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Abstract: This paper introduces a new intelligent fault diagnosis method based on stack pruning
sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN). This method pro-
cesses the original input data by using a stack denoising autoencoder. Different from the traditional
autoencoder, stack pruning sparse denoising autoencoder includes a fully connected autoencoding
network, the features extracted from the front layer of the network are used for the operation of
the subsequent layer, which means that some new connections will appear between the front and
rear layers of the network, reduce the loss of information, and obtain more effective features. Firstly,
a one-dimensional sliding window is introduced for data enhancement. In addition, transforming
one-dimensional time-domain data into the two-dimensional gray image can further improve the
deep learning (DL) ability of models. At the same time, pruning operation is introduced to improve
the training efficiency and accuracy of the network. The convolutional neural network model with
sPSDAE has a faster training speed, strong adaptability to noise interference signals, and can also
suppress the over-fitting problem of the convolutional neural network to a certain extent. Actual ex-
periments show that for the fault of unmanned aerial vehicle (UAV) blade damage, the sPSDAE-CNN
model we use has better stability and reliable prediction accuracy than traditional convolutional
neural networks. At the same time, For noise signals, better results can be obtained. The experimental
results show that the sPSDAE-CNN model still has a good diagnostic accuracy rate in a high-noise
environment. In the case of a signal-to-noise ratio of −4, it still has an accuracy rate of 90%.

Keywords: intelligent fault diagnosis; stacked pruning sparse denoising autoencoder; convolutional
neural network; anti-noise

1. Introduction

UAVs are very suitable for performing tasks in spacious indoor and outdoor environ-
ments, such as personnel search and rescue, material transportation, military patrol and
surveillance, pesticide spraying, crop seeding, etc. Due to the increasing complexity of the
tasks performed by drones, the sensors and actuators on the drone are becoming more
and more complex, and the reliability requirements of the drone are getting higher and
higher during the mission. Once the drone has a serious fault in flight, it will cause more
serious property losses, and in more serious cases, it may cause casualties [1]. During the
flight of the drone, any minor fault can easily cause the drone itself to malfunction, thereby
affecting the sensors, actuators, and other related equipment on the drone. Therefore, the
safety and reliability of UAVs is now an issue worthy of study and discussion. At the same
time, we also need to specifically consider the different types of faults of different types of
UAV [2].
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For various faults on the drone, the drone control system can respond to the faults
on the drone only when the system identifies and diagnoses each fault, respectively, so
as to minimize the loss of personnel and property in the case of UAV faults. One of the
main issues is the identification of faults in drones. The identification of faults is mainly
divided into knowledge-based fault methods, model-based fault diagnosis methods, and
data-based fault diagnosis methods.

The main knowledge-based fault diagnosis methods are symbolic expert systems [3],
symbolic directed graph (SDG) methods, and fault tree methods. In [4], the symbolic
directed graph is introduced, the symbolic directed graph is mainly a graphical model
based on causality. In [5], the fault diagnosis method based on the fault tree is mainly
introduced, the fault tree uses a graphical method for fault diagnosis. A fault tree is formed
by connecting the fault in the system and the cause of the system fault. When the system
fails, the cause of the system fault is deduced from the current fault state of the system
from the bottom to the top. As a knowledge-based fault diagnosis method, the diagnosis
model is simple, and the diagnosis results are easier to apply in practical engineering.
However, because knowledge-based fault diagnosis requires learning the types of faults
to be diagnosed, when a fault that is not in the knowledge base occurs in the system, the
system will not be able to provide the correct diagnosis result.

The model-based fault diagnosis method [6] is based on the accurate mathematical
model of the system. In the analytical model of the system, the residual signal between the
input and output of the system is obtained by observation and measurement. By analyzing
the residual signal in the system, the difference between the actual output and the expected
output of the system can be obtained. Therefore, the system can be diagnosed based on these.

The data-driven fault diagnosis method is to classify and identify all the non-faulty and
faulty data of the system, so the system’s fault diagnosis can be realized without obtaining
the precise mathematical model of the system. Data-based fault diagnosis methods mainly
include machine learning methods [7], signal processing methods [8], information fusion
methods [9], rough set methods [10], multivariate statistical analysis methods [11], etc.
Because the data-based fault diagnosis method does not rely on the accurate model of
the system for diagnosis, it is better to use the data-based method for fault diagnosis for
complex high-level systems that are difficult to accurately model. However, because the
data-based fault diagnosis method does not depend on the internal structure of the system,
the interpretability of the results of system fault diagnosis is not very good [12].

At present, many intelligent fault diagnosis methods have been proposed in various
research fields. In literature [13,14], the bearing is taken as the research object to study the
relationship between the data collected by the bearing in different types of damage; in
article [15,16], the fault diagnosis of drill is realized by analyzing the thermal image and
vibration data of drill; in [17,18], the researchers took the battery pack as the research object
and applied the intelligent fault diagnosis algorithm proposed by themselves to the actual
battery system to diagnose the battery pack; in the research field of gearbox and high-speed
train, a large number of fault diagnosis methods have also been proposed; in [19,20], it was
studied how to judge the fault type through the collected signal when the gearbox fails;
several new intelligent fault diagnosis methods are mainly proposed in [21–23], and good
results have been achieved in the fault diagnosis of high-speed trains. Although many
fault diagnosis methods have been proposed, there are still few intelligent fault diagnosis
methods for UAVs. Therefore, we choose the quad-rotor UAVs as the research object in
this paper.

