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Abstract: Using extensive databases and known algorithms to predict short-term energy consump-
tion comprises most computational solutions based on artificial intelligence today. State-of-the-art
approaches validate their prediction models in offline environments that disregard automation,
quality monitoring, and retraining challenges present in online scenarios. The existing demand
response initiatives lack personalization, thus not engaging consumers. Obtaining specific and
valuable recommendations is difficult for most digital platforms due to their solution pattern: ex-
tensive database, specialized algorithms, and using profiles with similar aspects. The challenges
and present personalization tactics have been researched by adopting a digital twin model. This
study creates a different approach by adding structural topology to build a new category of recom-
mendation platform using the digital twin model with real-time data collected by IoT sensors to
improve machine learning methods. A residential study case with 31 IoT smart meter and smart
plug devices with 19-month data (measurements performed each second) validated Digital Twin
MLOps architecture for personalized demand response suggestions based on online short-term
energy consumption prediction.

Keywords: MLOps; digital twin; IoT; machine learning; prediction

1. Introduction

A smart grid enables bidirectional communication between utilities and consumers,
which may be used to optimize energy usage by demand side management (i.e., demand-
response). As increasing energy demand and peak of energy consumption are concerns
for utilities, the demand side management enables an effective method to reduce costs
of electricity, which in turn restrict the need for more investments in transmission and
distribution infrastructure [1,2].

One example of demand side management is employing dynamic hourly energy
prices to make consuming energy in peak hours more expensive. Even though demand
response has the potential to reduce energy costs and foster more sustainable communi-
ties, investigating methods of change consumer behavior towards energy consumption
management is an ongoing effort [2].

Future energy facilities for residential and industrial sectors should compose a con-
sumption chain where the behavior of real-time energy usage will be enabled by digital
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platforms. These aggregated data will allow analyzing consumption, seasonality, costs and
planning in terms of generation, and transmission and distribution capacity [3,4]. With this,
the scenario of digital data, ready to be processed by algorithms and artificial intelligence
platforms, is quite consistent with product innovations and services in this area.

Smart meters adoption for energy consumption monitoring enables analysing usage
habits of home appliances. Added to the direct feedback received, user-customized services
such as prediction and classification of energy consumption increase their user’s energy
awareness and help them reduce their electricity bills [5].

Machine learning (ML) techniques for forecasting and classification of energy con-
sumption are broadly used both academically and in the industry [6,7]. However, academic
research focuses on static or offline environments, without analyzing the degradation of
accuracy over time due to unexpected changes in the behavior of the time series (concept
drift) [5], the sensitivity of the configuration manual of hyper parameters, and training
times and prediction of the models.

Residential energy consumption has a large dependence on time of year and tempera-
ture [6,8], resulting in concept drift that is not analyzed in experiments in static environ-
ments. It is possible to use outdoor temperature data and WiFi thermostat data to improve
energy consumption prediction [9], and internal building temperatures can be predicted as
well [10]. In addition, although the literature presents standardized metrics for measuring
the accuracy of models, there is no consensus on the use of such metrics to measure the
aptitude of machine learning systems as to its operation in online environments, rendering
comparisons between solutions difficult.

The convergence of digital twin and machine learning is said to improve productivity
and quality in smart manufacturing scenarios [11]. Physical appliances could adapt to
operational changes in real time and forecast events based on historical data by using
a digital twin. However, one of the relevant challenges to build and implement digital
twins is the question of how to integrate different engineering models and foster cross-
domain collaboration.

This paper has addressed the following research question in order to face the challenge
of modeling real-time energy consumption data: Are there computational mechanisms that
enable specialized insights from customers employing prediction models? This fundamen-
tal question generates the other questions listed below:

Research Question 1. How do we obtain intelligent real-time database containing information
from each user instead of using conventional database structures with raw data?

The first research question demands that not only raw collected data by IoT are stored
and managed in the proposed solution, but its metadata must also be included to allow
energy consumption forecast customization.

Research Question 2. How do we configure Machine Learning Prediction Services for each user
that would consider the challenges of real world deployment?

This second research question shows the need for the proposed solution to consider
the constraints of a real world deployment: missing data, multiple time granularity, and
diverse metrics.

