODM) and a parameter extraction method to create a trustworthy model
of a real-world PV system. Two PNN classifiers are used in the proposed method, one is
for detecting fault occurrences and the other for diagnosing the type of fault. There are
four stages to the method: Array parameter extraction; experimental model validation;
elaboration of database of both healthy and problematic operations; and network design,
training, and testing based on the best-so-far ABC algorithm. The contribution of this
study is highlighted in the model’s ability to detect a fault, while also pinpointing its
origin. However, for the method to be effective, the high-quality database which is not
always readily available, is required to deal with classification problems. To deal with
this issue, the authors suggested having in place a trusted simulation model, which is
able to mimic the exact healthy and faulty behaviors of a PV system. Another PNN-
based intelligent method for PV system health monitoring was proposed in [56], which
can detect and categorize short- and open-circuit faults in real time, as well as locate
the faulted PV string in a grid-connected PV system. To detect and diagnose faults, the
suggested technique uses data obtained from various sensors in PV systems, such as
voltage, current, irradiation, and temperature which are used to deliver information on
fault occurrence. The PNN used in the method has four layers: The input layer (the number
of neurons in the layer represents the number of training and testing samples); the hidden
layer (whose pattern units are equal to the training set sample space); the summation
layer (the number of neurons is equal to the number of sample space classes); and the
output layer or the decision layer (containing one neuron which provides the classification
decision). Moreover, it was developed and validated in computer programs utilizing a
novel approach to PV system modeling that only requires data from the manufacturer’s
datasheets provided under normal operating cell temperature conditions (NOCT) and
STCs. The modeling approach is an improvement to the previous approaches where STC
conditions, I-V characteristics or NOCT conditions are used but never combined together.
This systematically builds a relationship between the ideality factor, thermal voltage, and
series resistance with the PV module temperature using the manufacturers’ datasheet
elements. The PV system simulation model is then used to implement and validate the
PNN-based detection model and classification method. The authors of [87] explored real
time online fault detection for PV modules under partial shading conditions. The approach
suggested in the paper is an intelligent method that uses artificial neural networks (ANN)
to estimate the output PV current and voltage under varying operating conditions utilizing
solar irradiance and cell temperature meteorological factors. Since it performs the real time
correlation of estimated performances with the measured performances under variable
conditions, the method can also be used to detect the possible anomalies in PV modules.
The model proposed is independent of the measured PV module performance which makes
its system of fault detection autonomous. Figure 5 depicts the fault detection flowchart
of the proposed method. The results of the study show that the proposed method can
accurately estimate the output and detect any decrease in output power without requiring
any complex calculations or mathematical models. However, it does necessitate that the
ANN be trained on a regular basis in order to accurately estimate the output parameters.
The approach could also be used in PV arrays or large-scale PV plants, as well as in low-cost
microcontrollers for real-time applications.
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According to the authors in [88], few data collecting systems in solar power plants
focus on intelligent reasoning of the plant’s state, despite the fact that the data of these
collecting systems offer a wide range of capabilities. To tackle this problem, the authors pre-
sented a description of a novel data acquisition system. A Bayesian belief network-based
(BNN) fault detection and diagnostic system was then built, which analyzes the acquired
data for the existence of faults and intelligent reasons for potential causes of the detected
faults. The BNN-based model uses a graphical representation of a problem in the form
of a hierarchical network, with nodes representing random variables and directed arcs
expressing the probability regarding the dependencies between these variables. Each node
has a set of states, each with a probability distribution associated with it. Each arc reflects a
conditional probability based on the preceding nodes. A node’s state could be as simple as
true or false in the most basic scenario. In a more complicated instance, the set of states
could include multiple discrete states, such as low, medium, high, and very high. The mea-
surements obtained by a BBN-based inference engine produce a change in the probability
values in the respective nodes, which impacts the connected nodes in the network and leads
to the automatic derivation of a decision on the likely reason of a failure. By developing a
framework for analyzing sensor results and translating them to a Bayesian belief network
using the Netica API, the system lays the groundwork for future advancements. The Fault
Identification for Nasa Exploration Missions and Navigation (FINEMAN) system was
developed as an integrated package with four main components: A connectivity interface
for remotely retrieving data from the plant’s data acquisition system; a preprocessor for
relevant measurement selection; a fault injector for failure testing simulation; and a Netica
implemented BBN interface engine. The research adopted in [64] was also ANN-based, and
unlike in [87], where ANN was used for the PV module under partial shading conditions,
the approach in [64] utilized AI technology for automatic MPPT fault detection and failure
type judgement. The method requires five features (solar irradiation, installed capacity,
MPPT power, MPPT voltage, and MPPT current) for machine learning. Each inverter’s
MPPT performance is gathered and modeled using a machine learning algorithm rather
than a rule-based programming approach. In addition, an inefficient MPPT is discovered
by comparing the real and expected power output. Moreover, faulty equipment is automat-
ically recognized, a knowledge-based system determines the type of failure, and an alarm
with the failure diagnostic is communicated to the user by a mobile device or email. The
field sites collect data on power production every 5 min. As a result, the entire computation
and communication process in the system takes only 5 min to complete. Using this AI
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method, the authors were able to efficiently manage hundreds of projects at the same
time, while also optimizing O&M performance with minimal work and resources. A novel
algorithm utilizing the genetic algorithm to optimize the topology of ANN was introduced
in [72]. The new algorithm is an online optimized neural network-based fault diagnostic
and repairing system, aimed at providing a solution to the problem of complexity and high
costs, associated with the other fault detection methods. The method offers the following
factors: High speed diagnostic process as it diagnoses multiple faults in parallel; can
remotely replace faulty components with good ones; can be used for modern complex
PV systems; and has the ability to partition the PV panel into sub-areas. As a result, the
diagnostic procedure is divided into two parts. The first is concerned with identifying
the failure where the proposed method diagnoses a PV system using a genetic algorithm
to optimize the topology structure of the neural network. The system is implemented in
five steps: (1) Chromosome representation, which uses binary digits for topology network
representation; (2) initial population, which is constructed from random individual sizes;
(3) cross operator, which combines the parents to obtain two offspring using the uniform
crossover; (4) mutation operation, where random mutation is used for genetic algorithm;
and (5) fitness function, which is used to minimize the error value of the neural network
representing the fitness function of the genetic algorithm. The second part of the proposed
method is solely concerned with determining the cause of the failed area by dividing the
structure of the PV system into three modules (the PV panel module, the charger module,
and the battery module). Following this step, the ANN is trained with multiple types of
faults for the three divided PV system structures and then the ANN begins the diagnostic
process. When the proposed technique’s results were compared to fuzzy-based and classic
neural network-based diagnostic systems, it was discovered that the proposed method
produced better results. The authors of [89] presented a neural network-based method
for modeling the relationship (MPP) of a shaded PV array and environmental parameters
(solar irradiance, sun angle, ambient temperature) in non-uniform settings. Similar to the
shading factor, this neural-network-based function can characterize the shadow impacts on
a solar PV array over time. As a result, the neural network model is able to eliminate the
inaccuracy produced by the shading factor’s complex calculation. In contrast to the prior
efforts that only address the uniform shadow on the PV array, this method considers the
non-uniform shadow and illumination. The proposed method’s procedure is as follows:

• The shadow ratio is defined by the solar height and solar azimuth angles, which
may be simply calculated from the time of day for a specific geographic location.
Therefore, the neural network’s inputs are the sun’s irradiation levels, angle, and
ambient temperature. The neural network’s output has the highest solar PV array
output power.

• Experimental data are acquired by taking measurements numerous times a day, for
several days, while the solar PV array is partially shaded by a nearby object. One set
of measured data is used to train the neural network, while the other is used to test it.
The neural network’s accuracy in estimating the PV array’s maximum output power
is tested using the test data.

• With low computational effort, the neural network can forecast the output power of
solar PV arrays at any solar irradiation level, at any time of day, and at varied ambient
temperatures over a long period of time.

The authors of [90] proposed a PV prognostics and health management (PHM) tech-
nique. The system was created to track the health of photovoltaic systems, measure
degeneration, and provide maintenance recommendations. It employs a system-specific
ANN model, which eliminates the need for prior knowledge of system components and
design. Two detection techniques were tested in order to better monitor the health of the
PV system. The energy loss fault detection system uses a neural network model to compare
the sum of power loss over a lengthy period of time. An alarm threshold can be set to
detect the long-term effects, such as soiling or material degradation, and alert the user to
the need for maintenance. In the event of a catastrophic system failure, such as the loss of a
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string of modules or an inverter failure, the acute fault detection technique examines the
potential of the PV system performing below model expectations and should warn the user.
When the two techniques are combined, the short- and long-term PV system defects can
be detected. The metrics of the two combined methods can also be used for pre-emptive
inspection and maintenance, as they allow the system operator to identify the PV system
failure precursors linked to failure modes.