During the operation of the quad-rotor UAV, the actuator or structure of the drone
malfunctioned due to the operation problem of the pilot or due to some non-human
reasons. In the literature [24], the researchers collected the vibration signal of the aircraft
frame through the analysis of these data to diagnose whether the motor is malfunctioning.
In [25], the researchers artificially damaged the rotor of the drone, and then collected the
noise of the drone during the flight, and used the deep learning method to analyze and
process the noise to realize the fault diagnosis of the system. The collection of sound
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signals has strict requirements on the environment, so this method cannot be applied in
practice. In the literature [26], the author introduced the convolutional neural network with
a wide convolution kernel into the fault diagnosis method, and diagnosed the bearing data
through the convolutional neural network. A wide convolution kernel can improve the
anti-interference ability of convolutional neural network to some extent. In reference to the
problem of inaccurate diagnosis results for data with large noise signals, the literature [27]
proposed to denoise the data based on the stack denoising autoencoder, and achieved good
results, but due to the introduction of a new network structure, the convergence speed of
the training network has been adversely affected to a large extent. Most of the existing
fault diagnosis algorithms need to preprocess the data to eliminate the noise interference
in the data, thereby improving the accuracy of classification, but there are few methods to
directly classify the original noisy data and obtain a good classification accuracy.

In response to the above-mentioned problems, we adopted a method called Stacked
Pruning Sparse Denoising Autoencoder and Convolutional Neural Network (sPSDAE-
CNN) to identify and classify the actuator damage fault of the UAV. The main contribution
of this paper is as follows:

1. We use a new and improved convolutional neural network method, which can be
directly applied to the original UAV data collected in practice. Compared with the
traditional method, it does not require separate data preprocessing. The comparison
is shown in Figure 1;

2. The method uses a stack denoising autoencoder as the first layer of the convolutional
neural network, which is very robust against data with much noise in the data, and
still has a relatively high fault diagnosis accuracy rate under high noise conditions;

3. Directly convert the sensor data collected by the drone into a gray sampling map.
Expanding the dimensionality of the sample can further improve the feature extraction
ability of the DL model;

4. This method is aimed at the problem that enough data cannot be collected during
neural network training. We use a one-dimensional sliding window for overlapping
sampling to enhance the data, increase the data scale, and improve the generalization
of the neural network ability;

5. We use the feature maps learned by visualizing sPSDAE-CNN to explore the actual
feature learning and classification mechanism of the sPSDAE-CNN model. At the
same time, the pruning operation is introduced to speed up the training of SDAE.

Data 

Collection

Unsupervised 

learning

Hand-crafted 

Feature Extraction 

And Selection

sPSDAE-CNN

Preprocessing

（Noise Reduction 

Cleaning）

Classifier
Fault 

Diagnosis

A

B

C

Figure 1. Three kinds of intelligent fault diagnosis framework. (A) The feature extraction of unsuper-
vised learning [28]. (B) The traditional method. (C) The method used in this article.

At present, there is much research on sensor fault and actuator fault of four-rotor
UAVs. In article [29,30], it is mainly studied to diagnose the actuator fault of four-rotor
UAV by using the traditional model class method, including hybrid observer and adaptive
neural network observer. In [31], Kalman filter is mainly used to process the sensor data
of UAV and then to diagnose the possible sensor faults. In [32], researchers proposed
a disturbance observer to observe the faults in the system and then realized diagnosis and
fault-tolerant control through sliding mode control method.
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However, there is little research on the fault of UAV blade damage. In the process of
a UAV mission, when the UAV blade is damaged to a certain extent, when the damage
does not exceed the threshold, the UAV may still be able to perform the mission in the
environment of small interference. However, at this time, the stability of the UAV has been
greatly damaged, and there may be some risks during the mission. Therefore, we need to
evaluate the blade damage of UAV through the proposed method, and timely evaluate the
health state of UAV, so as to prevent UAV crashes. At the same time, we also introduce
a sparse pruning stack noise reduction autoencoder to improve the adaptability of the
model to high noise data. In addition, pruning operation is added to improve the algorithm
complexity of the model. At present, most fault diagnosis methods for four-rotor UAVs
are verified by numerical simulation. This paper collects experimental data on the actual
aircraft and verifies the algorithm, which has good practicability.

There is not a simple linear relationship between the damage of the drone blades and
the sensor data of the drone. Therefore, the sensor data of the drone blades under different
damage conditions are analyzed by using the deep learning method, and a deep learning
model about the relationship between the sensor data of the drone and the damage degree
of the blades is obtained, and the model is optimized.

