
machines

Article

Aircraft Engine Performance Monitoring and Diagnostics Based
on Deep Convolutional Neural Networks

Amare Desalegn Fentaye *, Valentina Zaccaria and Konstantinos Kyprianidis

����������
�������

Citation: Fentaye, A.D.; Zaccaria, V.;

Kyprianidis, K. Aircraft Engine

Performance Monitoring and

Diagnostics Based on Deep

Convolutional Neural Networks.

Machines 2021, 9, 337. https://

doi.org/10.3390/machines9120337

Academic Editor: Hui Ma

Received: 4 November 2021

Accepted: 29 November 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Future Energy Center, Mälardalen University, 721 23 Västerås, Sweden; valentina.zaccaria@mdh.se (V.Z.);
konstantinos.kyprianidis@mdh.se (K.K.)
* Correspondence: amare.desalegn.fentaye@mdh.se

Abstract: The rapid advancement of machine-learning techniques has played a significant role in the
evolution of engine health management technology. In the last decade, deep-learning methods have
received a great deal of attention in many application domains, including object recognition and
computer vision. Recently, there has been a rapid rise in the use of convolutional neural networks
for rotating machinery diagnostics inspired by their powerful feature learning and classification
capability. However, the application in the field of gas turbine diagnostics is still limited. This paper
presents a gas turbine fault detection and isolation method using modular convolutional neural
networks preceded by a physics-driven performance-trend-monitoring system. The trend-monitoring
system was employed to capture performance changes due to degradation, establish a new baseline
when it is needed, and generatefault signatures. The fault detection and isolation system was trained
to step-by-step detect and classify gas path faults to the component level using fault signatures
obtained from the physics part. The performance of the method proposed was evaluated based
on different fault scenarios for a three-shaft turbofan engine, under significant measurement noise
to ensure model robustness. Two comparative assessments were also carried out: with a single
convolutional-neural-network-architecture-based fault classification method and with a deep long
short-term memory-assisted fault detection and isolation method. The results obtained revealed
the performance of the proposed method to detect and isolate multiple gas path faults with over
96% accuracy. Moreover, sharing diagnostic tasks with modular architectures is seen as relevant to
significantly enhance diagnostic accuracy.

Keywords: gas turbine; rapid faults; gradual degradation; convolutional neural network; fault
detection and isolation; diagnostics

1. Introduction

Effective maintenance of flight critical components including gas turbine engines
plays a significant role in the aircraft industry. Engine failures due to poor maintenance
schedules result in huge economic losses and environmental damages. It is therefore
crucial to perform regular and effective maintenance through the support of advanced
powerplant health management (PHM) technologies. Condition-based maintenance is
the key advancement in the field, where maintenance actions are taken based on actual
evidence about the existing health status of the engine under operation. Potential damages
on the gas path components due to fouling, erosion, corrosion, and an increase in tip
clearance can be detected and isolated before they become severe enough. This requires
relevant and significantly sufficient measurement information based on sensors installed
on the engine gas path for control and monitoring purposes.

Over the past few decades, gas turbine diagnostics has been extensively studied and
several techniques have been developed. Depending on the approaches used, the proposed
methods can be broadly categorized into three groups as model-based, data-driven, and
hybrid [1]. Gas path analysis (GPA) and its derivatives [2,3], the Kalman filter (KF) and
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its derivatives [4,5], artificial neural networks (ANNs) and their derivatives [6–8], genetic
algorithms (GAs) [9], fuzzy logic (FL) [10], and Bayesian networks (BNs) [11,12] are some
of the most widely applied techniques.

Diagnostic methods are different in their ability to:

(1) Handle the non-linearity of the gas turbine performance;
(2) Provide accurate results with the minimum number of sensors possible;
(3) Cope with measurement uncertainty;
(4) Deal with simultaneous faults;
(5) Perform real-time diagnostics with high computational efficiency;
(6) Discriminate rapid and gradual degradation;
(7) Perform qualitative and quantitative fault diagnostics;
(8) Quickly detect faults with negligible false alarms due to measurement noise;
(9) Provide easily interpretable results.

In this context, though past studies have contributed significant advancements, meth-
ods under each category still have their own advantages and limitations. Data-driven
methods are advantageous in the absence of an accurate mathematical model or detailed
expert knowledge about the engine [13]. In addition, they are more preferable with regard
to reduced sensor requirements, robustness against measurement uncertainty effects, and
simultaneous fault diagnostic capability [14]. The model-based solutions are best at inter-
preting the gas turbine behavior since they consider the real physics of the engine. More-
over, when baseline shifts are needed for the fault diagnostics, updating the model can be
performed with less cost and effort than retraining the data-driven methods. Model-based
methods have some accuracy deficiencies due to measurement uncertainty and model
smearing effects. Data-driven methods, on the other hand, lack interpretability of their
internal working (they are “black-box” models) and require a large amount of data for train-
ing, and the training process can be excessively time consuming [1,14]. Hybrid techniques
that apply a collective problem-solving approach have shown promising performance
when the methods are integrated on the basis of their complementary strengths [15,16]. In
general, the current literature on gas turbine diagnostics, for instance [17–19], shows that
advanced diagnostic method development is still a subject of considerable research effort.

The rapid advancement of machine-learning (ML) methods opens extended research
access to investigate the contribution to the gas turbine application domain. For instance, a
deep autoencoder was utilized by Yan and Yu [20] for measurement noise removal and gas
turbine combustor anomaly detection. A re-optimized deep-autoencoder-based anomaly
detection method was also demonstrated in [21] for fleet gas turbines. In a different study,
a long short-term memory-network-based autoencoder (LSTM-AE) framework was de-
veloped for gas turbine sensor and actuator fault detection and classification using raw
time series data [22]. A combined GPA- and LSTM-based gas turbine fault diagnostics and
prognostics method was devised by Zhou et al. [23]. The GPA was dedicated to estimating
performance health indices of the target gas path components of the case study engine
through a performance adaptation process. The LSTM method was employed to forecast
the future degradation profile of the components based on the estimated health indices.
In recent years, there has been a rapid rise in the use of convolutional neural networks
(CNNs) for rotating machinery diagnostics inspired by their powerful feature learning and
classification ability [24]. A considerable number of applications can also be found in gas
turbine prognostics, such as [25–27]. Nevertheless, there have been only a few attempts in
gas turbine diagnostics. Liu et al. [28] proposed a CNN-based technique to monitor the
performance of gas turbine engine hot components based on exhaust gas temperature (EGT)
profiles. Guo et al. [29] used a 2D-CNN algorithm for gas turbine vibration monitoring
using transformed vibration signals as the input. Grouped convolutional denoising autoen-
coders were used to reduce measurement noise and extract useful features from aircraft
communications, addressing, and reporting system (ACARS) data [8]. A 1D CNN was
employed for abrupt fault diagnostics based on time series data [30]. Zhong et al. [31] and
Yang et al. [32] evaluated the effectiveness of the transfer learning principle with a CNN for
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engine fault diagnostics with limited fault samples. In both studies, the authors considered
single-fault scenarios only. Conversely, the benchmark studies conducted within the Glenn
Research Center at NASA [33] recommended considering multiple faults as well for more
reliable diagnostic solutions.