Table 1. Summary of neural network-based methods.

Authors Reference Year Contribution

A.M. Pavan, A. Mellit, D. De Pieri,
S.A. Kalogitou [80] 2013 Evaluation of the effect of soiling in large PV plants using BNN

and regression polynomial

F. Aziz, A. Ul Haq, S. Ahmad, Y.
Mahmoud, M. Jalal, U. Ali [82] 2020 Classification of line-line fault, open-circuit fault, partial

shading, and arc fault using the convolutional neural net

G. Liu, W. Yu [84] 2018 Diagnosis of open-circuit fault, overall shading effect, and
partial shading effect using the Elman neural net

W. Chine, A. Mellit, V. Lughi, A.
Malek, G. Sulligoi, A.M Pavan [66] 2016 Identification of eight different faults using ANN

K.H. Chao, C.L Chiu, C.J. Li, Y.C.
Chang [85] 2011 Islanding phenomenon detection in PV systems using ANN

E. Garoudja, A. Chouder, K. Kara,
S. Silvestre [86] 2017 Detection and diagnosis of faults in the DC side of PV systems

using the probabilistic neural network

M.N. Akram, S. Lotfifard [56] 2015 Modeling and health monitoring of the DC side of PV systems
using the probabilistic neural network

H. Mekki, A. Mellit, H. Salhi [87] 2016 ANN based modeling and fault detection of partially shaded
PV modules

A. Coleman, J. Zalewski [88] 2011 Intelligent fault detection and diagnosis in the PV system using
the Bayesian belief network

M. Chang, C. Hsu [64] 2019 PV O&M optimization using ANN

A. H. Mohamed, A.M. Nassar [72] 2015 PV system fault diagnosis using the genetic
algorithm-optimized ANN

D.D. Nguyen, B. Lehman, S.
Kamarthi [89] 2009 Performance evaluation and shadow effects in PV arrays using

ANN

D. Riley, J. Johnson [90] 2012 Prognostics and health management of PV systems using ANN

4.2. Regression-Based Methods

In this subsection, PV system fault detection methods that are regression-based are
reviewed. Table 2 summarizes these methods, highlighting their main contributions.

For the detection of abnormal situations in the PV system, a novel approach has been
employed in [91] based on regression and SVM, to compute the ideal power generation,
which takes into account all of the three categories of failures in PV systems, namely failures
of PV modules, inverters, and other components. Furthermore, the proposed method
makes use of variables that are already present in a small-scale PV system, eliminating the
need for the installation of extra expensive sensory equipment. Power, voltage, and current
are collected from the power conversion system (PCS). Solar irradiance on the surface of
the PV panels is measured with a pyranometer, and ambient and PV cell temperatures are
monitored with a thermometer. As a result, the suggested PV abnormal condition detection
system can be efficiently used in a small-scale PV system or as an early warning system
for the PV operator/owner to undertake further system inspections. Merged regression
and support vector machine (SVM) models were used to create the PV abnormal condition
detection system. The regression model is used to calculate the expected power generation
for each solar irradiation, which is then fed into the SVM model. The SVM model, on the
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other hand, uses numerous variables, including the expected power generation, which
is generated from the regression model to determine the abnormal condition of the PV
system. Since the data used as the model’s input variable is acquired from the PCS, the
proposed model does not require the installation of extra measurement devices and can be
constructed at minimal cost. The detection system’s accuracy is also increased by taking
into account the daylight time and interactions between the independent variables, as well
as using the multi-stage k-fold cross-validation technique. The proposed detection system
is evaluated using real data from a PV site, and the findings show that it can successfully
discern between normal and abnormal PV system conditions using basic measures. The
authors in [92] proposed a condition monitoring technique based on an online regression
PV array performance model, in which PV array production, POA irradiance, and module
temperature/maximum power (MPP) measurements are collected during the system’s
initial learning phase and used to automatically parameterize the system online using
regression modeling. After the model has been automatically parameterized and optimized
using the regression modeling methods, the condition monitoring system enters the normal
operating phase, in which the performance model is used to anticipate the PV array’s power
production. The authors claimed that using projected and measured PV array output
power values, the condition monitoring system based on the Sandia array performance
model (SAPM) [92,93], could detect power losses in the PV array of larger than 5%. When
compared to the existing model-based condition monitoring systems, the suggested method
is unique in that it can take advantage of the I-V scanning capabilities of a new generation
of commercial PV inverters [92], according to the authors. Using the real MPP collected
from the I-V curve, as well as the ambient condition sensors, the system can generate an
accurate performance model of the PV array in question during field operation. The authors’
proposed method has the following advantages: Simple commissioning and operation
requirements; potential applicability to a wide range of PV system configurations; and
it does not require modeling and testing of the PV array prior to installation. It does,
however, have an initial commissioning phase where ambient conditions and array MPP
measurements are used for the automatic commissioning of the PV array. Figure 6 presents
the condition monitoring systems’ learning or commissioning phase.
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Unlike Reference [92], which only used a regression model, Reference [94] used a
combination of linear regression and artificial neural networks, as well as solar irradiation,
ambient temperature, and maximum power point (MPP) characteristic variables of PV
modules obtained from I-V tracers at the PV installation site, to predict the performance
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of soiled PV modules. In the study, two methods (linear regression and neural networks)
were used in modeling the output of soiled PV panels. In the first method, multiple linear
models were created based on the last cleaning cycle time stamp, thus predicting the panel’s
output as a function of solar irradiance. In the second method, the neural network, date,
time, and irradiance, and sometimes, the temperature data were utilized and information
was inputted to predict the output of the solar panel. In both methods, PV panel generation
predictions were used to have high accuracies. Another regression based fault detection
model is presented in [95]. The study proposed a smart algorithm for the diagnosis and
prognosis of reversed polarity fault in PV generators, utilizing a hybrid optimization of a
support vector regression (SVR) technique by a k-NN regression tool (k-NNR). The main
contribution of the study included the development of a smart prognosis algorithm that
detects, locates, and characterizes a reversed polarity fault at the cell, bypass, and string
levels. For data processing in a linear space, the SVR requires a kernel function in order for
the data to be transformed in a new greater dimension space. To overcome the SVR output
indetermination, the study utilizes k-NNR for predicting the approximate value of the SVR
undetermined output. The method was validated using 50 samples of a typical generator
and the results showed homogeneous and reliable predictions.

Table 2. Summary of regression-based methods.

Authors Reference Year Contribution

F.H. Jufri, S. Oh, J. Jung [91] 2019
Detection of abnormal conditions in PV
systems using the combined regression

and support vector machine

S. Spataru, D. Sera, T.
Kerekes, R. Teodorescu [92] 2013 Condition monitoring of PV array based

on the online regression model

S. Shapsough, R.
Dhaouadi, I. Zualkernan [94] 2018

Predicting the performance of soiled PV
modules using the linear regression and

BP neural network

W. Rezgui, N.K. Mouss,
M.D. Mouss, M.

Benbouzhid
[95] 2014

Reversed polarity fault prognosis in PV
generators using the regression

algorithm

4.3. Decision Tree-Based Methods

The study also presents a review of the AI methods of fault detection and diagnosis
that are decision tree-based. Table 3 shows a summary of the methods presented in the
subsection, with an outline of the main contribution of each literature.