The remaining organizational structure of this article is as follows: Section 2 briefly in-
troduces the convolutional neural network and the stack denoising autoencoder. Section 3
introduces the intelligent fault diagnosis method based on sPSDAE-CNN. In Section 4, we
use experiments to verify the sPSDAE-CNN method, and compare and analyze it with
some commonly used methods. At the end of Section 5, we draw conclusions and propose
future work by summarizing the work.

2. Introduction to the Convolutional Neural Network and Stack
Denoising Autoencoder
2.1. A Brief Introduction to Convolutional Neural Networks

In this part, we will briefly introduce the convolutional neural network and the stack
denoising autoencoder. For more details about the neural network, please refer to the
literature [33]. Convolution neural network is a multilevel deep neural network [34]. Its
basic structure consists of the input layer, convolution layer, activation layer, pooling
layer, full connection layer, and output layer. Generally, there are several convolution
layers and pooling layers, and the general structure is a convolution layer connected with
a pooling layer. Each neuron in the input is locally connected to the input, and the weighted
summation with the local input through the corresponding connection weight and the bias
is added to obtain the input of the neuron. This process is equivalent to the convolution
process, so it is called a convolutional neural network.

2.1.1. Convolutional Layer

The convolutional layer uses a convolution kernel to perform convolution operations
on our input data or local regions of features, and extract relevant features from the data.
Figure 2 shows the structure diagram of the convolutional layer and the pooling layer. The
top layer is the pooling layer, the middle is the convolutional layer, and the bottom is the
input layer [34]. In Figure 2, convolution neurons are organized into feature planes, and
each neuron in the convolution layer is locally connected to the feature surface in its input
layer. The output of each neuron in the convolution layer can be obtained by passing the
local weighting and transfer to the activation function.

An important feature of convolutional neural networks is weight sharing. The weights
of convolutional neural networks in the plane of the same input feature and the same output
feature are shared. Weight sharing also reduces the complexity of the network model to
a certain extent. It also avoids the over-fitting problem caused by too many parameters. In
actual operations, most of the related operations can be replaced by convolution operations,
which can avoid the problem of reversing the convolution kernel during backpropagation.
The formula for convolution operation is shown in (1):
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yk+1
i (j) = κk

i × χk(j) + bk
i , (1)

where κk
i and bk

i respectively represent the weight and bias of the kth filter kernel of the ith
layer of the neural network, and use χk(j) to represent the jth local region of the kth layer.
Where × is used to calculate the inner product of the kernel and the local area, and yk+1

i (j)
represents the input of the j neuron in the frame i of the k + l layer.
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Figure 2. Schematic diagram of the convolutional layer and the pooling layer structure.

2.1.2. Activation Layer

After the convolutional layer, we need to use the activation function to introduce
nonlinear modeling capabilities to our neural network, eliminate redundant data in the
data, and enhance the learning ability of the neural network, so that the features in the
data can be further processed for segmentation. The commonly used activation functions
mainly include sigmoid function, tanh function, ReLu function, ELU function, etc. For
details, please refer to the literature [35]. In our convolutional neural network, we choose
to use the ReLu function as the activation function. Its main feature is compared with linear
functions. ReLu has better expression ability compared with nonlinear functions, as ReLu
does not have the problem of gradient disappearance and can maintain the convergence
rate of the model in a stable state. The ReLu function is expressed as follows (2):

αk+1
i (j) = ReLu(yk+1

i (j)) = max{0, yk+1
i (j)}, (2)

where yk+1
i (j) represents the output of the first convolutional layer, and αk+1

i (j) represents
the result of yk+1

i (j) activated by ReLu.

2.1.3. Pooling Layer

The pooling layer is also one of the most common and basic mechanisms of convolu-
tional neural networks. It is actually a form of downsampling, and there are many forms
of nonlinear pooling functions in convolutional neural networks. Max pooling function
is the most common one. The principle of this mechanism is that when a feature of data
is discovered, its exact location is far less important than its relative location with other
features. Pooling reduces the size of the data space by constantly reducing the number of
network parameters and the amount of computation. Overfitting can also be suppressed to
some extent. The max-pooling operation can be expressed as shown in Figure 3:

The expression is (3):

ak
(nh,nw,c) = max(ak−1

(nh×stride:nh×stride+ f ,nw×stride:nw×stride+ f ,c)), (3)

where nh represents the height in the current pixel, nw represents the width of the current
pixel, and c represents the channel, f represents the size of the pooling core, and stride
represents the step size of the pooling core movement.
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Figure 3. Maximum pooling operation.

2.1.4. Batch Normalization

Batch standardization was proposed in [36] to accelerate the training speed of deep
neural networks by reducing the transfer of internal covariates. The batch normalization
layer is usually added after the convolutional layer or the fully connected layer, and before
the activation layer. Given p-dimensional data into the BN layer X = (x(1), . . . , x(p)) the
operation of the BN layer can be expressed as the following expression (4):

x̂(i) =
x(i) − E(x(i))√

Var[x(i)]

y(i) = γ(i) x̂(i) + β(i),

(4)

where y(i) represents the p-dimensional output of the BN layer, and γ(i) and β(i) are the
scaling and bias that the BN layer needs to learn, which need to be learned in the neural
network training.