This paper presents a different approach adding structural topology to build a new
category of recommendation platform using the digital twin model fed with real-time data
collected by IoT Sensors to improve the existing machine learning approach. Residen-
tial study cases with 31 IoT smart meter and smart plug devices with data of 19 months
(measurements performed each second) were used to validate Digital Twin MLOps archi-
tecture for personalized demand response suggestions based on online short-term energy
consumption prediction.

Our main contributions are related to closing the gap between machine learning
models used for predicting residential energy consumption and real world deployment by
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presenting a solution that includes household metadata so that other systems make better
use of prediction results. The results contribute to the state of the art with an approach
robust to missing data with multiple time granularity.

This article is an extended version of a conference paper [12], which focused solely
on MLOps tests. The text is organized as follows: Section 2 presents the related work,
corresponding research gaps found in the literature, and the concepts used in our solution.
The method is described in Section 3. MLOps and Digital Twin modeling results are
described in Section 4, and the results analysis, comparison with related work, known
limitations, and development considerations are presented in Section 5. The article is
concluded in Section 6 with final thoughts and suggestions for future work.

2. Research Methodology
2.1. Research Context

Personalized recommendations concerning energy saving may be supported by spe-
cialized recommender systems. A proposal found in the literature is based on user profiling
and micro-moment recommendations with a mobile user interface to foster energy sav-
ing behavior change [13,14]. The solution uses appliance-level energy consumption data
collected by sensors deployed in the household to recognize micro-moments for timed rec-
ommendations. However, one shortcoming of employing user profiling with collaborative
filtering is that the recommendations are not fully personalized, as they are aimed at a
cluster of users and not at a specific user.

The gamified management platform application found in the literature exemplifies
how gamification could be used to foster demand change based on device-level monitor-
ing [15]. The approach was validated with four households within four months, achieving
up to 30% peak period consumption. Even though it is based solely on an user dashboard
(i.e., passive instead of the active method a chatbot might interact with users), it organized
the platform by individual and group tasks, badges, and informative pages regarding
benefits, such as CO2 emission reductions, grid operation, and electricity bill savings.

Another work uses outside temperature prediction and smart home activity recogni-
tion models to propose a controller that concurrently considers both energy savings and
comfort requirements at the same time [16]. The proposal was evaluated in four apartments,
and it could achieve 5.14% Heating, Ventilation, and Air Conditioning (HVAC) energy
consumption reduction over the on/off controller, while simultaneously maintaining the
comfort level (i.e., maximum indoor temperature difference of 0.06 ◦F).

A proposal found in the literature used a digital twin to model energy providers
and residences [17]. It employed a reinforcement learning algorithm to optimize smart
home appliances scheduling to flatten total household energy consumption to avoid peak
demands and reduce the energy bill. They used the the digital twin as a sandbox to test
the optimization algorithm before enforcing it to physical devices. The solution presented
17.7% energy cost reduction for a real-life dataset.

One example application of the Digital Twin architecture is energy consumption
prediction. Appliance level consumption is heterogeneous, requiring time granularity
selection due to complex seasonality [18] of different house appliances. Choosing the
wrong granularity might induce information loss [19] due to generalization or erroneous
assumptions concerning trends and correlations with features [20].

Just as household data can be used to forecast district level consumption [6], appliance
data could be used to forecast residential consumption, helping not only consumers but
also utility companies. Most experiments are focused on forecasting only the total house
consumption, with few studies on how to analyze and optimize appliances’ energy con-
sumption. The authors of [21] used major appliances’ consumption data to increase entire
house consumption forecasting accuracy. Other exogenous variables are also used as input
features, such as weather [6], calendar [22], and socioeconomic and building conditions [8].

In [23], the time granularity for consumption forecasting was chosen by using the
Mean Average Percentage Error (MAPE), while [8] used the Normalized Root Mean
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Squared Error (NRMSE). In both cases, the normalized errors tended to favor low frequen-
cies of granularity (hourly or daily), while resulting in greater errors for high frequencies
(minutely). Conversely, non-normalized errors such as Mean Absolute Error (MAE) or
Mean Squared Error (MSE) favor high frequencies to the detriment of lower ones. Thus,
there is currently a research gap due to the inadequacy of using error metrics to choose an
adequate time frequency, as the result might be biased according to the metric chosen.