A number of fault detection and diagnosis methods that are decision tree-based
are provided in [67,96,97]. In [67], failure detection routines (FDRs), that use obtained
datasets of grid-tied PV systems to accurately obtain and classify exhibited faults, were
created. The FDRs are made of two stages, namely the fault detection stage, which uses a
comparative algorithm for the detection of anomalies between the measured and simulated
electrical measurements of a PV system; and a statistical algorithm for the identification of
outliers, discrepancies, and normal system operation limits. The failure classification stage
is otherwise called the decision stage, where developed logic and decision trees are used
to perform the classification process. The failure detection stage included a comparing
algorithm that discovered disparities between the measured and simulated electrical
measurements on the dc side, which were obtained using empirical parametric models
for each point. Significant variations between the measured and simulated parameters,
indicating a noteworthy performance gap, were classified as failures. The obtained incident
global irradiance at the POA, PV system specs, and module temperature were required
as inputs for the detection algorithm utilized in this study. Another comparative method
utilized in the study is three-sigma limit method. When typical operation limitations set by
defined criteria were exceeded, failures were recognized using this approach. The upper
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and lower control limits in statistical quality control charts were set using three-sigma limits
(a statistical calculation that refers to data within three standard deviations of the average),
which are commonly used to set the upper and lower control limits in statistical quality
control charts. To establish and display the researched operation and boundaries, control
charts were used. The typical operation limitations of the PV monitoring system were
calculated by dividing the measured and simulated electrical data by the ratio. According
to the PV production model, the ratio was used to determine how close the measurements
were to their calculated values. The closer the ratio was to 1, the closer the measured
parameters were to the modelled values. Since the system performance is affected by
sunlight levels, an extra step is performed. To decrease the high bias errors occurring at
low irradiance levels, the datasets were filtered at global irradiance levels >50 W/m2. In
the statistical failure detection approach, the local outlier factor (LOF) algorithm was used
to find the density-based local outliers. With LOF, each point’s local density is compared
to its k-nearest neighbors (k-NN), and if the point’s density is significantly lower than its
neighbors, then the point is in a sparser region than its neighbors, indicating that it is an
outlier. Moreover, outlier testing was done using the Bonferroni outlier test algorithm.
Based on the linear regression model of the observed and simulated dc power of the
array, this program returns the Bonferroni p-value for the most extreme observation. In
addition, the seasonal hybrid extreme studentized deviates (S-H-ESD) algorithm was used
to find anomalies in a time series dataset that follows an approximately normal distribution.
The S-H-ESD technique is an extension of the generalized extreme studentized deviates
(ESD) algorithm that uses the time series decomposition and robust statistical measures
in conjunction with ESD to detect both global and local anomalies [98]. For the detected
failure classification, logic and decision trees were developed. In addition, the decision
trees were trained using continuous samples divided in a 70:30% train to test the set ratio
utilizing the acquired datasets that included the feature patterns seen during normal and
faulty operations. Moreover, they were produced using supervised learning procedures.
The accuracy of the proposed FDRs for fault detection and classification was demonstrated
in the obtained results for three fault types (inverter failure, bypass diode faults, and partial
shading fault), which showed that accuracy rates of 98.7, 95.3, and 96.6% were recorded
for inverter failure, bypass fault, and partial shading, respectively. The authors in [96]
presented a decision tree-based fault detection and classification for the PV array with an
easy and straightforward model training process. Under the creation of a decision tree
model for an experimental PV system in both normal and faulty working situations, the
authors employed the PV array voltage, current, operating temperature, and irradiance as
attributes for the training and test sets. The collected data and pre-processed training set are
chosen at random from the experimental data and utilized to create the decision tree model
using the WEKA software [99], after which the model is evaluated and validated on unseen
real data. Fast training and classification phases, explicit interpretation, and straightforward
implementation as an algorithm are all advantages of the proposed decision tree paradigm.
Another benefit of the model is that it can detect problems in real time, with detection
accuracy ranging from 93.56 to 99.98% and classification accuracy ranging from 85.43 to
99.8%, depending on the model’s size. The authors of [97] proposed a defect detection
and diagnostic technique for grid connected PV systems (GCPVS) based on the C4.5
decision tree algorithm (which is one of the most popular machine learning algorithms
for classification problems [97]), in which a non-parametric model is utilized to forecast
the state of the GCPVS through a learning task. Three numerical attributes (ambient
temperature, irradiation, and power ratio) which are calculated from the measured and
estimated power, as well as two targets (the first of which is either a healthy or a faulty
state for detection, and the second of which contains four classes of labels named free fault,
string fault, short-circuit fault or line-line fault for diagnosis) are chosen to form the final
used data. The dataset was divided into two halves, with 66% utilized for learning and
34% for testing. Then, over the course of 5 days, additional data were collected to measure
the robustness, effectiveness, and efficiency of both models. The dataset is required for the
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learning process in order to construct the decision tree. As a result, an acquisition system is
developed to be able to record and store data, such as climatic variation, as well as electrical
variables, such as current, voltage, and power at the MPP. Three attributes are chosen,
including temperature ambient, irradiation, and the power ratio, which is calculated from
the estimated power by the Sandia model and the measured power of GCPVS production.
The Sandia model is an empirical relationship that is used to estimate the generated power
from a system in a healthy state at MPP using STC data. Since this model has unknown
parameters, the flower pollination algorithm (FPA) is used to find the optimal parameter
values that correspond to the smallest root mean square error between the estimated Sandia
output and the measured power. As a result of the high correlation between the power
ratio and the system state, a nominal property called target is constructed as a class label
in each instance data in order to accurately forecast these errors. Two major approaches
lead to the construction phase. To begin, a splitting criteria is used to select the best split
attribute. Thereafter, the tree grows in length as this technique is repeated iteratively in
order to categorize all of the instances or to verify one of the stopping criteria. Then, once
the tree model has been obtained, a pruning process is carried out to remove the unneeded
sub-trees in order to minimize the overfitting phenomena, which can result in a reduction
in model complexity due to the reduced tree size. According to the test findings, the
models have a great prediction performance in the detection with high accuracy, while the
diagnostic model has an accuracy of 99.8%.

Table 3. Summary of decision tree-based methods.

Authors Reference Year Contribution

A. Livera, G. Makrides, J.
Sutterlueti, G.E.

Georghiou
[67] 2017

Advanced failure detection algorithm
and PV performance outlier decision

classification

Y. Zhao, L. Yang, B.
Lehman, J.F. De Palma, J.

Mosesian, R. Lyons
[96] 2012

Detection and classification of PV array
faults based on the decision tree

algorithm

R. Benkercha, S.
Moulahoum [97] 2018

C4.5 decision tree algorithm-based fault
detection and diagnosis for
grid-connected PV systems

4.4. Support Vector Machine-Based Methods

The methods reviewed in this subsection are support vector machine-based. Table 4
presents a summary of these methods as well as their contributions.

The authors of [100,101] suggested a system based on support vector machines (SVM)
and k-NN tools with the goal of building a fault detection and diagnosis algorithm for
PV generators. The algorithms are smart, according to the authors, since they are a
hybridization of the SVM approach and the k-NN tool, which are used to improve the
classification rate against observations on the classifier itself. The systems’ originality is
in the construction of a smart classifier based on collected data from the control system,
as well as the fault identification and localization of short-circuits in a cell, bypass, and
blocking diodes. First, the proposed method utilizes the SVM algorithm, which is a two-
class classification technique that seeks hyper-plane separating positive examples from
negative ones by ensuring that there is a maximum margin between the nearest positive
and negative examples. This ensures that the idea may be applied to new situations, as
new examples may not be as similar to those used to determine the hyperplane, but may be
on either side of the border. The selection of support vectors, which reflect the discriminate
vectors by which the hyper-plane is determined, is a benefit of this method. Only those
supporting vectors are utilized to assign a new case, and the examples used in the hyper-
plane search are no longer required. Second, k-NN which is a simple and straightforward
approach, and does not require learning is utilized to compare new examples of unknown
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class to old examples in its database. Then, for this new example, k-NN chooses a majority
class among its nearest neighbors. In summary, the method uses the activation function
of the SVM of Gaussian type and the Euclidean distance between the gravity centers
of database observations of the k-NN method. The obtained simulation results, using
the proposed smart algorithm in both literatures, exhibit a high classification rate and
low error rate. However, the algorithms take a longer processing period due to the
mathematical computations. Therefore, future works should focus on improving this aspect
of the algorithms. The authors of [48] proposed an algorithm to improve the detection
accuracy of line-to-line faults in PV arrays that occur under a wide range of situations,
such as low irradiance conditions, high impedance faults, and low mismatch faults. The
algorithm is based on pattern recognition (multi-resolution signal decomposition (MSD))
and machine learning techniques (two-stage SVM classifier). It takes advantage of the MSD
technique for the extraction of the feature space of line-to-line faults, while the SVM part
is essentially for decision making. The system does not require numerous sensors, since
it uses measurements of the overall voltage and current of the PV array, thus making it
an economical and fast option. It detects line-to-line defects quickly and accurately, and
it can be combined with fault location techniques to solve faults quickly. The MSD stage
performs digital signal processing (DSP), allowing for the simultaneous time and frequency
analysis of a signal, such as the analysis of both stationary and transient components of
power quality disturbance. The SVM stage, on the other hand, is carried out to improve
accuracy. The two-stage SVM is a binary classifier, which requires training utilizing a
minimal amount of historic data from the tested PV system. The authors suggest that the
proposed method is not limited to line-line faults only and could be used for the detection
of other PV system faults. A method for detecting problems and monitoring the state of
PV modules using a two-class data fusion method is introduced in [102]. The approach
was created by combining monitoring data from sensor nodes in wireless sensor networks
(WSNs) at a monitoring center with a new semi-supervised support vector machine (SVM)
classifier, devised and trained using the monitoring center’s existing sun irradiance big
data. The monitoring center was created in order to access various monitoring data from
various PV power stations, and multiple applications were created to use the envisioned
system in various platforms. In this paper, a wireless monitoring subnetwork was created
to retrieve crucial data from PV modules in power stations, such as the current, voltage,
and temperature. The monitoring data received from each sensor was fused by a sink
node with sunlight intensity information, and the fusion results were provided to the
monitoring center over Internet networks. The data received from the sink node were
parsed using the data access interface, and the data from the parsing process was double-
checked using the outlier detection technique. The Cloud management module, which
was also in charge of data security transmission between the Cloud and the applications,
retained the regular data in the private Cloud. The authors built a semi-supervised SVM
classifier using historical monitoring sunlight intensity data, which was employed in
the outlier identification and solar power forecast algorithms. An outlier identification
technique is designed using the prediction model provided by the trained classifier to
identify and locate PV module faults by computing the average value of the problematic
data. Furthermore, the authors employed a novel application of the PGKA technique
to ensure the security of data transmission between the Cloud and apps. The fact that
this approach does not require third-party certification to maintain file encryption and
encryption keys is an apparent benefit. Despite the fact that this research focuses on crucial
PV power station challenges, there is still a long way to go in terms of gathering PV power
station data and intelligence properly.
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Table 4. Summary of SVM-based methods.