2.2. Stacked Denoising Autoencoder

The encoder is a commonly used learning model in deep learning. The structure of
this model is shown in Figure 4. The stack noise reduction autoencoding network is based
on the encoder. The encoder must learn to obtain noise-free input from the noisy data.
Unlike the supervised learning model CNN and Recurrent Neural Networks (RNN) [34], it
combines unsupervised data feature extraction with supervised overall fine-tuning, and it
can mainly realize the noise reduction and dimensionality reduction of the features of high-
noise information. The structure is shown in Figure 5. Stack noise reduction autoencoder
and encoder are mainly composed of encoder and decoder, which can be used to extract
hidden features of samples and reconstruct input.

XnnX

nX

nX

nC

nC

nY

nY

nY

Encoder Decoder

Figure 4. The structure of the encoder.
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Assuming that C(x|x̂) represents the error between the original data x and the noisy
data x̂ the DAE parameters are optimized and adjusted by using back propagation and
gradient descent methods. After training DAE, the hidden layer can be regarded as the
input of the next DAE, and this multiple DAE can form the model of the stack denoising
autoencoder [37].

( , )HL x z

y

x z
x

f

Dq

Figure 5. The structure of the denoising autoencoder.

3. Proposed Convolutional Neural Network with Stacked Pruning Sparse
Denoising Autoencoder

In this paper, an intelligent quadrotor UAV fault diagnosis method based on stacked
pruning sparse noise reduction autoencoder and convolutional neural network is pro-
posed. We mainly use sPSDAE as the first layer of the neural network to reduce noise
and dimensionality of the original data. The introduction of stack pruning sparse noise
reduction autoencoder can improve the model generalization ability of the neural network
and suppress the over-fitting problem. Secondly, convolutional neural network (CNN) is
used to extract and classify system features. The algorithm model is shown in Figure 6:

Data 

collection

Convert to 

Grayscale
sPSDAE

Dimensionality 

reduction

Noise 

reduction

CNN

Sampling 

data label

Fault 

classification

Figure 6. sPSDAE-CNN algorithm model.

Firstly, collect the flight data of the drone. In order to simulate the damage of the
blades of the drone in the actual flight, we collect the drone data by artificially damaging
the blades of the quadrotor rotor drone in a laboratory environment. The individual blades
of the UAV are set to have different degrees and types of damage. The main types and
degrees of damage are shown in Table 1 below:

Table 1. Main types and degrees of damage.

Types of Damage to the Blades Damage Degree of the Blade

No damage 0%
Broken blade 5%
Broken blade 10%
Broken blade 15%
Broken blade 20%
Blade crack Slightly deformation
Blade crack General deformation
Blade crack Severely deformation

Eight different types and degrees of damage to the blades are shown in Figure 7:
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Figure 7. Eight different types of blade damage.

This paper chooses to use a quad-rotor drone with pixhawk4 flight control as the main
control board for data collection. We let quad-rotor drones conduct flight experiments in
different health states, collect data, and convert the collected data into a two-dimensional
grayscale image. The paper selects the output of the four actuators in the flight log of
the drone, the quaternion representing the attitude of the drone, the angular velocity on
the three coordinate axes of the drone, and the position information, velocity information
and acceleration information of the flight on the three coordinate axes of XYZ. Taking
20 sampling periods as a data state, a 20× 20 two-dimensional matrix is formed, which is
converted into a 20× 20 grayscale image. As shown in Figure 8.

Figure 8. Converting one-dimensional time-domain signals to two-dimensional gray-scale images.

3.1. Proposed sPSDAE-CNN Model Structure

We convert the drone flight data after batch normalization (BN) into a grayscale
image. Using stacked pruning sparse denoising autoencoders to reduce the dimensionality
and denoising of the original data, it can also initially extract data features. The data
processed by the sparse noise reduction autoencoder will be directly used as the input of the
convolutional neural network. On the whole, the structure of the sPSDAE-CNN proposed
in this paper is roughly the same as the structure of the traditional convolutional neural
network. The main difference is that the stack noise reduction autoencoder is introduced,
but the introduction of the noise reduction encoder further increases the complexity of the
network and increases the computational cost, so the sparse pruning operation is added
to reduce the complexity of the network. The noise reduction autoencoder improves the
adaptability of the network to high-noise data, and the pruning operation greatly improves
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the calculation efficiency of the encoder. The specific structure of sPSDAE-CNN is shown
in Figure 9.

...
...

...
... ...
...

...
... 

...

20×20
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Figure 9. The specific structure of sPSDAE-CNN.

Finally, in the classification stage of the model, the softmax function is used to perform
logit transformation on the classification results, and eight different four-rotor UAV health
state probability distributions are obtained (5).

q(zj) =
ezj

8
∑
k

ezk

, (5)

where z represents the logical value of the jth neuron.