This paper proposes a novel modular CNN-based multiple fault detection and iso-
lation (FDI) method integrated with a nonlinear physics-based trend-monitoring system.
The physics-based part is used to monitor the gas turbine performance trend and compute
useful measurement deviations induced by gas path faults. The FDI part is composed of
four hierarchically arranged CNN modules trained to classify rapid faults at the component
level using fault signatures provided by the physics-based part. Two different comparative
investigations were performed in the end to show the benefits of the proposed method and
draw concluding remarks. The main contributions of this work are summarized as follows:

i. A novel physics-assisted CNN framework is proposed for three-shaft turbofan en-
gines’ fault diagnostics. The framework can discriminate between gradual and rapid
gas turbine deterioration followed by a successful isolation of gas path faults at
the component level. The physics-based scheme can also update itself for baseline
changes caused by maintenance events. This avoids the need for retraining the
CNN algorithm after every overhaul. However, using the physics-based scheme
alone for diagnostics has some accuracy deficiencies due to measurement uncertainty
and model smearing effects. Hence, the CNN technique is coupled to offset these
limitations and enhance the overall diagnostic accuracy;

ii. As demonstrated by the experimental results, the proposed method can deal with
multiple fault scenarios, which will increase the significance of the method in real-life
situations [33];

iii. The benefits of applying a modular CNN framework for gas turbine FDI were verified
through a comparison with a similar LSTM framework and with a single CNN-
based FDI scheme. It was shown that the method proposed outperformed the
other methods;

iv. It was also verified that the method proposed is advantageous in handling a consider-
able disparity between the training and test datasets, which is difficult for most of the
traditional data-driven methods [34]. This robustness is important to accommodate
engine-to-engine degradation profile differences.

2. Gas Turbine Performance Degradation

The performance of a gas turbine degrades during operation due to internal and
external abnormal conditions. Fouling, erosion, corrosion, and increased tip clearance
are among the most common gas path problems. As illustrated in Figure 1, gas turbine
degradation can be recoverable and non-recoverable [35]. The former is mostly recoverable
through effective online and offline compressor washing with major inspection during
engine overhaul. Degradation due to fouling is the most prominent example here. The
latter refers to the residual deterioration remaining after a major overhaul, which can be
considered as a permanent performance loss. Mechanical wear caused by erosion and
corrosion may lead to airfoil distortion and untwisting, thereby resulting in non-recoverable
performance loss. Both recoverable and non-recoverable degradation should be monitored
continuously for optimal maintenance scheduling.

Degradation can also be categorized as short-term and long-term based on the for-
mation and growth rate [36]. Short-term degradation results in fast performance changes
and is usually caused by fault events. As shown in Figure 2, they can manifest themselves
as “abrupt” or “rapid” degradation modes. Abrupt faults are fault events that appear
instantaneously and remain fixed in magnitude with time, for instance sensor bias, actuator
fault, foreign object damage/domestic object damage (DOD/FOD), and system failure.
Rapid faults refer to fault events that initiate and grow in magnitude with time. Gradual
degradation refers to gradual performance losses that develop slowly and simultaneously
in all engine components over time due to mechanical wear, mainly triggered by erosion
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and corrosion [37]. The performance loss due to gradual degradation increases through
time and may reach a non-restorable stage. For a detailed description about different
degradation mechanisms, their effects, and necessary actions to restore performance losses,
the interested reader is referred to [1,38].
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Figure 2. Long-term vs. short-term deterioration.

A diagnostic system for life-cycle assessment should be able to distinguish short-
term and long-term degradation modes followed by detecting and isolating faults suc-
cessfully [39]. If the diagnostic algorithm is not adaptive to trend shifts due to engine
degradation, its effectiveness will eventually decrease with the engine age. This is more
problematic for most of the data-driven techniques, since baseline shifts may cause differ-
ences between training and test data patterns, which potentially could affect the diagnostic
accuracy. One of the possible solutions to overcome this problem is incorporating AGPA
in the diagnostic system. In AGPA, the model adapts performance trend changes with
time and updates the baseline when it is convenient. Measurement deviations with respect
to the deteriorated engine profile can then be used to assess gas turbine faults based on
machine-learning techniques. However, using AGPA alone has some accuracy deficiencies
due to measurement uncertainty and model smearing effects [40].
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3. Methodology
3.1. Proposed Method

A schematic of the proposed gas path FDI system is illustrated in Figure 3. The system
was designed to accommodate both long-term and short-term degradation problems. This
procedure involves three main steps: trend monitoring to compute performance parameter
deltas due to the two degradation effects, generate measurement deltas, and detect and
isolate component faults in the engine gas path based on sets of CNN modules. Each of the
steps is described in more detail below.

Machines 2021, 9, x FOR PEER REVIEW 5 of 27 
 

 

3. Methodology 
3.1. Proposed Method 

A schematic of the proposed gas path FDI system is illustrated in Figure 3. The sys-
tem was designed to accommodate both long-term and short-term degradation problems. 
This procedure involves three main steps: trend monitoring to compute performance pa-
rameter deltas due to the two degradation effects, generate measurement deltas, and de-
tect and isolate component faults in the engine gas path based on sets of CNN modules. 
Each of the steps is described in more detail below. 

Physical faults

Power setting 
parameters

Ambient 
conditions

Measurements (Z)
• Temperature
• Pressure
• Shaft speed
• Fuel flow rate

Mass flow rate

Ef
fic

ie
nc

y

Characteristics changes (X)

Z

+
-

Engine Model

Engine Model

Error Minimization

X’ Predicted (Z’)

e

Health indices 
for re-baseline

Adaptive Model 
for Correction

ISA condition

Health 
indices

Baseline 
measurements

+

-

AGPA

ISA 
condition

Residuals

Classifier1

Fault No-fault

Single fault (SF) Double fault (DF)

Classifier2

SF1 SF2 SFn⋯ DF1 DF2 DFm⋯ 

Classifier3 Classifier4

 
Figure 3. Schematic of the proposed FDI system. 

3.1.1. Trend Monitoring and Measurement Pattern Generation for the Data-Driven 
Method 

An adaptive scheme described in [40] was applied to monitor the trend of the engine 
performance in terms of performance parameter deltas (Δη, ΔΓ) and discriminate between 
gradual degradation and rapid faults. The algorithm adapts to the engine degradation 
with the purpose of calculating Δη, ΔΓ from the gas path measurement changes through 
an iterative process. If changes occur due to ambient and flight condition variations, the 
adaptive scheme can correct the data with respect to these variations. However, the data 
correction part was not included in the current work since it has been discussed thor-
oughly by the authors previously [40,41]. 

For a gradual degradation, all the health parameters are expected to deviate together 
from the first flight up until the engine overhaul. The increment of the loss between each 
subsequent flight should not noticeably exceed the expected value. For instance, the isen-
tropic efficiency and flow capacity parameters of a twin spool low-bypass turbofan engine 
LPC showed a −2.61% and −4% deviation after 6000 flights, respectively [37]. That means 
~−0.00044% and ~−0.00067% in the firsts flight and ~−0.0044% and ~−0.0067% in the tenth 
flight if a linear progress is considered. When a rapid fault occurs in one or more of the 
gas path components, the corresponding performance parameters show considerable 
shifts from the gradual trend. To estimate the net measurement changes induced by the 

Figure 3. Schematic of the proposed FDI system.

3.1.1. Trend Monitoring and Measurement Pattern Generation for the Data-Driven Method

An adaptive scheme described in [40] was applied to monitor the trend of the engine
performance in terms of performance parameter deltas (∆η, ∆Γ) and discriminate between
gradual degradation and rapid faults. The algorithm adapts to the engine degradation
with the purpose of calculating ∆η, ∆Γ from the gas path measurement changes through
an iterative process. If changes occur due to ambient and flight condition variations, the
adaptive scheme can correct the data with respect to these variations. However, the data
correction part was not included in the current work since it has been discussed thoroughly
by the authors previously [40,41].

For a gradual degradation, all the health parameters are expected to deviate together
from the first flight up until the engine overhaul. The increment of the loss between
each subsequent flight should not noticeably exceed the expected value. For instance, the
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isentropic efficiency and flow capacity parameters of a twin spool low-bypass turbofan
engine LPC showed a −2.61% and −4% deviation after 6000 flights, respectively [37]. That
means ~−0.00044% and ~−0.00067% in the firsts flight and ~−0.0044% and ~−0.0067% in
the tenth flight if a linear progress is considered. When a rapid fault occurs in one or more
of the gas path components, the corresponding performance parameters show considerable
shifts from the gradual trend. To estimate the net measurement changes induced by the
underlying fault(s), first, a new baseline should be established at some previous flight α
and the performance parameter deltas computed backwards from the current flight k to
flight α + 1, as illustrated in Figures 4 and 5. Second, we used the estimated performance
parameter deltas to predict corrected measurements through the engine performance model
in adaptive mode at the reference conditions (i.e., TRef = 288.15 K and PRef = 1.01325 bar).
Then, we set the corrected measurements at flight α as new baseline measurements. For
the subsequent flights (from flight α + 1 to flight k), we took the actual measurement at
each flight and ran the gas path analysis to estimate the associated performance parameter
deltas with respect to the new baseline. We repeated the second step and predicted the
associated corrected measurements. Finally, we computed the measurement deltas based
on Equation (1).