To the best of the author’s knowledge, [24] is the only study to consider real world
deployment challenges on consumption forecasting by using hierarchical models when
data such as weather forecasts are missing or unavailable during prediction. Despite not
being focused on real-world deployment, [21] used the time taken to train and predict
using the forecasting model as a metric to evaluate the trade-off between accuracy and
computational resources.

One of the difficulties in comparing results between different studies found in the
literature is related to the different metrics used, as observed in Table 1, as well as the
various datasets considered, which all use different time granularities and experimental
periods, and refer to different countries such as Australia [8], Canada [21], Germany [23],
Ireland [6], Portugal [24,25], and the United States [23].

Table 1. Related studies regarding residential consumption forecasting.

Paper # of
Houses

Appliance
Data Models Used Metrics Time

Granularity
Forecast
Horizon

Experiment
Period

[6] 25 no SVR, ANN NRMSE 30 min 1–24 h 18 months

[8] 27 no
Gradient
boosting RMSE 30 min 1– 24 h 35 months

[23] 7 yes Multiple MAPE 15–60 min 15–1440 min 9 months

[21] 1 yes LSTM MAPE 30 min 30 min 24 months

[24] 20 no Hierarchical NMAE, NQS hourly 24 h 12 months

[25] 93 no ANN R2, MAPE, SDE hourly 1–24 h 17 months

2.2. Short Term Energy Consumption Prediction

Machine learning (ML) techniques for prediction [6] and classification [7] of energy con-
sumption are widely used in both academia and the industry, applying different learning
models, such as neural networks [26], support vector machines [8], and gradient boosting [22].

Residential energy consumption forecasting can be used to assist residents in decision
making and conscious spending planning [27] and utilities in medium-scale and large-scale
prediction and detection of customer consumption anomalies [28]. They can also facilitate
energy transactions between prosumers in peer-to-peer (P2P) energy markets [29,30],
promoting the efficient use of the power grid. Home Energy Management Systems (HEMS)
can use consumption prediction as an input for predictive control models [31], assisting in
planning the usage of controllable applications, such as washing machines, air-conditioning
systems, and electric vehicles, in order to optimize the use of energy co-generation and
financial savings for users in variable energy tariff schemes.

Unlike medium-scale and large-scale energy consumption, individual hourly con-
sumption is more volatile, with daily consumption peaks occurring at different times. Due
to this characteristic, traditional metrics for measuring forecasts, such as the mean absolute
error (MAE), end up measuring only point-to-point accuracy and do not analyze temporal
or shape errors.

Figure 1 shows an example of a constant forecast (F1), which does not introduce any
significant value to its user and has a smaller point-to-point error than a forecast with
behavior closer to the real one but displaced in time (F3). While the F1 forecast has an MAE
of 0.82, the F3 forecast has an MAE of 0.99.
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Figure 1. Four different predictions F1, F2, F3, and F4 (dotted lines) compared to the actual value
(solid lines). Source: Reprinted with permission from [32].

For a satisfactory analysis of prediction models, it is necessary to use metrics that
consider shape and temporal errors such as Dynamic Time Warping, Move-Split-Merge [33],
DILATE [34], or the adjusted error [32].

Good forecasts are not measured only by their accuracy. Not only can different metrics can
produce different results, but it is also important to consider other types of goodness, such as
correspondence to human specialists judgment (consistency), similarity between forecast and
previous observations (quality), and insight generation to their users (value) [35].

Additionally, the main features used to improve the accuracy of consumption fore-
casts in the short term (next hours or next days horizon) include weather data, such as
temperature, precipitation, or wind speed, and calendar data, such as time of day, day of
the week, or occurrence of holidays [6,8,24].

In order to create value for residential consumers, it is important to capture the
multiple seasonalities and trends in their energy consumption. Energy Consumption has
complex seasonality [18], with hourly, daily, weekly, and yearly components. In order to
better analyze them, the Auto Correlation Function (ACF) plot can be used to compare
similarity between time series and its lagged versions.

Most experiments performed, however, are performed in offline environments, not
providing due importance to the treatment of erroneous or incomplete data in addition
to the degradation of accuracy over time [24]. The use of MLOps has been deployed to
address these challenges in other applications of machine learning [36,37].