3.2. Construction of Sparse Noise Reduction Autoencoding Network

In order to explore the deep-level features in the time-domain sequence signal, we con-
vert the one-dimensional time-domain sequence signal into a two-dimensional gray-scale
image by using a matrix transformation method. Figure 9 shows the structure of a stacked
noise reduction autoencoder with four hidden layers. Since each layer of a traditional
stacked noise reduction encoder has an impact on its subsequent network levels, we use
the pruning method to cut off the layers that have no effect on the training of the next layer
of the network, while ensuring the maximum information flow in the network. Therefore,
the latter layer can obtain the maximum effective information of the previous layer, which
improves the training speed and feature extraction performance. The schematic diagram of
constructing the stacked pruning sparse denoising autoencoder(sUPSDAE) fully connected
network model based on the DAE model is shown in Figure 10:

21 3 n
*

nX
1 2 3 n...EncodeEncode

Decode Decode

Encode

Decode

Encode

Decode

FusionFusionFusionFusion

UPSDAE1
UPSDAE2

UPSDAE3

UPSDAE4
Encode

Decode

Encode

Decode

Encode

Decode

Figure 10. Schematic diagram of sUPSDAE fully connected network model.
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sUPSDE adopts the feature fusion method for information sharing, which reduces the
loss of information and broadens the transmission level of the network. As the number of
training layers increases, the number of network calculations will increase sharply, and
it is also prone to the problem of overfitting. We reduce the amount of calculation by
introducing sparse pruning operations while suppressing overfitting.

In Figure 10, we can get that the model of the ith layer, which is related to the first
i unit nodes when it is trained. In order to introduce sparse operations into sUPSDEA,
this paper randomly selects some features of the input layer in the training loop, and uses
Formula (6) [38] to randomly discard it, and then periodically introduce sparse operations
in subsequent node training until all units have been trained.

υ = Berboulli(1− p1)

βi
∗ = υ× βi ,

(6)

where p1 represents the probability of the current training unit being discarded, and
βi represents the input matrix before discarding. βi

∗ is the input matrix after random
discarding in one cycle.

After the sUPSDEA training is over, backpropagation is performed by using Back
Propagation Neural Network (BPNN) [39], and the parameters and weights of the network
are fine-tuned. In this process, the discarded units are added through Equation (7) to
further reduce the possible overfitting of the model.

τ = Berboulli(1− p2)

Xi
∗ = τ × Xi ,

(7)

where p2 is the probability of discarding irrelevant nodes in the fine-tuning process, Xi is
the output of the network in the fine-tuning process, and Xi

∗ is the input data randomly
discarded in one cycle of the fine-tuning process.

3.3. The Influence of Various Parts of the Model on the Results
3.3.1. The Effect of Sparse Pruning and Noise Reduction Autoencoder on the Results

The stack sparse noise reduction autoencoder transforms the original two-dimensional
20 × 20 grayscale images into 10 × 10 grayscale images by dimensionality reduction,
which dramatically reduces the computational cost of the subsequent convolutional neural
network. At the same time, the noise signal contained in the data can be filtered out, which
also realizes the prediction of the original signal of the signal destroyed by the noise. By
training the model parameters of the model, the model can finally achieve an accurate
prediction of the original signal and eliminate the interference of noise to the original signal
to a large extent, which can effectively improve the final diagnosis effect of the model.

3.3.2. The Effect of Convolutional Neural Networks on Results

The convolutional neural network uses the output of the dimensionality reduction
of the stack sparse noise reduction autoencoder as the input of the convolutional neural
network, and uses the convolutional neural network to extract the characteristics of the
data collected by the drone. By combining the high-dimensional input data, the feature is
mapped to the low-dimensional UAV health status, which can easily convert the original
data into the UAV health status. At the same time, it has a very good non-linear fitting
ability, which is very beneficial to the fault diagnosis of the quad-rotor UAV, which improves
the adaptive ability of the model to a certain extent.

3.4. Data Augmentation

In order to recognize images using in-depth learning, a large amount of image data
needs to be prepared for model training, especially when using neural network model
algorithms. For example, most common data collections in in-depth learning contain a large
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amount of image data, including 60,000 training data and 10,000 test set data in the Mixed
National Institute of Standards and Technology (MNIST) dataset. There are 60,000 color
images in the Canadian Institute For Advanced Research-10 (CIFAR-10) dataset, of which
50,000 are training data and 10,000 are test data. Therefore, in order to train our own neural
network model, we need to prepare a large amount of experimental data for the training
model. However, the experimental data cannot meet the actual training requirements of
the neural network, and data enhancement methods need to be introduced to increase
the amount of sample data. In the field of computer vision, data enhancement is usually
achieved by introducing operations such as flip, rotation, clipping, distortion, scaling, etc.
However, such methods cannot be used in time domain sequence signals. We enhanced
the data in fault diagnosis by introducing a fixed-length sliding window to slice sequential
time-domain signals in turn, as shown in Figure 11.

Figure 11. Sliding window for data enhancement.