(
∆ZNor

Cor

)j

i
=

[
(ZCor)

j
i −
(

ZNewRe f

)j
]

(
ZNewRe f

)j (1)

where
(
∆ZNor

Cor
)j

i is the corrected and normalized value of the jth sensor at the ith flight,

(ZCor)
j
i is the corrected value of the jth sensor at the ith flight to be normalized, and(

ZNewRe f

)j
is the reference value of the jth sensor at the new baseline.
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If maintenance actions take place after a rapid or abrupt fault event, the level of
performance recovered needs to be assessed. The level of the recovery depends on the
type and effectiveness of the maintenance action taking place. It could be evaluated by
comparing with the performance of the engine when it was brand new or by comparing it
with the re-baselined performance just before the fault occurs. If there is a considerable
unrecovered performance left after the maintenance, re-baselining will take place after the
maintenance event to re-use the model ahead.

One important point to be noticed here is that event faults should not be declared based
on a single point trend shift since this might happen due to a statistical outlier. There is a
trade-off between detection delay to avoid potential false alarms due to outliers and quick
fault detection to avoid potential catastrophic damages in the subsequent flights [42]. An
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effective measurement noise reduction could minimize the risk. Otherwise, the detection
algorithm must be robust enough to handle noise. In this regard, data-driven methods
have proven advantages over model-based methods [40,43].

3.1.2. Convolutional Neural Networks

Convolutional neural networks [44] are an important family of deep-learning neural
networks that have so far been most commonly used for image classification and computer
vision. Recently, considerable attempts have also been made to use CNN for machinery
diagnostics and prognostics. There are several emerging variants of CNN architectures
with different degrees of complexity. LeNet, AlexNet, VGGNet, and GoogLeNet are among
them. A typical CNN architecture may consist of an input layer, convolutional layer,
activation layer, pooling layer, fully-connected layer, and output layer, as illustrated in
Figure 6. It takes input information via the input layer, which passes through sets of layers
with a series of operations and then gives qualitative or quantitative outputs based on its
purpose. Feature learning and classification are the two sub-sections of a CNN structure,
where the former is used to extract the most useful features from the input data, while
the latter maps the extracted features into the final output. A more detailed discussion
on its structure and functionality is available in the open literature [44]; however, a brief
description of the main layers is provided herein.
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Convolutional Layer

Convolutional layers are the basis of a CNN model. They convolve sets of filters
(kernels) over the input information and generate single or multiple representative feature
maps. Convolution takes place by sliding the filter across the input data. For every slide,
the output is the dot product of the filter and the part of the input data to which the
convolution operation is applied. This can mathematically be expressed as:

yk
l = f

(
wk

l xk−1
l + bk

l

)
(2)

where yk
l is the output of the convolution for the filter k in layer l, xk−1

l is the input of that
layer, f(•) represents the activation function, and w and b refer to the corresponding weight
(filter) and bias values, respectively.

Pooling Layer

The pooling layer is also called the downsampling layer or subsampling layer. It is
the next layer of the convolutional layer, where the convolved features are dimensionally
reduced by pooling. Maximum pooling and average pooling are the two most widely
used pooling methods [24]. The former extracts the most useful features within a subset of
an input feature map, whereas the latter considers the average value. Max pooling was
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applied in this research since it extracts the most relevant features within the convolved
feature map.

Fully-Connected Layer

The structure and function of the fully connected layer is the same as in a conventional
multilayer perceptron. It is in essence a backpropagation-based feed-forward neural
network. The typical structure is composed of input and output layers with one or more
hidden layers in between. The role of this layer in the CNN operation is mainly to produce
a meaningful output from the extracted features. Since the fully-connected layer does not
allow multi-dimensional data input, the feature output from the feature-learning section
needs to be flattened [30].

Output Layer

The output layer performs the final operation in the CNN model. Softmax (Equation (3))
is one of the most widely used functions in classification [24]. It computes probabilistic
values to make the class decision about where the input data belong. The probability values
estimated for each class considered in the classification problem sum to one.

S
(
⇀
x
)

i
=

exi

∑c
j=1 ezj for i = 1, 2, . . . , c (3)

where S is the softmax function,
⇀
x is the input feature vector, exi is the standard exponential

function for the input feature vector, c is the number of classes in the classification problem,
and ezj is the standard exponential function for the output.

3.1.3. Engine FDI System Using Modular CNN Classifiers

Although different authors including Volponi [45] have argued that there is very little
chance for two or more rapid faults to occur simultaneously, public benchmark studies
from NASA [33] recommend considering multiple faults for more trustworthy diagnostic
solutions. The probability of having simultaneous faults depends on the flight environment
(e.g., rainy, sandy, salty, dusty, smoky, etc.) and the level of severity. In the current work,
single- and double-component faults were considered in a three-shaft turboshaft engine. A
modular CNN-based FDI algorithm was developed for this purpose in order to step-by-
step solve the engine problem to the component level. Using hierarchical networks is also a
common practice in image classification and has shown considerable advantages, because
it allows capturing the feature relationships between groups and subgroups. It also helps
to share the classification burden between a bank of classifiers arranged hierarchically. Four
different classification modules dedicated to handling specific tasks were used. The first
module (Classifier1) was trained to detect the presence of a fault. Classifier2 is activated
following a fault detection to distinguish between the single- and double-fault category.
The last two classifiers (Classifier3 and Classifier4) were trained to distinguish the affected
component(s). Classifier1 and Classifier2 are binary, whereas Classifier3 and Classifier4
can be either binary or multi-class classifiers depending on the number of faults they are
assigned to handle.

The complete activity of the fault analysis has two steps, as illustrated in Figure 7:
input data transformation and fault classification. The first step involves standardizing
the input data to enable the unbiased contribution of each measurement and enhance the
classification performance. Reshaping follows to convert the input data from a matrix
format to a 4D array, which can easily be used by the CNN model in MATLAB. In the next
step, the CNN algorithm was trained to extract features from the input data and map those
features to the fault classes considered. These steps are discussed further below.
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3.1.4. Input Data Preparation

In the field of machine diagnostics, using the CNN for fault classification was inspired
by its powerful feature learning and image recognition ability via imitating the image-
processing concept. This often requires a 2D data structure (or image), which is different
from the typically available 1D time series signals. Various signal transformation tech-
niques have been applied to convert signal data to images, including image transformation,
matrix transformation, time/frequency domain transformation, wavelet transformation,
and short-time Fourier transformation [24]. In the current experiment, the generated
measurement patterns were in a matrix format with a shape of (N ×M), where M is the
number of measurement parameters with N the number of samples. Min-max normal-
ization (Equation (4)) was implemented to scale the data to the range of −1 and 1. The
data were then transformed into a 4D array of shape ((width, height, channel, sample size)
as (rows, columns, channels, sample size)). Accordingly, the matrix data were converted
into the shape of (1, M, 1, N). While fitting the data to the CNN model, each of them was
considered an image with a dimension of width = 1, height = M, and channels = 1.

(
xj

i

)
nor

=

(
xj

max − xj
min

) (
xj

i − yj
min

)
ymax − ymin

+ xmin (4)

where
(

xj
i

)
nor

is the scaled value of signal xj
i , xj

i is the original ith signal of the jth sensor,

xj
min is the minimum value of the jth sensor, xj

max is the maximum value of the jth sensor,
ymin = −1, and ymax = 1.