2.3. MLops

In order to integrate the stages of software development and operations of information
technology systems, DevOps culture uses test automation, monitoring and integration, and
infrastructure management as code, among other techniques, thus allowing continuous
delivery and deployment of the system [38].

The application of DevOps culture in Machine Larning (ML) systems, known as
MLOps [39], seeks to adapt DevOps techniques to the area, distinguish itself from practices
used in traditional software systems due to its dependence on data quality through correct
extraction and processing its exploratory nature during development by testing different
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configurations, model architectures, and feature generation and its error monitoring de-
rived not only from erroneous system programming but also caused by obsolete or biased
models and training data.

Thus, testing systems before introducing them into production environments and
monitoring their performance is considered good practice in the development and op-
eration of software systems. However, due to their predictive nature, such practices are
difficult to define and implement in ML systems [40].

Google Research uses 28 metrics to measure the readiness of ML systems in produc-
tion [36]. These metrics involve tests related to 4 categories, which are input data, the
model used, the infrastructure, and system monitoring. Each category has seven tests,
such as ensuring privacy control for data, tuning hyper parameters, testing integration
throughout the pipeline, and monitoring code dependencies.

In addition to these metrics, another good practice in ML projects is the separation of
its steps into pipelines [37] to facilitate the integration of the different steps, the scalability
of the system, and the reproducibility of the results.

One of the differentials of online systems is the need of continually training their
models to avoid concept drift. In [41], a strategy is defined for simulating and evaluating
the effects of periodic retraining in time series, finding the seasonality of the input data
and updating the model at each seasonal cycle by using training and validation data that
reflect the most recent cycle.

2.4. Digital Twin

One of the most critical aspects of creating a higher engagement level of human
user and digital service interaction involves advanced personalization techniques. In this
context, real-time data obtained from IoT devices (Technical IoT) and from humans (Human
IoT) could be combined to represent digital users in both dimensions: structural/static
and dynamic/behavior. The digital twin-based model might bring more engagement
elements by offering helpful information with request–response interactions [42]. Instead
of the Human IoT concept presented in the literature [43], which aims to develop IoT
solutions focused on usability guidelines, the Human IoT is used to refer to cooperation
between humans and machines, considering that IoT may enable machine–machine [44]
and machine–human cooperation.

Digital modeling of a naval building, an oceanic petroleum platform, civil construction,
and health care are examples of digital twin techniques for improving operational efficiency.
Real-time data collected from IoT devices are mapped directly to the corresponding element
digitally created in these cases.

With the digital twin model, each part of a physical structure is linked to precise data,
and each behavior is recognized and registered to help in such operational procedures.
Moreover, applying prediction models allow efficiency in terms of cost reduction or risk
mitigation in some use cases [45–47].

How could all this be performed in the smart-home demand-side management sce-
nario? Energy-consuming profiles can be collected and analyzed in a real-time fashion and
specifically to each customer. A digital twin model organizes structural and behavioral
data, which means precision and prediction information. This prediction and meta-data
information may orient customers with customized suggestions to help people reduce their
energy bill.

One of the alternatives to model a smart home digital twin that could be useful to
our approach is by using ontologies. These semantics-related knowledge representations
are understandable by humans and readable by machines. As found in the literature, it is
possible to use ontologies to model a smart-home digital twin [48,49]. For example, a digital
twin based on the Web of Things (W3C) description [50] is compatible with JSON format
and supports SPARQL queries [48]. Other authors designed modular and independent
ontologies with the Protégé editor tool to model a home automation system digital twin
with the environment, equipment, resources, and their possible relations [49].
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3. Digital Twin Mlops Method
3.1. Digital Twin Architecture Requirements

This project considered some requirements to prioritize efforts related to scientific and
industrial lines of using a digital twin (DT) model, as described below:

1. How may it improve human–computer interaction (HCI) by applying personalization
techniques considering the customer as an energy consumer, home environment,
home places, appliances, and specific and distributed IoT devices to measure power
consumption?

2. Considering that HCI may use natural language to implement natural language
interactions, it is crucial to consider the memory aspect to create continuous and
evolutive engagement levels. In this context, investigating how using a digital twin
supports natural language interactions is a must.