Authors Reference Year Contribution

W. Rezgui, H. Mouss, K.
Mouss, M.D. Mouss, M.

Benbouzid
[100] 2014 Short-circuit fault diagnosis in PV generators

using a smart SVM algorithm

W. Rezgui, N.K. Mouss
L.H. Mouss, M.D. Mouss,
Y. Amirat, M. Benbouzid

[101] 2014
Short-circuit and impedance faults smart

diagnosis in PV generators using the k-NN
optimized SVM classifier

T. Hu, M. Zheng, J. Tan, L.
Zhu, W. Miao [102] 2015

PV system intelligent monitoring based on
solar irradiance big data and wireless sensor

networks

4.5. Neuro-Fuzzy-Based Methods

This subsection presents a review of AI methods of fault detection and diagnosis that
are based on the neuro-fuzzy technique. Table 5 presents a summary of the methods as
well as their contributions.

The authors of [103] proposed an intelligent system for automatic fault detection in
PV fields based on the Takagi-Sugeno-Kahn fuzzy rule-based system (TSK-FRBS) [104].
The method is based on the analysis of recorded voltages and currents collected from a
PV plant’s inverter. The TSK-FRBS is a power estimator module that estimates the PV
field’s immediate power production in normal operating conditions (using temperature
and irradiance input signals to assess the DC power that the PV plant should produce) and
compares it to the real power to check for differences. If there is a large disparity between
the two power sources, an alarm signal is issued. In this circumstance, the TSK-FRBS has
two advantages. First, it can describe complicated system behaviors without requiring
the use of a mathematical model. Second, it is able to deal with noisy and vague data.
The schematics of the proposed intelligent system, which is connected to a PV system is
shown in Figure 7. It consists of the data acquisition module, the detection module, and the
diagnosis module, in a multi-array inverter PV plant. The acquisition module measures the
temperature and solar irradiance on the PV plant in real time and extracts the DC current
and voltage observed on the respective array from each MPPT. Sensors mounted on the PV
field can be used to measure temperature and solar irradiation. They can also be obtained
via a remote database linked to a weather station. Then, the acquisition module feeds these
measured data to the detection module. The detection module estimates the DC power that
each array should output if no fault occurs using these data from the acquisition module.
This module compares the estimated and measured powers and generates an alert signal in
correspondence with the arrays that provided a lower power than the estimated one; if the
difference exceeds a threshold. Finally, the alert signals are sent to the diagnosis module,
which can automatically provide information on the type of fault that occurred.
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The authors of [105] noted that numerous literatures have proposed methods of
shadow detection and the reconfiguration of an array. In addition, most of these methods
use the voltage, current, and power information to achieve this. The authors saw that
monitoring these factors was time consuming and tiresome. Therefore, they presented a
novel and effective method of shadow detection for the reconfiguration process, which
will help increase the energy production of PV arrays, based on the fuzzy logic and
computer vision. The method detects the edge of the object region on the panel from
images taken with a camera. Using the background subtraction and object detection
method, it then converts the background and foreground image into a grey image format.
Object edge detection is performed after the determination of the updated mechanism,
which is based on background subtraction and illumination variability. First, dilation and
erosion operations are applied to the binary mask in order to determine the object region
edge. The image’s noise is reduced by these techniques. Following that step, using the
Canny edge detection approach, the edges of the objects on the binary image are detected.
The final stage in the determination of the subject borders on an image is to use the search
and draw contour procedures to determine the related object regions. A relevant pixel
region is created for each region whose side information is identified. Finally, the proposed
method uses a fuzzy decision-making mechanism to classify the object region as a shadow
region utilizing brightness and color distortion values of the object as input parameters.
When employed as an input parameter for the reconfiguration operations, the proposed
method has a success rate of 98% and increases energy usage performance by roughly
10–15%. The arc defect detection technique described in [106] has a minimal computational
requirement, and can function with most of the conventional analog-digital converters
(ADC) found in microcontrollers, making it useful in PV applications. When using an
inverter rather than a solo device, the algorithm produces better results. This algorithm’s
integration is also a cost-effective way to detect arc faults and improve the PV system
long-term safety. The short- and long-term measurement results are promising, but further
long-term experiments are needed to fine-tune the device for phenomena that have yet
to be identified. In the proposed method, the detection algorithm uses three indicators,
namely frequency analysis, peak detection, and observation of the operating point, as
parameters for fault detection. When an arc fault occurs, the indicators display a particular
behavior. However, it is not always the same. The signal energy increases slowly at times
and quickly at others. When an arc fault occurs in a small plant, the trip is apparent, but not
in a large plant. Due to the haziness of the situation, the authors employed fuzzy logic to
detect an arc defect. Furthermore, fuzzy logic makes it easier to incorporate the experiences
of experts who are unfamiliar with the algorithm. Four sub-detectors, which are followed
by the master fuzzy arc fault detector (MFAFD), are created to keep an overview of rules
and input variables. Theses sub-detectors are the peak evaluator sub-detector (PESD),
which analyzes all of the peaks and delivers a mass output proportional to the probability,
indicating that this peak is from an arc fault; window near sub-detector (WNSD), which
analyzes the change signal energy over a short timeframe; window wide sub-detector
(WWSD), which analyzes the long-term signal energy and can be used when there is no
abrupt signal energy growth; and power analyzer sub-detector (PASD), which supervises
the power change. Outputs of the four sub-detectors serve as input for the MFAFD. The
MFAFD outputs a number between 0 and 1, which represents the mass for the arc fault
probability. An arc fault is detected if this probability exceeds a predefined threshold. The
authors of [107] presented a method for detecting increases in series resistance using a
fuzzy classifier that can distinguish between the increasing series losses and partial shadow
situations for resistances greater than 400 W/m2. As shown in Figure 8, an optional
shadow detection algorithm acting before the increased series losses detection system,
which could improve the detection accuracy of the system, is also implemented in the
diagnostic system. This strategy is especially significant, since the increased series losses
and partial shadow circumstances are difficult to discern, as they diminish a PV system’s
peak output and fill factor. Rather than the controlled laboratory circumstances, the study
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focuses on estimating the increased series resistance in the field. The method has been
tested using experimental measurements. In addition, it has shown good detection rates
across a wide range of irradiance levels, as well as in the presence of diverse sizes and
patterns of partial shadows. Moreover, the authors showed that a dedicated partial shadow
detection algorithm, implemented in the diagnostic system and functioning prior to the
higher series losses detection method, improves the overall system’s detection accuracy.
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Under low irradiance conditions, the DC side short-circuit faults in PV arrays con-
sisting of multiple PV panels connected in a series/parallel configuration are nearly unde-
tectable, especially when the MPPT algorithm is in use. In addition, if they go undetected,
these faults can significantly reduce the output energy of PV systems, damage the pan-
els, and potentially cause fire hazards. To avoid this, the authors of [108] present a fault
detection scheme based on a pattern recognition approach that uses a multi-resolution
signal decomposition technique to extract the necessary features, which is then used by
a fuzzy inference system to assess whether a defect has occurred. PV array output volts
and currents, as well as solar irradiation, are the system’s inputs. The multi-resolution
signal decomposition technique is used to extract four unique features depending on the
above inputs. Following that step, the retrieved characteristics are supplied into the fuzzy
inference system, which generates a scalar number based on carefully built membership
functions and the associated rule base. Decisions are based on these results. The amount of
this output determines whether a line-to-line, line-to-ground or none-of-the-above fault
has occurred. In simulation and experiment-based case studies, the performance of the
proposed method is demonstrated. Defect identification becomes increasingly difficult
when the percentage of fault impedance or mismatch declines. The program also revealed
one unintentional operation for a typical case, in which the irradiance had changed drasti-
cally within a short period of time, which is unusual in real-world systems. The promising
performance of the proposed algorithm is supported by the experimental results. Line-
to-line and line-to-ground faults are usually detected using this method. Open-circuits
and hot-spot heating, for example, are two further types of PV array faults. As a result,
the applicable algorithms for a more exact classification of additional PV concerns could
be applied in parallel with or later phases of the detection system. Fuzzy logic-based
algorithms are presented in [109,110] to detect the malfunctioning PV modules and partial
shadowing circumstances that influence the DC-side of grid-connected PV systems. The
authors’ algorithm is made up of six layers that work in a sequential order. Input param-
eters make up the first layer (solar irradiance and module temperature). The theoretical
performance analysis of the grid-connected PV system is generated using the LabVIEW
virtual instrumentation program in the second layer. The power and voltage ratios are
determined in the third layer, and high and low detection limits are set in the fourth layer,
which is utilized to apply the 3rd-order polynomial regression model to the power and
voltage ratios. The fifth layer contains the input parameters of the examined grid-connected
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PV systems, as well as the 3rd-order polynomial detection restrictions. If the measured
voltage ratio vs. the measured power ratio is outside of the detection limits, the data will
be processed by the sixth layer (which is the last layer), which contains the fuzzy logic
categorization system. The suggested method’s innovation is proved by the fact that it pro-
vides a simple, dependable, and fast fuzzy logic classification system that can be employed
with a variety of grid-connected PV systems. The algorithm is also unique in that it is
based on fluctuations in the voltage and power of the grid-connected PV system. Few fault
diagnosis techniques are capable of being implemented on integrated circuits, according to
Sufyan Samara and Emad Natsheh’s study [65], and these procedures require expensive
and complicated hardware. The authors introduced a unique effective and implementable
defect diagnosis approach based on the AI nonlinear autoregressive exogenous NARX
neural network and Sugeno fuzzy inference to try to solve this problem. The program
employs the Sugeno fuzzy network to isolate and classify errors in PV systems. The NARX
network is used to estimate the PV system’s maximum output power based on the real-time
measured output and surrounding conditions, which is then used by the fuzzy inference
algorithm to detect and categorize errors that may develop in the PV system. The algorithm
has been demonstrated to work on a low-cost microcontroller. The suggested algorithm
will be able to detect a variety of flaws in the PV system, including open- and short-circuit
degradation, faulty MPPT, and PS issues. Furthermore, the proposed algorithm can capture
non-linear patterns between predictors, such as radiation and temperature, as well as other
non-linear correlations of patterns between predictors, to calculate the precise moment of
maximum power for the PV system. The actual sensed PV system output power, antici-
pated PV system output power, and sensed surrounding conditions are all required for
fuzzy inference. Using an AI NARX-based neural network, the PV system’s output power
is projected. The authors concluded that the ability of the proposed method to efficiently
diagnose several PV system faults is an important step in achieving a complete system that
can diagnose large PV system faults.