Using this method, we will get 79,980 training samples from 80,000 original data
collected by UAV. This method can effectively solve the problem of insufficient training
samples in actual training, but this method has been ignored in many articles [40–43],
because they do not use overlapping sampling methods for data enhancement. As a re-
sult, there are only hundreds or thousands of training samples during model training.
At the bottom of the article, we will verify the necessity of data enhancement through
actual experiments.

4. Validation of the sPSDAE-CNN Model
4.1. Data Description

The training of a neural network model requires a lot of data to be collected from
a laboratory P200 quad-rotatory UAV. The main control panel of the UAV is pixhawk4, which
is also equipped with jeson tx2, binocular camera, and other sensors, As shown in Figure 12.

Figure 12. P200 drone.

Over 90,000 data were collected in flight, of which 80,000 were valid. The training
data is pre-processed and divided into four datasets, of which there are eight types of
pre-defined faults, and eight types are considered to be the eight states of the UAV. The
actual experimental data are shown in the Table 2.
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Table 2. Description of UAV datasets.

Types of Damage to the Blades No Damage Broken Blade Blade Crack

Data Set 0 5% 10% 15% 20% slightly
deformation

General
deformation

Severely
deformation

A Train 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
Test 200 200 200 200 200 200 200 200

B Train 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000
Test 280 280 280 280 280 280 280 280

C Train 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000
Test 360 360 360 360 360 360 360 360

D Train 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000
Test 400 400 400 400 400 400 400 400

4.2. Experimental Settings

This paper compares our methods with traditional convolution neural networks,
SVM [44] and traditional unsupervised learning stack autoencoders. Consider the impact of
different size datasets on the performance of the neural network, then compare the changes
of the performance of the neural network before and after sparse pruning operation. Finally,
experiments are carried out in different noise levels to compare and analyze the anti-noise
ability of the sPSDAE-CNN model.

4.2.1. Parameters of the Proposed Network

The sPSDAE-CNN network model proposed by this paper consists of an sPSDAE
sparse pruning noise reduction autoencoder and a convolution neural network. The sPS-
DAE consists of one input layer, one output layer, and four hidden layers. The specific
structure is shown in Figure 9, The specific structural parameters of convolutional neural
networks are shown in Table 3.

Table 3. Structural parameters of convolutional neural networks.

No Layer Type KernelSize Stride Output Size (Width × Depth) Padding

1 Convolution1 4× 4/1 10× 10× 8 Yes
2 Pooling1 4× 4/1 3× 3× 8 No
3 Convolution2 2× 2/1 6× 6× 8 No
4 Pooling2 3× 3/1 3× 3× 8 Yes
5 Convolution3 1× 1/1 3× 3× 16 No
6 Pooling3 2× 2/1 3× 3× 16 Yes
7 Fully-connected 144 144× 1 /
8 Softmax 8 8 /

The introduced pruning operation also improves the training speed of the network.
The output of sPSDAE is used as input of CNN. The main structure of a convolution
network is three convolution layers and pooling layers. Then there is a hidden layer
of full connection layer. Finally, the output layer is reached by a softmax layer. The
convolution cores of the system select small convolution cores to convolute, the pooling
layer chooses maximum pooling, and the activation function of the neural network chooses
RELU function. In order to improve the performance of the network, a batch normalization
operation is added behind each convolution layer and the full connection layer. The batch
normalization operation can accelerate the convergence speed of the training of the neural
network and suppress the over-fitting phenomenon in the network. The convolution and
pooling parameters of convolution neural networks are detailed in Table 3.

4.2.2. Hyperparameter Optimization of the Proposed Network

We use PyTorch, a deep learning framework developed by an American company
called Facebook, to conduct our actual experiment. To minimize our loss function, this pa-
per uses the random gradient descent method to optimize our convolution neural network
model. In the actual experiment, we choose the Adam optimizer as the final hyperparame-
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ter optimization method. The Adam optimizer combines the advantages of AdaGrad and
RMSProp algorithms, and calculates the update step by step, comprehensively considering
the first-order moment estimation and the second-order moment estimation of the loss
function. Adam has the advantages of simple implementation, high computational effi-
ciency, and low requirement of memory. In addition, the parameter update of this method
is not affected by the scaling transformation of gradient, and it is also very suitable for the
application of large-scale data and parameters in practice. Finally, it has good performance
even in the case of large gradient noise. We set the learning rate of Adam’s optimizer to
0.001. At the same time, the cross-entropy loss function is trained as the objective function.
Reference in detail [45].

4.2.3. The Effect of the Number of Training Data on the Results

As a type of convolution network, there are a large number of parameters in the
sPSDAE-CNN model that need to be determined during the training process of the model.
In order to improve the recognition accuracy of the network and suppress over-fitting in
the system, a large amount of experimental data is needed to train the network. To study
the training results of the neural network under different training samples, the number
of training data of the neural network is set to 100, 200, 300, 900, 1500, 3000, 6000, 12,000,
15,000, and 20,000 training samples to study the performance of sPSDAE-CNN. In deep
learning, there are balanced and unbalanced data collections. In Table 2, our data is fully
balanced, so accuracy can still be used to evaluate the algorithm.