3.1.5. CNN Architecture and Training

The architecture of the CNN model used in this paper was determined through a
training process. As described in Table 1, it consisted of two consecutive convolutional
layers followed by a single pooling layer with a ReLU [46] activation function and a
dropout layer in between. ReLU is a piecewise linear function that outputs zero when the
input value is negative and outputs the input as it is when the input is ≥0. This activation
function is popular in CNNs since it overcomes the vanishing gradient problem and often
achieves better performance [24]. The first convolutional layer contains 112 filters of size
1 × 10 with a stride 1× 1, whereas the second convolutional layer contains 212 filters of size
1× 2 and stride 1× 1. In these two convolutional layers, the input information is convolved
to capture representative signatures on the associated output feature maps. A maximum
pooling layer with filters of 1 × 2 and stride 1 × 1 was used for the downsampling
operation. A second dropout layer was added right after the pooling layer, followed by
a single fully-connected layer. The final layer of the structure is the output layer, which
is used to determine the class type based on probability distributions estimated by the
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softmax function. The Adam optimization algorithm was the learning algorithm selected,
which is an extension of the classical stochastic gradient descent learning scheme [47]. It
has the benefits of high computational efficiency along with little memory requirement.
Similar hyperparameters are applied for all the CNN models in the proposed hierarchy.

Table 1. Details of the CNN architecture and learning hyperparameters.

No. Layers and Learning Hyperparameters Description

1 Input layer 4D array input

2 Convolution Lyer 1 Convolution with 112 filters of size [1·10]
and stride [1·1]

3 Convolution Layer 2 Convolution with 212 filters of size [1·2]
and stride [1·1]

4 Activation layer ReLU
5 Dropout Layer 1 30% dropout
6 Pooling layer Max pooling of size [1·2] with stride [1·1]
7 Dropout Layer 2 30% dropout
8 Fully connected layer One fully connected layer
9 Output layer Softmax
10 Optimizer Adam
11 No. of epochs 20
12 Learning rate 0.01

In deep learning, training good models is challenged by the overfitting phenomenon.
This phenomenon must be controlled to achieve a more generalized solution. In CNNs,
overfitting can be handled either by involving the so-called “dropout” operation or based
on cross-validation. The former technique was introduced by Srivastava et al. [48]. It is
accomplished through randomly and temporarily dropping some hidden neurons within
the CNN structure. The latter applies a training stopping criterion using a dataset other
than the one used for training. Here, the network training should stop when the validation
error begins to increase while the training error keeps on decreasing. Zhao and Li [30]
applied the cross-validation technique in their suggested CNN-based gas turbine diagnostic
method. Using deep ensemble methods could also be considered as an alternative approach
to overcome overfitting, as well as quantify the uncertainty in the predictions made [49].
In the current paper, the authors applied the dropout concept with 30% dropouts to each
dropout layer involved in the structure.

3.2. Method for Comparison
3.2.1. Single CNN Classifier

An alternative CNN classifier was applied for comparison purposes. As illustrated in
Figure 8, a single CNN structure was trained to classify all the 22 engine conditions consid-
ered in this work, instead of multiple hierarchical CNN classifiers. Similar hyperparameters
and learning datasets as applied to demonstrate the proposed method were utilized.

3.2.2. Long Short-Term Memory

The performance of the proposed algorithm was further compared with an LSTM-
based classification algorithm. LSTM is a special kind of recurrent neural network (RNN) in
the deep-learning domain that can learn long-term dependencies from time series data and
capture the relations between input variables through backpropagation. It is more popular
in time series and sequence classification and prediction problems. Recently, considerable
reports have been presented on its application for system and rotating machinery health
management [24,50] including gas turbine prognostics [51–53]. There were also a few
attempts to employ LSTM for gas turbine diagnostics as well [54].
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The typical LSTM architecture for classification consists of an input layer, an LSTM
layer, followed by a standard feedforward output layer. The LSTM layer encodes the input
information in the time series or sequence via its memory unit or cell. Figure 9 shows an
LSTM unit with its three information regulators called gates (forget gate, input gate, and
output gate). The cell remembers values over arbitrary time intervals, while the input and
output gates regulate the information flow into and out of the cell, respectively.
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Based on the connections shown in Figure 9, the mathematical expressions used to
compute the outputs from the gates and the LSTM cell can be formulated as:

ft = σ
(

wh
f ·ht−1 + wx

f ·xt + b f

)
(5)

it = σ
(

wh
i ·ht−1 + wx

i ·xt + bi

)
(6)

gt = tanh
(

wh
g·ht−1 + wx

g·xt + bg

)
(7)

Ct = ψ+ϕ (8)
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Θt = σ
(

wh
Θ·ht−1 + wx

Θ·xt + bΘ

)
(9)

ht = tan h(Ct)×Θt (10)

where σ denotes the sigmoid activation function, ht−1 and Ct−1 refer to the previous hidden
state and cell state, respectively, and xt is the current input. ft, it, Θt, Ct, and ht are the
forget gate, input gate, output gate, cell state, and hidden state at time step t, respectively.
wh

f and wx
f denote the forget gate weights associated with the hidden state and the input,

respectively. wh
i and wx

i refer the input gate weights associated with the hidden state
and the input, respectively. wh

Θ and wx
Θ are the output gate weights associated with the

hidden state and the input, respectively. gt is a cell candidate in the input gate used to add
information to the cell state. wh

g and wx
g represent the weights associated with the hidden

state and the input, respectively. b f , bi, bg, and bΘ denote the forget gate, input gate, cell
candidate, and output gate bias, respectively.

LSTM can be modeled as a unidirectional LSTM (ULSTM) or bidirectional LSTM
(BiLSTM). In the former case, information flows in one direction, while the latter is an
extension of the former in which information flows both forward and backward. Some
studies indicated that the BiLSTM model provides better predictions than ULSTM, but
with a greater training time [55]. As presented in Table 2, four different LSTM models were
considered for this comparison. Each model is composed of seven layers: an input layer,
two LSTM layers with a dropout layer right after each LSTM layer to control overfitting,
a fully connected layer, and an output layer. Model 1 and Model 2 exploit ULSTM and
BiLSTM, respectively, while Model 3 and Model 4 use a combination of the two, but in
a different order. Then, as shown in Table 3, each model was employed to perform the
step-by-step classification tasks described in Section 3.1.

Table 2. LSTM-based comparison models.

No. Model 1
(ULSTM)

Model 2
(BiLSTM)

Model 3
(ULSTM-BiLSTM)

Model 4
(BiLSTM-ULSTM)

1 Input layer Input layer Input layer Input layer

2 ULSTM Layer 1 (with 70
hidden units)

BiLSTM Layer 1 (with
70 hidden units)

ULSTM layer (with
70 hidden units)

BiLSTM layer (with
70 hidden units)

3 Dropout Layer 1 (with 30%
dropouts)

Dropout Layer 1 (with
30% dropouts)

Dropout Layer 1 (with
30% dropouts)

Dropout Layer 1 (with
30% dropouts)

4 ULSTM Layer 2 (with 70
hidden units)

BiLSTM Layer 2 (with
70 hidden units)

BiLSTM layer (with
70 hidden units)

ULSTM layer (with
70 hidden units)

5 Dropout Layer 2 (with 30%
dropouts)

Dropout Layer 2 (with
30% dropouts)

Dropout Layer 2 (with
30% dropouts)

Dropout Layer 2 (with
30% dropouts)

6 Fully connected layer Fully connected layer Fully connected layer Fully connected layer
7 Output layer Output layer Output layer Output layer

Table 3. Compared LSTM models at different stages of the fault classification.