Table 5. Summary of neuro-fuzzy-based methods.

Authors Reference Year Contribution

P. Ducange, M. Fazzolari,
B. Lazzerini, F. Marcelloni [103] 2011 Intelligent system for the detection of PV

system faults based on TSK-FRBS

K. Karakose, K. Firildak [105] 2014 Shadow detection system based on fuzzy
logic using the obtained PV array images

B. Grichting, J. Goette,
and M. Jacomet [106] 2015 Arc fault detection algorithm in PV systems

based on the cascaded fuzzy logic

S. Spataru, D. Sera, T.
Kerekes, R. Teodorescu [107] 2012 Increased series losses detection in the PV

array based on fuzzy inference systems

Z. Yi, A.H. Etemadi [108] 2017
Detection of PV system faults based on the
multi-resolution signal decomposition and

fuzzy inference system

M. Dhimish, V. Holmes,
B. Mehrdadi, M. Dales [109] 2017 PV system diagnostic technique based on the

six layer detection algorithm

M. Dhimish, V. Holmes,
B. Mehrdadi, M. Dales, P.

Mather
[110] 2017

Fault detection in PV systems based on the
theoretical curves modeling and fuzzy

classification system

S. Samara, E. Natsheh [65] 2020 Using the NARX network and linguistic fuzzy
rule-based system to diagnose PV panel faults