Because the data set is completely balanced, the data samples of UAVs under each
fault condition are the same. In the actual experiment, the first three datasets do not use
the sliding window method to enhance and expand the data. To reduce the influence of
the random initial values of the neural network on the training results of the network,
30 repeated experiments were performed on each sample to calculate the average value.
The paper uses AMD Ryzen™ 5 4600H processor, NVIDIA GTX1650 graphics card, and
16GB of memory. The test data collection is tested using DataSet D in Table 3, and the test
results are shown in Figure 13.

Figure 13. Diagnostic results for different data volumes.

In Figure 13, it is clear that the accuracy of the test dataset increases significantly as
the training data goes from a smaller number of samples to a more significant number
of samples. When the training data increases from 100 to 300, the accuracy of the test
set data increases by about 20%. With the increase of training data, the accuracy of the
neural network gradually approaches and converges to 100%. When the training data is
increased from 100 to 300, the accuracy of the test set data is improved by about 20%. As
the training data increases, the accuracy of the neural network approaches and converges
to 100%, and the standard deviation converges to 0. Secondly, we can observe that the
average time of a signal diagnosed by the training model of the neural network is 4 ms,
which meets the requirements of test data. By comparing the training time of different test
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sets, we can find that the increase of the number of training data has little effect on the test
time. In Figure 14, the points of different colors represent that the blades of the UAV are in
different fault states. In the beginning, due to the small number of training samples, it is
not easy to segment the characteristics between different types of data. With the increase
of the number of training samples of the model, the data in the same fault situation begin
polymerization, and the characteristics of different types of fault data become easier to
segment. At the same time, this shows that by using the data enhancement method to
enhance the original data collected by UAV, we can greatly increase the data scale and data
diversity of neural network training samples, which can further improve the generalization
ability of the model. Therefore, in subsequent experiments, this paper selected as many as
20,000 samples as possible for training.

100 900

6000 20,000

Figure 14. Visualizing test samples from the last hidden fully connected layer with t-SNE under
different training data numbers.

In the subsequent model training, we choose 20,000 training samples. The parameters
in the neural network model are determined through the training set, and then we use
t-SNE visualization to make the t-SNE diagram of the neural network of each layer, as
shown in Figure 15. It can be seen from the figure that the separability of different features
in the unprocessed original data is very poor. After successively passing through each
layer of the neural network, different features in the data begin to separate. In the last layer
of the neural network, we can clearly see that different types of features in the data have
been completely separated. Finally, different types of faults of UAV are diagnosed through
the softmax layer.

In order to evaluate the accuracy of the model for different types of fault diagnosis,
we introduce the Confusion Matrix. The Confusion Matrix can evaluate the performance of
the classification model by counting the number of correct and wrong classifications. The
Confusion Matrix of the model is shown in Figure 16. It can be seen from the figure that
the accuracy of unmanned fault diagnosis of different types of four rotors remains basically
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the same, At the same time, the final model can be obtained through the Confusion Matrix,
and the accuracy of fault diagnosis for four rotor UAV can reach about 98%, which can
meet the needs of our actual projects and experiments.

Visualization of raw flight data Visualization of the first layerVisualization of the first layer Visualization of the third layer

Visualization of the fifth layer Visualization of the last layer

Figure 15. t-SNE Visualization of each layer of neural network.

Figure 16. Confusion Matrix of the proposed model.

4.2.4. Training Speed of sPSDAE-CNN

Because this paper adds a stack denoising autoencoder in the front part of the neural
network, it will not only improve the performance of the neural network, but also increase
the time and cost of model training. Pruning operation is proposed for the stack denoising
autoencoder, which not only introduces the noise reduction performance of stack denoising
autoencoder, but also reduces the time cost of neural network training as much as possible.
In the training of the model, we can find that under the same amount of data, the training
speed of the neural network with pruning operation is basically the same as that without
stack noise reduction encoder, but its training speed is much better than that without
pruning operation. The specific network training speed is shown in Figure 17.
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Figure 17. Comparison of training time required by different neural network models under different
data scales.

4.2.5. Performance under Different Noise Interferences

Taking the collected UAV data as the original data, the drone may be disturbed by
various signals during the execution of relevant tasks, so as to introduce noise signals
to the data of sensors of the drone. It is impossible to obtain all the noisy data through
experiments, so Gaussian white noise is artificially added to the original collected data to
simulate the noise interference signals that may appear in the actual drone, and the signals
with different signal-to-noise ratios are obtained. SNR is defined as follows (8):

SNRdb = 10log10(
Psignal

Pnoise
), (8)

where Pnoise and Psignal represent the energy of signal and noise, respectively. It can be seen
in Figure 18 that the UAV data collected in the laboratory environment is ideal and contains
relatively little noise. In order to simulate the flight data under different interference in the
actual flight environment, Gauss white noise of different degrees is added to the data, because
Gauss white noise is the most common noise signal in nature. Therefore, we obtain aircraft
data with different sizes of Gaussian white noise, that is, data with different signal-to-noise
ratios. Finally, it can be seen from Figure 18 that the data after adding Gaussian white noise
is closer to the UAV data in the actual flight environment. We evaluate the performance
of the proposed model in different noise environments by studying the performance of the
algorithm model with a signal-to-noise ratio of −4 dB to 10 dB.