Classifier Model 1 Model 2 Model 3 Model 4

Classifier1 ULSTM1 BiLSTM1 ULSTM-BiLSTM1 BiLSTM-ULSTM1
Classifier2 ULSTM2 BiLSTM2 ULSTM-BiLSTM2 BiLSTM-ULSTM2
Classifier3 ULSTM3 BiLSTM3 ULSTM-BiLSTM3 BiLSTM-ULSTM3
Classifier4 ULSTM4 BiLSTM4 ULSTM-BiLSTM4 BiLSTM-ULSTM4

3.3. Performance Evaluation Metrics

The performance of the detection module, Classifier1, was evaluated based on five in-
dicators: true positive rate (TPR), true negative rate (TNR), false positive rate (FPR (or false
alarm rate (FAR)), false negative rate (FNR) (or missed detection rate (MDR)), and overall
detection accuracy (ODA). Similarly, different classification performance indicators were
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implemented for Classifier2, Classifier3, and Classifier4 based on classification confusion
metrics (Table 4). These indicators were adapted from [39,56] and briefly described below:

Table 4. Multiclass classification confusion matrix and evaluation.

Predicted Sate

Fault 1 (F1) Fault 2 (F2) . . . Fault n (Fn) Total CCR ICR

Tr
ue

St
at

e

Fault 1 (F1) F11 F12 . . . F1n ∑ F1 =
n
∑

i=1
F1i CCR1 = F11

∑ F1
1−UA1

Fault 2 (F2) F21 F22 . . . F2n ∑ F2 =
n
∑

i=1
F2i CCR2 = F22

∑ F2
1−UA2

...
...

... . . .
...

...
...

Fault n (Fn) Fn1 Fn2 . . . Fnn ∑ Fn =
n
∑

i=1
Fni CCRn = Fnn

∑ Fn 1−UAn

Total ∑ F1∗ =
n
∑

i=1
Fi1 ∑ F2∗ =

n
∑

i=1
Fi2 . . . ∑ Fn∗ =

n
∑

i=1
Fin N =

n
∑

i=1
∑ Fi

Pr P1 = F11
∑ F1∗ P2 = F22

∑ F2∗ . . . Pn = Fnn
∑ Fn∗ OCA =

∑n
i=1 Fii

N

PrE 1− P1 1− P2 . . . 1− Pn

Overall classification accuracy (OCA): Diagonal cells of the decision matrix contain
the number of correctly classified fault cases associated with each fault considered in the
classification. The ratio of the sum of these cases and the total number of cases used in
the classification gives the OCA of the algorithm. However, since OCA indicators can be
misleading, the classification accuracy for each fault class should also be assessed for a
complete and meaningful picture. That means there is a possibility to have a high OCA,
while individual fault classification results show considerable errors;

Correct classification rate (CCR) (also called recall): This indicates the number of
correctly classified fault cases with respect to each fault class. The CCR can be described as
the number of correctly classified fault cases divided by the total number of cases in that
particular fault (refer to Column 8 of Table 4 for the mathematical expression);

Incorrect classification rate (ICR): Incorrect classification occurs when the classifier
wrongly predicts some fault data points as another class that do not belong to it. It is
calculated by dividing the sum of wrongly classified cases to the total number of cases
used for that fault (ICR = 1 − CCR; Column 9 of Table 4);

Precision (Pr): Precision is another useful classification accuracy index for a fault class.
It is the ratio of correctly classified cases of a fault to the total number of cases predicted
as belonging to that fault type (refer to Row 8 of Table 4 for the mathematical expression).
Precision error (PrE) = 1 − Pr;

Kappa coefficient (KC): This measures the degree of agreement between recall and
precision. The value of the KC is always less than or equal to one. If KC ≤ 0, then there
is no agreement between the predicted and true value. If KC = 1, then the classification is
perfect. Hence, the higher the KC, the more accurate the classification is. Let Ftp represent
the cell value of the fault in the confusion matrix (where t refers to the true class and p the
predicted class), then the KC can be expressed as:

KC =
∑n

t=1 Ftt −∑n
t=1

[
∑n

p=1
Ftp

∑n
t=1 ∑n

t=1 Ftp
·∑n

p=1 Fpt

]
∑n

t=1 ∑n
p=1 Ftp −∑n

t=1

[
∑n

p=1
Ftp

∑n
t=1 ∑n

p=1 Ftp
·∑n

p=1 Fpt

] (11)
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3.4. Synthetic Data Generation

The data required to demonstrate and validate the proposed method were generated
from a performance model of a three-shaft turbofan engine. This involved both gradual
and rapid degradation scenarios at a steady-state condition. An in-house engine simulation
software, called EVA [57,58], was used for this purpose. The tool can perform simulations
for any kind of gas turbine engine in any configuration under both steady-state and
transient operating conditions. Figure 10 illustrates the schematics of the engine under
consideration with the locations of the measurement stations. The description of each
measurement used for the engine diagnostics with the associated level of noise considered
is provided in Table 5. Gaussian noise was added for each measurement with a standard
deviation (σ) in percent of the measured values. The model is thermodynamically similar
to a 70,000 lbf-class engine with technology levels consistent with entry into service in 1995.
Some specifications at top of climb are provided in Table 6. In the present work, the FAN,
intermediate-pressure compressor (IPC), high-pressure compressor (HPC), high-pressure
turbine (HPT), intermediate-pressure turbine (IPT), and low-pressure turbine (LPT) were
selected as the target gas path components due to their exposure to degradation.
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Table 5. Sensors’ list with the considered noise level.

Parameters Description Noise (σ)

T23 Fan exit total temperature ±0.4%
P23 Fan exit total pressure ±0.25%
T25 IPC exit total temperature ±0.4%
P25 IPC exit total pressure ±0.25%
T3 HPC exit total temperature ±0.4%
P3 HPC exit total pressure ±0.25%
N4 HP shaft speed ±0.05%

N43 IP shaft speed ±0.05%
N46 LP shaft speed ±0.05%
P43 HPT exit total pressure ±0.25%
P46 IPT exit total pressure ±0.25%
P5 LPT exit total pressure ±0.25%

3.4.1. Gradual Degradation Simulation

Gradual degradation was simulated by simultaneously adjusting the flow capacity
and efficiency deltas (∆η, ∆Γ) of the six gas path components (FAN, IPC, HPC, HPT, IPT,
and LPT) based on the values provided in Table 7 [37]. Since the type of gas turbine studied
in [37] was a two-shaft turbofan engine (which means it did not have an LPT), a similar
level of degradation as that of the IPT was considered for the LPT of the current engine.
The modification factors were implanted into the performance model of the engine, starting
from zero to the maximum values and assuming linear degradation trends. Initial wear
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(i.e., at flight cycle = 0) due to manufacturing inefficiencies was not considered. Since the
gradual degradation was not considered a fault for a short period, the measurement deltas
associated with this degradation were used as a baseline to estimate the measurement
residuals due to rapid faults.

Table 6. Nominal conditions at top of climb.

Parameters Values

Flight altitude 10,668 m
Flight Mach no. 0.82

Bypass ratio 4.7
Overall pressure ratio 34
HPT inlet temperature 1625 K

Specific thrust 167 N·s/kg

Table 7. Engine performance losses in percent due to gradual degradation in terms of efficiency and flow capacity deltas;
adapted from [37].

Flight
Cycle

FAN IPC HPC HPT IPT LPT

∆η ∆Γ ∆η ∆Γ ∆η ∆Γ ∆η ∆Γ ∆η ∆Γ ∆η ∆Γ

0 0 0 0 0 0 0 0 0 0 0 0 0
6000 −2.85 −3.65 −2.61 −4.00 −9.40 −14.06 −3.81 2.57 −1.078 0.4226 −1.078 0.4226

3.4.2. Rapid Degradation/Fault Simulation

A total of 21 gas path faults (6 single-component faults (SCFs) and 15 double-component
faults (DCFs)) were considered, as presented in Table 8. For each fault type, modular faults
were simulated by simultaneously adjusting the ∆η and ∆Γ values based on Equation (12).
Pattern generation was then performed, as explained in Section 3.1, to find patterns of
measurement deviations (residuals) due to measurement noise and actual faults. In this
case, measurements from the gradual degradation were taken as references. Significant
measurement noise was included in the data based on Table 5, to evaluate the tolerance of the
diagnostic system against measurement uncertainty effects.