4.6. Wavelet-Based Methods

In this subsection, the wavelet-based methods are reviewed. A summary of the
method contributions presented in the literature is shown in Table 6.
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The authors in [111] proposed a system that was designed and tested at various load
currents, DC source voltages, and arc lengths to analyze the impact of each parameter on
the DC arc, with the goal of providing a thorough understanding of arc behavior that could
occur in DC networks. Based on the findings, a detection technique that uses both the
time domain and time frequency domain characteristics to distinguish between the DC
arc fault and normal conditions has been presented. A simple calculation approach for the
arc current variation is utilized to portray the chaotic and dynamic nature of the DC arc
physical process. The current variation can indicate different stages of arcing and is used
to recognize DC arc faults. Moreover, wavelet decomposition is applied to the arc current
signal. The normalized RMS value of wavelet decomposition coefficients demonstrates
the ability to detect the arc fault. Finally, a comprehensive DC arc detection algorithm
is created using the current change from the time domain analysis and the normalized
RMS value from the wavelet analysis. A Texas Instrument’s Digital Signal Processors (TI
DSP) chip, which has a clock frequency of 150 MHz and has gained popularity in power
electronic applications, is used to implement the detection method in the hardware. In the
proposed method, the maximum and minimum currents are updated every time new data
is inputted at each timer cycle, and the difference in the current is registered at the nth cycle.
The value of n is determined by the length of the time window and sampling frequency.
Detection accuracy is enhanced if a longer time window is achieved, as it makes the RMS
versus time waveform smoother. A long time window, however, leads to a longer time
response. When the amount of data points is excessive, the actual implementation must
be adjusted to ensure that the calculation load is within the capabilities of the available
microprocessor. The wavelet coefficients are calculated by sending a signal through low-
pass and high-pass filters, as well as down sampling it by two. The filters are dependent
on the used wavelet and are consistent throughout the entire level decomposition. As a
result, the detection algorithm can be implemented on a microprocessor in the time domain
using convolution and down sampling. The filtering procedure for the first-level DWT to
obtain Coefl1 is carried out every two timer intervals, for which two new data points are
available at this time. The second-level DWT coefficients (Coefl2 and Coefh2) are calculated
whenever two new coefficients from the first-level DWT are received. As the filtering
operation was performed for every timer interval instead, this method cuts the calculation
load by half. In the main function, the ultimate decision is taken. The main function’s flag
changes to 1 at the conclusion of each time window. Only two square roots, one division,
and two comparisons are performed in the main function, which takes 80 clock cycles in
total, according to the benchmarks of the C28x floating point unit fast RTS library. With a
clock frequency of 150 MHz, the main function’s computation time at the conclusion of
each Tsw = 25 ms is less than 1 µs, which is negligible. As a result, the detection time is
mostly determined by the length of the time window. The results of the studies reveal that
the detection algorithm is capable of delivering an alarm in a timely manner following
the initiation of an arc fault. Typical operations, such as load changes, can also generate
nuisance tripping, which can be reduced with this detection system. In [112], a modified
wavelet-based technique termed the wavelet packet transform (WPT) was developed for
the detection of diverse disturbances caused by faults in grid-connected solar PV systems.
The study continued to evaluate the proposed WPT approach to methods based on the
ordinary wavelet transform (WT) under various operating settings. In addition, qualitative
and quantitative evaluations suggest that the WPT outperforms WT in terms of detection
performance. The WPT uses a set of low-pass and high-pass filters to breakdown the
signal retrieved at PCC. It gives both approximate and precise coefficients. Moreover, it
extensively decomposes both components in order to determine the signal’s frequency
agreements. The breakdown procedure carried out in both components is what gives them
their value. Wavelet transforms, on the other hand, do only a one-sided decomposition,
segmenting only the low-pass frequency components and not the high-pass frequency
components. When WT is subjected to noisy or transitory environments, this feature can
compromise its performance. In [113], wavelet transformations were used to offer an online
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fault detection method for power conditioning systems (PCS). Switch open faults and over
harmonics are detected using a multi-level decomposition wavelet transform approach.
Using the normalized standard deviation of the wavelet coefficient, a quick and accurate
diagnostic function is also achievable, allowing the suggested method to detect islanding
conditions. Simple calculations (a time correlation generated by sequential multiplication
and addition) and exact diagnostic capabilities of fault identification with good simulation
outputs to check and evaluate its claims characterize the method’s algorithm. The multi-
level decomposition wavelet transform provides the method’s straightforward calculation
characteristic. At each wavelet tree level, the algorithm extracts wavelet coefficients from
the measured signal, and errors are discovered and categorized using the wavelet coefficient
changes. Using a three-level MLD tree, the fault detection technique was created for PCS
fault scenarios. Switch open and over harmonic are the two scenarios considered. The
PCS uses a semiconductor switch, such as a field effect transistor (FET) or an IGBT, to
convert DC solar voltage to AC grid current. The switch open can be attributed to a
switching device failure, whereas the over harmonic can be attributed to a controller or
sensor failure. The cases of switch short faults are not taken into account here. The system
is protected by the over-current limiting function or melting fuse when the switches are in
short fault, and the PCS ceases running. The PCS current has a distorted waveform when
the switches are open faulted, and it continues to provide high order harmonics to the
grid. An UP and DOWN switch failure in the inverter bridge might be categorized as an
open switch problem. The authors of [114] used the discrete wavelet transform (DWT) to
analyze the traced I-V curve of a residential PV system and define these coordinated points
in the related diagnosis effort. The DWT was utilized to implement the fault diagnosis
of residential PV systems as a preprocessing tool. It enables feature extraction through
signal decomposition and noise reduction. The reduced short-circuiting current of partially
shaded cells is represented by the vertical height or current in a PV string identified by
the DWT method, whilst the horizontal or voltage distance from the VOC to the inflex is
connected to the number of bypassed modules. The approach is divided into two sections,
namely passive and active. In the passive diagnosis section, a residue signal is generated by
comparing the measured PV power signal and simulated model in real time to monitor the
alarm signal and abnormal condition in the system, using the model base fault diagnosis
technique. After the manifest and certainty error signals have been determined, the flash
test is used as the active and second portion of the test procedure. During this phase, the
step load is separated from the PV and power generation, and the MPPT mode of the
inverter is interrupted. The I-V curve of the PV array is tracked and logged by modifying
the inverter switching pattern for a deeper inspection and interpretation. The model
provided in [115] for the defect diagnosis of PV arrays was improved using improved
wavelet neural networks, wavelet neural networks, and back propagation neural networks.
The training technique now includes a Gaussian function, which is utilized as an activation
function, an additional momentum mechanism, and an adaptive learning rate method. The
conclusion is taken from simulation findings that the proposed technique in this study is
capable of efficiently diagnosing the PV array problem with good performance accuracy,
convergence time, and stability under the identical conditions of the network input and
desired output. The proposed fault diagnosis algorithm is summarized in Figure 9. Four
PV system fault types are diagnosed using the model, namely short-circuit, open-circuit,
abnormal degradation, and partial shading. There are five network output layer variables
since the system requires the precise diagnosis of four types of problems and no fault
condition. The selection of the number of hidden layer nodes in a neural network is a
difficult topic with no theoretical foundation to follow. The number of hidden layer nodes
is critical to the network’s success. If the number is too little, we may not acquire a network
from training, implying that the network’s robustness is poor and its anti-noise ability is
weak, making it unable to recognize models that have never been seen before. If the hidden
layer’s node number is too big, the learning time will be too long, and the error will not
be minimal. Furthermore, there could be an issue with overfitting. As a result, based on
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an empirical equation, the trial and error method is commonly employed to identify the
appropriate number of concealed nodes.
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In [116], a wavelet optimized exponentially weighted moving average (WOEWMA)
monitoring technique based on the principal component analysis (PCA) was created.
The presented monitoring approach combines the advantages of exponentially weighted
moving averages, MOO, and wavelet representation. MOO is used to tackle the challenge
of determining the best strategy for minimizing both the missed detection rate (MDR) and
the false alarm rate (FAR). Apart from the decorrelation of auto-correlated observations, the
wavelet representation increases the monitoring performance by lowering MDR and FAR,
as well as obtaining the exact deterministic features. The proposed method is appropriate
for real-time implementation due to its quick calculation time. This approach is robust
in a range of faulty conditions, including single and multiple (cascade and simultaneous)
occurrences, and can detect faults in both the DC and AC conversion sections. The proposed
method has several advantages, including dynamic multiscale representation to extract
accurate features and de-correlate auto-correlated measurements; the PCA technique to
model PV systems; the EWMA of two parameters in OEWMA are optimized using the
multi-objective optimization; and the WOEWMA chart can detect smaller fault shifts,
thereby improving the PV model monitoring.

Table 6. Summary of wavelet-based methods.
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Detection of DC arc fault based on the
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4.7. Other Methods

This subsection groups all the other reviewed faults that were not classified in any of
the six groups. A summary of the contribution of the reviewed methods is presented in
Table 7.