In order to verify the efficiency of our proposed algorithm, we use the same test data
to test the performance of CNN, SVM ,and SDAE, as shown in Figure 19:

As can be seen from Figure 19 that, firstly, because the sparse pruning noise reduction
autoencoding convolutional neural network proposed by us has good noise reduction
characteristics, it can be clearly seen that when the noise in the signal is considerable, the
fault diagnosis effect of the model is obviously better than several other intelligent fault
diagnosis methods. Secondly, due to the introduction of sparse pruning operation in the
stack noise reduction autoencoder, this operation can improve the computational efficiency
of the network to a certain extent, and make our proposed model still have very good
performance in the case of low noise.
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Figure 18. Original UAV data, noise data to be added, and final synthesized data containing Gaussian
white noise.

Figure 19. Comparison of accuracy of different fault diagnosis algorithms under different noise levels.

The experimental conditions are mainly flight experiments outdoors, and fault di-
agnosis is carried out by using the UAV data collected and saved by pixhawk4 flight
control board. We artificially add different degrees of Gaussian white noise signals to the
collected data to simulate the actual noise signals, and obtain the experimental data with
different degrees of noise. SVM is used for classification. The 20× 20 gray image obtained
from UAV data processing is transformed into a feature vector with a length of 400. Multi
classification support vector machine is used, in which the radial basis function (RBF)
kernel function is selected as the kernel function. Gamma is set to the best value of 0.001
through many experiments. Finally, the experimental results in this paper are obtained.
Secondly, in the use of convolutional neural network, we directly use the convolutional
neural network proposed in the article, add a convolution layer to the previous layer of
convolutional neural network to extract the data features, reduce the dimension, convert
the original 20× 20 graphics into 10× 10 gray images, and carry out subsequent operations
and classification. When DEA is used for recognition and classification, DAE is used for
dimensionality reduction and optimization of the original data. BCE error is used in the
training process. Adam optimizer is used, and then convolutional neural network is used
for data feature extraction and classification.
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5. Conclusions

In this paper, we adopt a new intelligent fault diagnosis method based on sPSDAE-
CNN. Through a matrix transformation of the data collected from the UAV flight experi-
ment, the one-dimensional time-series signal is transformed into two-dimensional gray
image data, which expands the dimension of the sample and enhances the processing
ability of the DL model. Secondly, by introducing a sparse pruning stack noise reduction
autoencoder, the accuracy of a fault diagnosis algorithm in a high noise environment can be
improved, and the input dimension of CNN data can also be reduced. In addition, pruning
operation is used to reduce the complexity of the encoder, which can make the encoder
converge quickly when minimizing the loss function. The combination of sPSDAE and
the convolutional neural network can greatly improve the robustness and generalization
ability of the fault diagnosis model. In order to verify the effectiveness of the model,
this paper chooses CNN, SVM, and SDAE to compare. The experimental results show
that under the condition of normal experimental data, sPSDAE-CNN has good results
compared with other algorithms, but when the noise signal in the signal gradually begins
to increase, the performance of other algorithms decreases significantly. Among them,
when the signal-to-noise ratio reaches −4 dB, sPSDAE-CNN still has an accuracy of about
90%, the accuracy of the other three algorithms decreased to less than 80%, and SVM is less
than 60%. Therefore, the fault diagnosis sPSDAE-CNN algorithm used in this paper can be
used as a fault diagnosis method of four-rotor UAV in an actual high noise environment.

The method proposed in the article first converts a one-dimensional time-domain
signal into a two-dimensional grayscale image, which expands the dimensionality of the
data and can improve the ability of subsequent algorithms to extract features from the
data. Secondly, the method of resampling was used to enhance the flight data of the
quad-rotor UAV, which greatly improved the problem of the insufficient data set. Finally,
the sparse pruning noise reduction autoencoder is introduced to perform noise reduction,
dimensionality reduction, and feature extraction on the data. After processing, the noise
in the original data can be filtered to a large extent, and the pruning operation can also
improve the model—the calculation efficiency and noise reduction performance. All the
data used in the article are balanced data sets. In the actual environment, it is impossible
for all data to be unbalanced data sets. In the follow-up research, the application scope of
unbalanced data sets will be further expanded.

In addition, in this paper, balanced data sets are used, but during the actual UAV
mission, the data we collect can not be completely balanced data sets. Therefore, in future
research, we will improve and expand the application scope of the algorithm based on the
performance of sPSDAE-CNN on unbalanced data sets.

Secondly, the data used in this paper are all offline data collected at the end of the
UAV flight. At present, it is not possible to collect the data of four-rotor UAV in real-time in
the actual flight process to realize fault diagnosis. In future research, we can try to diagnose
the fault of UAV in real-time and online with the algorithm used in this paper; this problem
needs to be further studied and solved.
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