Table 8. Description of faults considered.

No. Fault Type Fault ID Fault Magnitude (FM) Category

0 Healthy H 0 H H

1 FAN fault F1 0→ 5% (on top of the gradual degradation)

F

SCF

2 IPC fault F2 0→ 5% (on top of the gradual degradation)
3 HPC fault F3 0→ 5% (on top of the gradual degradation)
4 HPT fault F4 0→ 4% (on top of the gradual degradation)
5 IPT fault F5 0→ 4% (on top of the gradual degradation)
6 LPT fault F6 0→ 4% (on top of the gradual degradation)

7 FAN + IPC F7 0→ 5% for each fault (on top of the gradual degradation)

DCF

8 FAN + HPC F8 0→ 5% for each fault (on top of the gradual degradation)
9 FAN + HPT F9 0→ 5% for the FAN fault and 0→ 4% for the HPT fault

10 FAN + IPT F10 0→ 5% for the FAN fault and 0→ 4% for the IPT fault
11 FAN + LPT F11 0→ 5% for the FAN fault and 0→ 4% for the LPT fault
12 IPC + HPC F12 0→ 5% for each fault (on top of the gradual degradation)
13 IPC + HPT F13 0→ 5% for the IPC fault and 0→ 4% for the HPT fault
14 IPC + IPT F14 0→ 5% for the IPC fault and 0→ 4% for the IPT fault
15 IPC + LPT F15 0→ 5% for the IPC fault and 0→ 4% for the LPT fault
16 HPC + HPT F16 0→ 5% for the HPC fault and 0→ 4% for the HPT fault
17 HPC + IPT F17 0→ 5% for the HPC fault and 0→ 4% for the IPT fault
18 HPC + LPT F18 0→ 5% for the HPC fault and 0→ 4% for the LPT fault
19 HPT + IPT F19 0→ 4% for each fault (on top of the gradual degradation)
20 HPT + LPT F20 0→ 4% for each fault (on top of the gradual degradation)
21 IPT + LPT F21 0→ 4% for each fault (on top of the gradual degradation)
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The listed faults in Table 8 were randomly implanted into the model in the occurrence
of gradual degradation. Each fault was assumed to cover 200 flights from initiation to
reaching its maximum severity. When the next fault scenario started, we set the previous
fault scenario to zero, and so on, until the last fault scenario occurred. Accordingly,
176,940 samples were extracted from this degradation profile for the CNN demonstration
under different noise levels. For the 12 sensors (T23, P23, T25, P25, T3, P3, N4, N44, N46,
P43, P46, and P5) considered in this work, the data became a matrix of 12-by-176,940.
This data were then scaled and converted into a 4D array of shape (1, 12, 1, 176,940) in
preparation for the CNN model. We divided it into different groups while conducting
the training.

Fault magnitude (FM) =

√
[∆η]2 + [∆Γ]2 (12)

4. Results and Discussion

We performed a modular-CNN-based engine fault detection and isolation for a triple-
spool turbofan engine application. In this framework, four CNN modules were trained
individually and connected in such a way that they could first detect a fault and then
isolate to the component level. A series of experiments was carried out aiming to select
the optimal CNN structure associated with each classifier. The impacts of the important
hyperparameters in the CNN training including the number of filters and size, number
of layers and order of arrangements, type of optimization algorithm, and number of
epochs were analyzed. For instance, different numbers of filters in the range of 1–256
were investigated.

Based on the training results, a similar CNN architecture was selected for all modules
involved in the framework. The only difference was the training data size used and the
number of outputs associated with the classification problem to which they were assigned.
For each classification module in the hierarchy, the selected architecture with the best
performance consisted of double consecutive convolutional layers followed by a single
pooling layer, including ReLU and dropout layers in between. Considering a second
convolutional layer, with an increased number of filters and decreased filter size compared
to the first convolutional layer, we demonstrated better classification performance. For
all modules, 20 epochs (27,640 iterations with 1382 iterations per epoch) were required to
reach the maximum accuracy. Adam was the optimization algorithm utilized primarily
due to its simplicity and little memory requirement.

4.1. Fault Detection

The best classification results for CNN1 are presented in Figure 11. The results
on the main diagonal of the detection decision matrix show the number of correctly
detected patterns with respect to the health and fault class, whereas the values to the
right and left side of the diagonal represent wrong detections. As presented in Table 9,
the detection accuracy of the algorithm was then assessed in terms of the standard fault
detection accuracy indicators. Ideally, a fault detection system is required to have negligible
false alarm and missed detection rates, but this is practically difficult to achieve due to
several factors including measurement noise, feature extraction limitations, and insufficient
sampling [59]. When the detection system becomes more sensitive to faults aiming to
provide early warnings and avoid unexpected failures, the frequency of false alarms rises.
A high false alarm rate is one of the common problems of the traditional threshold-based
gas turbine health management technologies [59]. This may be among the reasons why
high feature extraction techniques have been receiving more attention in resent studies.
As shown in this figure, generally, a 95.9% overall detection accuracy was achieved with
a 0.4% FAR and a 13.2% MDR. The TPR was low because low-level faults up to 0.025%
(i.e., ∆η = 0.01% and ∆Γ = 0.02% according to Equation (12)) were considered. About
20% of the fault data were generated from fault magnitudes ≤1%. This indicates that
increasing the lower detectable fault, say for example to 0.25% will enhance the detection
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accuracy considerably by increasing the TPR and decreasing the FAR. Hence, considering
the measurement noise effects, the obtained FAR and MDR values are encouraging.
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Table 9. Comparison of Adam, sgdm, and RMSprop optimization algorithms.

Optimizer Data Size

Accuracy (%)

TPR TNR FAR MDR
Pr

ODA
H F

Adam 176,940 86.8 99.7 0.3 13.2 95.0 98.9 95.9
sgdm 176,940 86.1 99.3 0.7 12.6 95.1 98.1 95.9

RMSProp 176,940 82.6 99.7 0.3 17.4 93.8 98.5 94.9

The effect of the optimization algorithm on the classification performance was also
investigated. A comparison was made against two other popular algorithms, namely
stochastic gradient descent with momentum (sgdm) and root-mean-squared propagation
(RMSProp) [60], under similar circumstances. As shown in Table 9, all three optimizers
had similar performances with a maximum overall accuracy difference in the order of 1%.
Nevertheless, as Adam is known for its low memory and computational requirements
and has some additional advantages in deep-learning applications [60], it was selected for
training all CNN models in the proposed framework.

Effect of the Data Distribution

It is known that the accuracy of deep-learning methods often relies on the amount
of data available for training, and the degree of dependency differs from case to case [61].
Increasing the training sample until it becomes enough to represent the distribution of
the data required to define the nature of the problem under consideration usually im-
proves the prediction accuracy. However, memory and computational burden should be
taken into consideration. Using a high-performance computer (HPC) or GPU can over-
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come this problem. Another important factor to be noted is that the distribution of the
datasets representing the two classes should not be skewed. This is because most ML
algorithms often experience poor classification performance due to the high chance of
biasedness to the majority class. In contrast, imbalanced data availability is a common
problem in fault detection, since in real-life operations, most of the samples available are
for the healthy state of the asset [31]. In this experiment, six different randomly selected
datasets of size 72,000 (≈30%H and 70%F), 92,988 (≈46%H and 54%F), 113,976 (≈56%H
and 44%F), 134,964 (≈63%H and 37%F), 155,952 (≈68%H and 32%F), and 176,940 (≈72%H
and 28%F) were considered for CNN1. In all these datasets, the same 50,400 fault cases
were used. There were 30% random dropouts applied right before the pooling layer and
fully-connected layer to control the overfitting problem.