The approaches, that use graph-based semi-supervised learning (GBSSL) for fault
identification and diagnosis in PV arrays, are available here [13,117]. The authors of [117]
presented a sound technique based on GBSSL for recognizing, classifying, locating, and
fixing errors in PV arrays, which was improved by expanding the diagnostic space of
the GBSSL algorithm and adding more class labels. The model detects and locates a
failure, temporarily isolating the system in order for it to continue to operate normally
until the problem is resolved. The authors adjusted the way the data were normalized
in order to increase the system’s ability of finding the unlearned defects, and they were
able to detect faults that the algorithm could not detect at first. The functionality of the
system to feed the required energy after the defect was eliminated was tested using an
interleaved boost converter, and it was discovered that the maximum voltage loss in a
standard condition is 1 V, demonstrating the model’s high efficiency. The proposed model
in [117] was an improvement of a previous model proposed in [13] by the addition of the
fault location element and higher fault detection and classification accuracy. The early
stage of the algorithm starts with the extraction of a limited number of labeled data with
their class labels serving as initial value data and fed into the model. Both the faulted and
fault-free data are included in this dataset. To achieve the fault-prone labeled data, faults
are purposefully introduced into the system, and the parameters are measured and stored
for each data. The data are measured and stored in the fault-free mode in the same way
as it is in the normal mode. An important advantage of the proposed GBSSL method is
that it only requires a small amount of data for the learning process. To detect PV system
faults, the current of all rows of solar cells, as well as the overall voltage of the panel, are
constantly measured at any time (this is accomplished by installing 10 current sensors in
each row of cells and one voltage sensor at the PV system’s output points). As a result,
each dataset contains 11 parameters, 10 of which are currents flowing across the cell’s rows
and one of which is the system’s total voltage. In the modeling process, the parameters
required to implement the GBSSL algorithm are entered. On the other hand, the authors
of [118] proposed an intelligent defect diagnostic approach for PV arrays based on a kernel
extreme learning machine (ELM) optimized simulating annealing (SA) algorithm with an
improved radial basis function (RBF). Short-circuit faults, aging faults, and shadow faults
are among the faults discovered by the proposed method. The results obtained were above
90%, showing that the SA-RBF-ELM fault classification is accurate and stable. According
to the acquired simulation findings, the suggested model has three key advantages: (1)
The optimal fitness value of the PV array and the model parameters used, as one of the
characteristic factors of neural network learning, considerably increase the fault detection
accuracy of the four fault kinds described; (2) the RBF-ELM kernel function has strong
learning and classification capabilities, making it suitable for detecting and classifying PV
array faults; and (3) the SA algorithm can quickly optimize the parameters of the RBF-ELM
fault diagnostic model, significantly improving the RBF-ELM model’s training accuracy
and testing precision. The algorithm proposed is a derivative of the basic ELM algorithm,
with kernel function limit learning machine features, which improve its ability to solve
the problem of regression prediction leading to higher accuracy and faster calculations.
The RBF-ELM model contains a regularization coefficient (C) and radial width (α), which
affects the algorithms’ performance. The RBF-ELM fault model’s training accuracy is
employed as the optimization objective function, and the coefficients C and α are the
parameters that must be tuned. The simulated annealing approach is then utilized to
optimize the parameters of the RBF-ELM fault model, resulting in optimal training and
test accuracy for each time. A diagnostic technique for PV systems was developed in [119]
using the learning method to take each PV site’s condition into account. The technique
employs the diagnostic criteria database to analyze the data acquired from the PV system.
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The special features of the proposed technique include updating the diagnostic criteria,
making it possible to detect normal or abnormal operating conditions of a PV system; the
detection of shadow on modules and the pyranometer using the sophisticated verification
(SV) method [120]; and the maintenance advice provided by an expert system according to
the precise diagnosis. The ratio of acquired data to reference data is calculated to diagnose
the system’s normality or abnormality. The ratio approaches “1” when actual and average
meteorological data are close. For example, when the summer generated power ratio is “1”
and the winter generated power ratio is “0.7,” a winter shadow or snow on the modules
is assumed. The criterion for diagnosis in this situation is “1”. The contribution of the
proposed method is highlighted in its features, as follows: By updating the diagnostic
criteria, it is now feasible to diagnose the normality or abnormality of PV systems, while
taking into account the PV system’s characteristics, as well as the climate; where a shadow
appears on the modules or pyranometer is determined using the SV approach and hourly
data analysis; and maintenance recommendations are also given based on the diagnosis
outcome. The simulation results of the proposed technique suggest that it offers quick
and proper maintenance advice within a short detection period. In [121], a simple short-
circuit and open-circuit fault detection approach for PV systems was suggested based
on the evaluation of three coefficients. The suggested technique has two steps. First, an
offline simulated model for extracting the variation boundaries of the three coefficients for
each faulty operation. Second, an online comparison model for comparing real measured
coefficients to the simulated coefficients from the offline step. Three coefficients have
been established for each fault type in order to detect and diagnose both short-circuit
and open- circuit faults, namely the current coefficient, the voltage coefficient, and the
power coefficient. The offline step is aimed at extracting the three coefficients’ variation
boundaries for each type of fault. In order to achieve this, three other operations are
conducted. By bringing the detected parameters to a PSIM/MATLAB co-simulation, you
may simulate both the healthy and flawed scenarios under a few climatic situations. For
each simulated instance, the goal of this stage is to extract a few MPP coordinates. Based
on the given equations, determine the three coefficients for each fault situation, then
by adding a ±2% offset to the three derived coefficients, you may extract the variation
boundaries for each defective type. For the online step, using the various sensors, both
the meteorological conditions and MPP values may be detected and monitored during
the actual operation of a PV system. The three actual onsite coefficients will be calculated
using these measures. Finally, a comparison is made between the real onsite coefficients
and the variation boundaries of each faulty case that was previously stored during the
offline process. To conclude, the faults detection task will be carried out based on the real
onsite monitored power coefficients measured, in a way that if their value exceeds a set
threshold, a DC side fault alarm will be triggered. In addition, the faults’ type will be
determined by comparing the three real onsite coefficients with the variation boundaries
of each simulated faulty case. The proposed method is straightforward, efficient, and
does not necessitate a large amount of training data. the authors of [71] presented a
data-driven anomaly detection and classification system that can accurately detect and
categorize a wide range of PV system anomalies. The method consists of two stages. First,
the local context-aware detection (LCAD), which is a hierarchical context-aware anomaly
detection using supervised learning, and is aimed at identifying possible anomalies in
PV strings with current characteristics that are different from the other PV strings under
similar environmental conditions. Second, the remote context-aware detection (RCAD),
which is a hierarchical context-aware anomaly detection using supervised learning, and
is aimed at identifying possible anomalies in PV strings with current characteristics that
are different from solar PV farms and benefit from a combination of LCAD and GCAD to
detect anomalies at the string level. First, the domain-specific features are designed. To
reduce computation complexity and increase classification performance, the multimodal
properties are carefully generated and extracted. Then, with the purpose of developing
an accurate classification model that is suitable for specific categorization situations, a
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multimodal model training technique is constructed. The effectiveness, robustness, cost-,
and computing efficiency of the suggested strategy are proved by the results of trials
conducted over time. The proposed method has the following advantages: A more robust
method against irradiance and weather variations that can accurately detect different
anomalies without pre-labelled data; 90.2% detection accuracy for the top 100 anomalies
that are otherwise nearly undetectable under low irradiance or weather with high cloud
cover; the use of SCADA data to classify commonly occurring anomalies at the plant
level; and cost- and computation-efficient as it uses readily available data of existing PV
systems. Numerous machine learning-based fault detection methods have the following
problems, according to the authors in [122]. Fault diagnosis performance is limited due to
the insufficient monitored information. Moreover, fault diagnosis models are inefficient to
train and update, and labeled fault data samples are difficult to obtain by field experiments.
The authors proposed a method with the aim of overcoming these problems and three
features were addressed. The first is based on important points and model parameters
collected from I-V characteristic curves and environmental factors that are observed. An
effective and efficient feature vector of seven dimensions is proposed as input of the model.
The second is an emerging kernel based on extreme learning machine (KELM), which
features extremely fast learning speed and good generalization performance, utilized
to automatically establish the fault diagnosis model. The Nelder-Mead simplex (NMS)
optimization method is employed to optimize the KELM parameters, which affect the
classification performance. The final aspect is an improved accurate SIMULINK-based PV
modeling approach for a laboratory PV array to facilitate the fault simulation and data
sample acquisition. There are six steps leading to the establishment of the proposed model,
as shown in Figure 10.
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The data samples for each fault condition should cover a wide range of operational
irradiance and temperature, in order to make the fault diagnosis model suitable for a
variety of operating settings. To begin, certain SIMULINK simulation experiments were
used to obtain labeled data samples of normal and problematic situations. Then, on
the real laboratory PV array, some field experiments were conducted to achieve some
experimentally labeled data samples. Finally, the fault diagnostic model is established
using the optimized KELM, which is evaluated and analyzed using both simulated and
experimental data samples with known fault kinds. The proposed KELM-based fault
detection model is promising in real-time applications due to its exceptionally fast learning
speed, simplicity, and high generalization performance. The authors are attempting to
apply the fault diagnosis model in digital signal processor (DSP) based embedded real-time
systems, in conjunction with an integrated rapid I-V tester that is currently in development.
The authors of [123] presented outlier detection rules based on instantaneous PV string
current monitoring for failure detection. It is a command to monitor PV functioning and
discover faults that may go undetected by overcurrent protection devices (OCPD). Three
outlier identification rules were devised and compared by the authors, namely the three-
sigma rule, Hampel identifier, and boxplot rule. Weather measurement or model training
are not required with the suggested strategy. The Hampel identifier performs well in



Machines 2021, 9, 328 28 of 36

cases with extremely high contamination levels (33.3% in this investigation), while the
boxplot rule performs better under PV faults in cases with relatively high contamination
levels (12.5% in the case of this study). The model’s reliability improves as the number
of PV measurements rises. Despite the fact that the outlier identification methods in this
study are based on PV-string level measurements, the authors claim that the proposed
approaches should be straightforward to implement with minor modifications on any
PV installation level. If the assumption is made that the solar irradiation is identical
on the same PV level, the outlier rules can be applied on the PV-module or sub-array
level, for example. Aside from the PV string current, the measurement could include PV
insulation impedance, output power or energy yield, all of which are commonly used
PV metrics. This may provide extra flexibility to fault detection methods. To overcome
the limitations of conventional wired monitoring systems, such as physical constraints
during data cable laying, high installation and maintenance costs, and reduction in the
system lifespan due to the over exposure to extreme weather conditions, a Zigbee-based
wireless monitoring system was developed in [124] to replace the conventional systems
for online monitoring of parameters, such as temperature, irradiation, PV power output,
and grid inverter power output, in grid-connected PV system applications. Moreover,
it is equipped with a control function for remote system monitoring and a user-friendly
web application, in order for the monitored data to be easily accessible via the Internet.
Although the simulation results were satisfactory, the authors pointed out the limitations
of the proposed method. These limitations include: (1) The proposed method is location
specific. Therefore, before implementing the system in other locations with significantly
different weather conditions, the weather factor needs to be taken into consideration. (2)
The program used was developed based on the available software and programming
language familiar to the authors. In [125], a failure diagnostic algorithm based on an online
distributed monitoring system of a PV array of Zigbee wireless sensors network and a
genetic algorithm optimization based BP neural network was investigated. The Zigbee
wireless network system monitors each module’s output current, voltage, and irradiation,
as well as the environment’s temperature and irradiation. In addition, a simulation PV
module is set up, based on which typical problems are simulated and fault training samples
are obtained. The fault sample data are then utilized to build and train a generic algorithm
optimized BP neural network diagnosis model, which is subsequently used to detect four
different PV array operating states (normal, abnormal aging, short-circuit, shadow). Since
an open-circuit problem is noticed during the data collecting phase, it is not considered
one of the diagnosis model’s outputs. According to the simulation data, the proposed
defection system has a high level of accuracy. Operators or managers can log in to verify
the parameters of each PV module and use the designed mechanism to quickly discover
the problematic PV module. In relation to the PV energy conversion system (PVECS), the
authors of [126] presented a fault detection system using a fractional-order color relation
classifier. The output power degradation is used to monitor the physical circumstances
associated with changes in the circuitry of a PV array, such as grounded faults, mismatch
faults, bridged faults between two PV panels, and open-circuit faults, using an electrical
inspection method. The over-current and ground fault prevention devices can also be used
to isolate failures on the AC side. As a result, the grid connection side fault impact can be
reduced. Iterative calculations are not required to update the parameters of the inference
model in the flexible and inferential model. As a result, it can handle the complexity of an
adjustable mechanism in a relatively short design cycle. Embedded system approaches
can then be used to implement the proposed detection model. The suggested approach
can detect normal conditions, mismatch faults, and four common electrical defects on
the DC side, according to the simulation results. For solar radiation of 0.4–1.0 kW/m2

and temperatures of 25–40 ◦C, the suggested detection model has an average accuracy of
88.23% in identifying the fault under low/high solar radiation and various temperatures.
The authors of [127] presented another interesting fault detection and diagnosis method
based on a laterally primed adaptive resonance theory (LAPART) neural network. It is a



Machines 2021, 9, 328 29 of 36

low-cost way of automatically detecting and diagnosing PV system issues. The LAPART
algorithm was taught how to detect fault states using real-world data that were classified
as normal system behavior. The algorithm was then given new data and three-fault data
points for an initial test. The system was given synthetic data to examine its performance
over a statistically significant month-long dataset, and it was able to correctly identify
flaws within the dataset. The LAPART algorithm’s accuracy is determined by its ability
to deliver a high likelihood of detection, while reducing false alarms. The number of
true positive values generated by the FDD process is compared to the total number of
actual positive values to determine the likelihood of detection. The LAPART architecture
combines two fuzzy adaptive resonance theory (ART) algorithms to build a system for
predicting outcomes based on the learnt associations. The single fuzzy ART algorithm’s
fundamental equations include category selection, match criterion, and learning. The goal
is to create the optimal template matrix for the provided dataset. The approach employs
category selection to discover the existing template matrix that best matches the provided
input. In addition, for fast learning applications, the free parameter is frequently set to 10-7.
The match criterion then checks to verify if the template matrix and input that is compared
fulfill the user-defined vigilance parameter criterion. Depending on the level of intricacy
requested, the vigilance free parameter can range from 0 to 1. A high vigilance value of
0.9, for example, yields high complexity but limited generality, whereas a low parameter
of 0.5 yields the opposite. Finally, if it passes, the template is changed to reflect what has
been learned. The LAPART algorithm is created by linking the two fuzzy ARTs (FARTs),
which is seen graphically in Figure 11. The L matrix, which connects the A and B templates,
connects the A and B FARTs. Each FART has its own set of vigilance settings, and inputs
are delivered to both the A and B sides at the same time during the learning process. The A
and B sides work together to generate and update the templates, while also forming links.
Testing inputs are only applied to the A side after the training is complete, allowing them
to resonate with the already acquired templates. The L matrix’s relationships are then used
to link with the B side and generate the prediction results.
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The approach provided in [128] is based on monitoring the PV array’s output power
and is suitable for low irradiance, high impedance, and low mismatch fault circumstances.
The irregularity of the time series of the normalized fault-imposed component of PV power
is measured using entropy-based complexity as the fault detection criterion. Weather
disturbances and partial shade can cause many array faults, which the proposed method
can identify. It is applicable to both grid-connected and islanded PV systems and does not
require a training set or prior knowledge of the PV array. Moreover, it is an economical
strategy as it does not require costly sensors, relying only on the central IED to process
the PV voltage and current measurements. The irregularity of the fault imposed power
time series is measured by the sample entropy. The study uses the sample entropy-based
complexity as the PV array fault detection index (FDI), since the complexity of time series
data more effectively captures the behavior of a nonlinear system. The fault-imposed
component of the PV array power is zero during the normal operation. As a result, the time
series of moving data windows is regular. Therefore, SampEn is equal to zero. The fault-
imposed power samples in each moving data window of N points are not identical when
the solar irradiance or temperature varies, but they are fairly close together, since weather
disturbances are not severe. As a result, FDI will be near-zero in this situation. When a
fault develops in the PV array, however, the fault-imposed power samples rapidly shift. As
a result, the normal fault-imposed power samples differ dramatically from the post-fault
ones. Therefore, non-repetitive patterns can be found in the moving data windows during
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the initial milliseconds of fault transients, and the estimated SampEn is not zero. The
issue is recognized when FDI rises to a non-zero value. It may be concluded that FDI
for normal occurrences is approximately zero, whereas FDI for fault events is non-zero.
A defined threshold is used to discriminate between non-zero FDI values under fault
situations and near-zero FDI values during weather disturbances and partial shadings. As
a result, determining the fault detection threshold is simple. It can considerably reduce
nuisance tripping. Several experiments that were carried out validate the proposed fault
detection algorithm’s simplicity, sensitivity, scalability, resilience, and adaptability.

Table 7. Summary of other methods.

Authors Reference Year Contribution

Y. Zhao, R. Ball, J.
Mosesian, J. De Palma, B.

Lehman
[13] 2015

Graph-based semi-supervised learning
algorithm for PV fault detection and

classification

H. Momeni, N. Sadoogi,
M. Farrokhifar, H.F.

Gharibeh
[117] 2020

Graph-based semi-supervised learning
method of PV array fault diagnosis and

correction

Y. Wu, Z. Chen, L. Wu, P.
Lin, S. Cheng, P. Lu [118] 2017

SA-RBF kernel extreme learning
machine-based intelligent fault diagnosis for

PV array

Y. Yagi et al. [119] 2003 Diagnostic technology and expert system for
PV system using the learning method

E. Garoudja, K. Kara, A.
Chouder, S. Silvestre, S.

Kichou
[121] 2016

Short- and open-circuit fault detection in PV
system based on the offline and online

evaluation of measured coefficient

Y. Zhao, Q. Liu, D. Li, D.
Kang, Q. Lu, L. Shang [71] 2019

Hierarchical context-aware anomaly detection
using the unsupervised learning and

multimodal anomaly classification method

Z. Chen, L. Wu, S. Cheng,
P. Lin, Y. Wu, W. Lin [122] 2017

Optimized kernel extreme learning machine
and I-V characteristics based intelligent fault

diagnosis in PV array

Y. Zhao, B. Lehman, R.
Ball, J. Mosesian, J.F. De

Palma
[123] 2013 Outlier detection based rules for solar PV

array fault detection

F. Shariff, N.A. Rahim,
W.P. Hew [124] 2015

Online monitoring of grid-connected PV
system based on the Zigbee data acquisition

system

H. Lin, Z. Chen, L. Wu, P.
Lin, S. Cheng [125] 2015

Online monitoring and fault diagnosis of PV
array based on the genetic algorithm

optimized BP neural network

C.L. Kuo, J.L. Chen, S.J.
Chen, C.C. Kao, H.T. Yau,

C.H. Lin
[126] 2017

PV energy conversion system fault detection
using the fractional order color relation

classifier

C.B. Jones, J.S. Stein, S.
Gonzalez, B.H. King [127] 2015

Photovoltaic system fault detection and
diagnostics using the laterally primed

adaptive resonance theory neural network

A. Khoshnami, I.
Sadeghkhani [128] 2018 PV array fault detection based on sample

entropy

5. Discussion

This study presented a comprehensive review of PV system fault detection and diagno-
sis techniques that are based on artificial intelligence and machine learning. Conventional
fault detection and diagnosis methods, which equip PV systems with overcurrent protec-
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tion devices and ground fault detection interrupters, are not sufficient enough to detect
certain faults due to low irradiance conditions, nonlinear output characteristics, maximum
power point tracker of PV inverters or high fault impedances. This led to the need for more
intelligent fault detection and diagnosis methods to replace the conventional methods,
in order to improve the PV systems operational efficiency and safety. AI-based methods,
which are still currently explored and improved have been found to be the alternative to
conventional methods. This paper’s contribution outlines the main features of reviewed
AI-based methods and the effectiveness of PV fault detection and diagnosis applications.
The reviewed methods mostly adopt ML models, such as neural networks, wavelets, fuzzy
logics, decision trees, support vector machines, graph-based semi-supervised learning,
regression, etc., in order to develop models and algorithms that are trained to learn the
relationships between input and output parameters of PV systems. The effectiveness
of these methods depends on their ability to detect a fault and pinpoint its location in
the shortest possible time; their relative affordability; and ease of use. Of note, there are
currently fewer literatures in this area of PV application compared to the other areas, since
the topic has only recently been explored, as evident in the oldest paper we could obtain,
which dates back to only about 15 years.
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