Table 10 summarizes the detection results obtained based on the six data groups. The
results revealed that the overall detection accuracy increased with increasing the sample
size. For example, increasing the size from Set-1 to Set-2 enhanced the ODA by 1.8%
with a 3.2% lower FAR and a 1.5 higher MDR. When Set-6 was applied instead, the ODA
rose by 5.2%, while the FAR dropped by 6.1% and the MDR rose by 2.6%. The observed
differences in the calculated performance indicators were because of the difference in the
healthy-to-faulty data proportion among the six data groups.

Table 10. Effect of data size on the detection accuracy of CNN1.

Dataset
Optimizer

Accuracy (%)

TPR TNR FAR MDR
Pr

ODA
Group Size H H

Set-1 72,000 Adam 89.4 93.5 6.5 10.6 79.1 97.0 90.7
Set-2 92,988 Adam 87.9 96.7 3.3 12.1 87.1 96.9 92.0
Set-3 113,976 Adam 86.9 97.4 2.6 13.1 90.2 96.4 92.7
Set-4 134,964 Adam 88.6 97.5 2.5 11.4 93.5 95.5 94.2
Set-5 155,952 Adam 86.5 99.2 0.8 13.5 93.9 98.1 95.1
Set-6 176,952 Adam 86.8 99.6 0.4 13.2 95.0 98.9 95.9

4.2. Fault Isolation

The next step in the diagnostic process is root cause determination (or fault classifica-
tion). Upon fault detection through CNN1, the underlying faults were isolated applying
CNN2 followed by CNN3 and CNN4. The classification results obtained from CNN2,
CNN3, and CNN4 are presented in Tables 11–13, respectively. The classification accuracy
indicators described in Section 3.3 were used. For CNN2 and CNN3, an OCA performance
better than 99% and for CNN4 an OCA performance better than 98% were achieved. Simi-
larly, KC values higher than 0.98 were obtained for all three models. The ~1% accuracy
difference between the CNN3 and CNN4 modules was expected due to: (1) the difference
in the number of faults that they were responsible for and (2) the difficulty of simultaneous
fault classification. On the other hand, the similar accuracy observed for different fault
states within a classifier could be due to the equal data size contribution of each class in
the training dataset and their relationship (the slight accuracy differences were expected
due to the nature of the training itself). Model complexity and computational requirements
were found to reduce from top to bottom. This can be attributed to the difference in the
number of classes involved corresponding to each module, as well as the learning data
size used. Overall, the obtained results demonstrated the excellent potential of CNNs for
engine gas path components’ FDI.



Machines 2021, 9, 337 20 of 27

Table 11. CNN2 classification accuracy assessment results.

Fault
Accuracy (%)

CCR ICR Pr PrE

SCF 98.6 1.4 99.5 0.5
DCF 99.8 0.2 99.4 0.6

OCA 99.4

KC 0.9853

Table 12. CNN3 classification accuracy assessment results.

Fault
Accuracy (%)

CCR ICR Pr PrE

F1 99.8 0.2 99.8 0.2
F2 99.5 0.5 99.6 0.4
F3 99.3 0.7 98.5 1.5
F4 99.0 1.0 99.6 0.4
F5 98.3 1.7 99.2 0.8
F6 100 0.0 99.0 1.0

OCA 99.3

KC 0.9916

Table 13. CNN4 classification accuracy assessment results.

Fault
Accuracy (%)

CCR ICR Pr PrE

F7 100 0 97.8 2.2
F8 97.6 2.4 96.0 4.0
F9 98.3 1.7 99.0 1.0
F10 96.5 3.5 98.6 1.4
F11 97.0 3.0 99.7 0.3
F12 99.6 0.4 97.4 2.6
F13 99.4 0.6 99.0 1.0
F14 98.0 2.0 99.7 0.3
F15 99.8 0.2 98.9 1.1
F16 97.7 2.3 97.6 2.4
F17 97.2 2.8 99.8 0.2
F18 98.9 1.1 96.2 3.8
F19 96.1 3.9 99.1 0.9
F20 97.3 2.7 96.3 3.7
F21 99.8 0.2 98.3 1.7

OCA 98.2

KC 0.9807

4.3. The Proposed Method vs. a Single Network Classifier

A single CNN model was trained to classify the 22 classes at once, and the results were
compared with those of the proposed method. As reported in Table 14, the model achieved
a 96% overall accuracy with a 0.9167 KC. Although both the OCA and KC indicators
appeared to be high, the accuracy recorded for some of the faults, for instance F3, F6, F12,
and F18, showed considerable errors. Using such a single network to assess the health of
the entire gas path system has additional disadvantages: (1) the complexity of the model
increases with the increasing number of faults; (2) a fault detection should first take place
before any further investigation is performed; (3) high computational burden. This may
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be the reason why recent studies have been paying more attention to multiple model
approaches [62].

Table 14. Engine fault classification accuracy based on the single CNN structure.

Fault
Accuracy (%)

CCR ICR Pr PrE

H 99.7 0.3 95.3 4.7
F1 94.8 5.2 99.1 0.9
F2 85.5 14.5 99.5 0.5
F3 78.5 21.5 99.9 0.1
F4 95.2 4.8 97.6 2.4
F5 93.0 7.0 99.9 0.1
F6 9.0 91.0 72.4 27.6
F7 94.5 5.5 96.1 3.9
F8 89.3 10.7 92.5 7.5
F9 96.3 3.7 98.8 1.2

F10 92.6 7.4 99.9 0.1
F11 91.3 8.7 97.1 2.9
F12 82.3 17.7 99.4 0.6
F13 94.1 5.9 99.3 0.7
F14 95.2 4.8 99.1 0.9
F15 89.7 10.3 94.3 5.7
F16 89.3 10.7 98.9 1.1
F17 93.5 6.5 99.8 0.2
F18 80.6 19.4 99.3 0.7
F19 94.9 5.1 99.1 0.9
F20 91.0 9.0 99.5 0.5
F21 93.5 6.5 96.0 4.0

OCA 96.0

KC 0.9167

4.4. CNN vs. LSTM

As the CNN, the best architecture for each classification module in the hierarchy
was determined through a training experiment. The hyperparameters considered in the
investigation include the number of layers, number of hidden units in each LSTM layer,
number of dropout layers and their corresponding percentage dropout values to avoid
overfitting, the batch size, and number of epochs required to complete the training. The
efficient Adam optimization algorithm was used for all models. Figure 12 shows the
influence of the number of epochs, hidden units, and batches on the classification accuracy
and training time of the four ULSTM modules. For an arbitrary batch size and number
of hidden units, the classification accuracy increased with increasing epochs up to 10.
Thenceforth, the accuracy did not change significantly. Similarly, for a given random
number of epochs and batch size, the accuracy increased with the increasing number of
hidden units up to 40 and showed negligible changes from there on. On the other hand,
it was observed that both too small and too high batch size values reduced the accuracy.
In all the cases, the highest training time recorded was for Classifier1 due to the data
size used for training. However, training time could not be an issue if high-performance
computers/hardware, such as GPU, or parallel computing are used.

Based on the training performances, the number of epochs, hidden units, and batches
were fixed as 10, 70, and 100, respectively, for all classifiers. The comparison results
presented hereafter were based on these hyperparameters. Tables 15 and 16 present the fault
detection and fault classification comparison results obtained, respectively. The detection
results revealed that both the CNN and LSTM methods considered in this comparison
showed similar accuracy. ULSTM-BiLSTM1 should some advantages in terms of the FAR
(0.2% lower than CNN1, 0.3% lower than ULSTM1 and BiLSTM-ULSTM1, and 0.4% lower
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than BiLSTM1), but on the other hand, it showed the lowest TPR (87%) and ODA (96%).
CNN1 had the highest ODA (96.5%) and true positive rate (89.2%) and the second lowest
FAR (0.6%).
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Figure 12. Number of epochs, number of hidden units, and batch size vs. classification accuracy and training time for the
ULSTM classifiers.

Table 15. Fault detection comparison results.

Model

Accuracy (%)

TPR TNR FAR MDR
Pr

ODA
H F

CNN1 89.2 99.4 0.6 10.8 95.9 98.3 96.5
ULSTM1 88.6 99.3 0.7 11.4 95.6 98.1 96.3
BiLSTM1 89.1 99.2 0.8 10.9 95.8 97.7 96.3
ULSTM-
BiLSTM1 87.0 99.6 0.4 13 95.0 98.8 96.0

BiLSTM-
ULSTM1 88.6 99.3 0.7 11.4 95.6 98.1 96.3

Rank

CNN1 1st 2nd 3rd 4th 1st 2nd 1st
ULSTM1 3rd 3rd 2nd 2nd 3rd 3rd 2nd
BiLSTM1 2nd 4th 1st 3rd 2nd 4th 2nd
ULSTM-
BiLSTM1 4th 1st 4th 1st 4th 1st 3rd

BiLSTM-
ULSTM1 3rd 3rd 2nd 2nd 3rd 3rd 2nd
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Table 16. Fault isolation comparison results.

Accuracy (%)

CNN ULSTM BiLSTM ULSTM-BiLSTM BiLSTM-ULSTM

Fault CCR Pr OCA CCR Pr OCA CCR Pr OCA CCR Pr OCA CCR Pr OCA

SCF 99.28 100
99.9

99.7 99.9
99.9

99.9 99.8
99.9

99.9 99.8
99.9

99.9 99.8
99.9DCF 100 99.9 100 99.9 99.9 100 99.9 100 99.9 100

F1 99.8 99.9

99.5

98.1 98.3

98.3

97.6 98.6

98.3

97.4 98.5

98.2

97.8 98.5

98.3

F2 99.5 99.5 98.2 98.1 98.5 97.6 98.4 97.4 98.4 97.8
F3 99.3 98.6 97.1 96.6 99.0 94.9 97.4 96.4 98.5 95.5
F4 99.1 99.7 96.9 97.2 95.3 99.1 96.9 97.5 95.7 98.8
F5 99.2 99.3 99.4 99.8 99.4 99.8 99.4 99.8 99.6 99.5
F6 99.8 99.8 99.9 99.6 99.9 99.7 99.8 99.7 99.8 99.8

F7 99.8 100

99.5

100 99.8

99.3

100 100

99.6

100 100

99.6

100 100

99.4

F8 99.4 98.9 99.1 98.2 99.6 99.2 99.4 99.3 99.9 97.2
F9 99.1 99.0 98.3 99.0 99.1 99.1 99.2 98.9 97.2 99.6
F10 99.5 99.7 99.4 99.1 99.5 99.5 99.4 99.7 99.3 99.8
F11 99.5 99.7 99.0 99.5 99.3 99.8 99.7 99.7 99.7 99.4
F12 99.6 99.5 98.9 99.3 99.9 99.6 99.7 99.7 99.6 98.8
F13 99.5 99.5 99.6 99.1 99.7 99.8 99.8 99.5 98.7 99.9
F14 99.7 99.6 99.6 99.6 99.6 99.8 99.5 99.7 99.6 99.8
F15 99.7 99.7 99.5 99.6 99.9 99.5 99.7 99.5 99.9 99.5
F16 99.5 99.7 99.7 99.1 99.6 99.8 99.8 99.5 99.6 99.7
F17 99.6 99.6 99.4 99.7 99.7 99.5 99.3 99.9 99.7 99.5
F18 99.9 99.6 99.6 99.8 99.8 99.8 100 99.5 99.7 99.7
F19 99.7 99.8 99.6 99.6 99.7 99.8 99.4 100 99.4 99.9
F20 99.6 99.1 99.5 98.9 99.4 99.4 99.7 98.8 99.5 99.3
F21 99.4 99.7 99.0 99.6 99.6 99.5 99.1 99.6 99.6 99.4

4.5. Evaluation Based on Extrapolation Data

The generalization performance of the CNN and LSTM algorithms was also assessed
and compared based on extrapolation data to ensure the stability of the models. The
extrapolation data in this case represent performance data of the engine that are not
part of the 176,940 datasets. Figure 13 illustrates the fault patterns used to generate the
176,940 data (FM1 and FM2) and the extrapolation data (FM3 to FM8). FM1 refers to the
fault magnitude used for the FAN, IPC, and HPC and FM2 for the HPT, IPT, and LPT based
on a 2:1 ratio between flow capacity and efficiency changes. Although the 2:1 ratio is the
common practice in gas turbine diagnostics [39], this does not seem to be the only possible
scenario occurring, according to the reports on gas turbine degradation [1]. Hence, in order
to evaluate the influence of the ratio change on the diagnostic accuracy, 3:1, 2.25:1, and 3:2
ratios were considered to generate the extrapolation data.

For the FAN, IPC, and HPC faults, both flow capacity and efficiency values reduced,
as seen in the patterns below the zero axis. For the HPT, IPT, and LPT faults, flow capacity
increased while efficiency decreased (i.e., the patterns above the zero axis). Module faults
are represented in terms of the root sum square of the two performance parameters.

Since the four LSTM models used in the comparative analysis showed similar accuracy,
only the results obtained from the ULSTM algorithm are included in Table 17, due to the
space limitation. It is seen that the CNN classifiers had better generalization performance
than the LSTM classifiers. When the extrapolation data were used, the single-fault classifi-
cation accuracy and double-fault classification accuracy of the CNN algorithm reduced
by 1.8% and 2.8%, respectively. However, the higher than 96% accuracy achieved for both
single- and double-component fault classification was in the acceptable performance range
to determine the type of the fault that the gas turbine engine had encountered.
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Table 17. Comparison results based on the extrapolation data.

Fault
CNN ULSTM

CCR Pr OCA CCR Pr OCA

SCF 98.8 99.9
99.6

89.1 100
96.9DCF 100 99.5 100 95.8

F1 97.9 99.5

97.8

94.1 99.6

93.5

F2 99.5 98.0 99.6 94.3
F3 97.7 95.8 72.9 97.3
F4 94.3 99.7 95.0 98.2
F5 99.8 94.8 99.6 93.4
F6 97.7 99.5 99.8 82.1

F7 99.9 99.9

96.7

94.1 100

95.3

F8 97.3 99.2 65.1 90.1
F9 99.8 98.1 97.6 99.2
F10 99.4 95.5 96 99.6
F11 97.6 94.8 99.6 72.9
F12 92.7 97.1 94.4 96.8
F13 98.4 97.4 99.3 98.8
F14 98.3 96.6 97.3 99.2
F15 96.1 98.0 100 92.2
F16 98.5 97.9 98.6 97.4
F17 98.1 91.5 97.1 100
F18 95.6 90.4 99.8 94.1
F19 93.4 96.6 96.6 99.9
F20 90.5 99.5 97.1 96.9
F21 95.6 100 96.8 100
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5. Conclusions and Future Work

An adaptive performance-model-assisted deep-convolutional-neural-network method
was presented for three-shaft turbofan engine fault diagnostics. The adaptive scheme was
applied to track the performance parameter deterioration profiles of the engine gas path
and generate fault signatures. A group of deep convolutional neural network modules was
integrated to hierarchically detect rapid and persistent faults and isolate the underlying
faults, using the fault signatures generated by the adaptive scheme. The performance of the
method proposed was evaluated based on a variety of single- and multiple-fault scenarios,
and over 96% detection and isolation accuracies were achieved. This reveals the potential of
convolutional neural networks to effectively detect and isolate both single and multiple gas
path faults. Moreover, the method proposed was compared with two alternative methods,
clearly showing that it outperformed both methods. In the future, the authors would like
to extend the application of this method for sensor fault/failure detection and isolation and
missing sensor replacement purposes. Additionally, the effects of flight-to-flight operating
condition variations and engine-to-engine manufacturing tolerances will be analyzed.
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