3. How does it integrate digital twin and machine learning models to map seasonal
behavior of energy consumption and to execute prediction functions and to help with
energy awareness personalized suggestions?

The project requirements can be met with conventional engineering mechanisms to
build human–computer Interaction (HCI). However, in this research project, the decision
was to apply Digital Twin technology to facilitate integration with other emergent tech-
nologies, including IoT and Machine Learning tools, to obtain a more effective HCI. Table 2
shows some characteristics to compare digital twin to a conventional implementation.
It also summarizes conclusions regarding architecture decisions in both implementation
alternatives: conventional and enhanced by digital twin.

In conventional modeling, the database structure is centralized, and register fields
are sufficient for adding such attributes to static data and events collected in real-time
integration. The personalization configuration to HCI, Machine Learning for Seasonal
and Prediction, and Natural Language Processing uses a set of user profile parameters.
Note that personalization considers a set of similar profiles to deal with the trade off
between volume and performance. It is an impracticable process individually for each user-
customer: low performance with a substantial impact on usability. It is a crucial highlight—
the centralized database is enormous in volume and not prepared for individual access
and processing—that the processing balance is performed by grouping users with the same
profiles to process a set of registers. For customized interactions, seasonal profile analysis,
and energy-consumption prediction, the same rationale is valid. Therefore, personalization
is limited to similar profiles parameterization.

The digital twin applied to this research project is different in crucial aspects, and the
results are more effective in terms of personalization in general with a positive impact on
all requirements listed. The first difference appears in modeling. Each user and his/her
home, places, appliances, and IoT devices correspond to a digital twin that is different from
conventional implementation, whereby the centralized database includes registers for both
static and temporal series of events.

Software objects with data and functions organize and implement each user energy-
consuming database; that is, software objects are connected with abstraction: User-customer
is connected to home; it connects to place-spaces of home; it connects to each family
member; and it connects to each appliance and to each IoT device. The organization forms
a structural ontology that supports all personalized natural language interactions and all
prediction functions in each user database.
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Table 2. Architectural aspects comparison using the Digital Twin.

Aspect Conventional Using Digital Twin

Database

entities
(energy
consumption
data)

Energy-consumption registers
Database entities:
1. House;
2. User (energy consumer);
3. Family (people and energy
consumer);
4. Convenience (places of
the house);
5. Electrical appliances;
6. IoT devices.

Digital space implementing real world
elements as software
objects from Digital Twin
mechanisms includes the following:
1. A digital object of the house;
2. A digital object of user-consumer;
3. A digital object of each family
member (energy consumers);
4. A digital object of each
convenience (each one with energy
consumer devices);
5. A digital object of electrical
appliances;
6. A digital object of each IoT device.

Data titular
and controller

(According
to the Brazilian’s
LGPD law)

All data stored as registers
of a centralized database,
and operated by the digital
platform. Each data titular can
go along only with his/her
registers processing.

Each digital twin stores the corresponding
data collected. According to law
requirements, the user owns
data and acts as titular and
controller, in cooperation with the
platform that acts as a data operator.

Real-time
data (IoT)

Registers on database (events):
7. Timestamp;
8. Measurements;
9. IoT devices;
10. Relationship (House,
User-consumer, Convenience).

Digital software objects register their
own collected events: Convenience(4),
Electrical appliance(5), and IoT
device (6):
7. TimeStamp (4) (5) (6);
8. Measurements (4) (5) (6).

Natural
language for
information
obtained from
the user

The centralized database
registers provides
information in the right
column table.

Each digital software objects register
data provided by the user,
connecting directly to digital twin
implementation (house, user-
consumer, convenience, electrical
appliance, and IoT device)

Machine
Learning
(e.g., Chatbot)

Historical data include
talking with limited
and centralized memory.
The conversational
interaction is almost
repetitive and focused
on a set of users profiles.

With the digital twin, all interaction
and memorization connect the correct
user. In this implementation, the more
historical data, the more maturity
accomplished.

Machine
Learning

(Prediction)

Machine Learning
implemented for:
11. Learning and showing
seasonal information,
using events data;
12. Predicting
energy-consuming data,
using events data.

All data parametrization
refers to sets of the same
profile user.

Machine Learning parameters mapping
directly for each digital twin software
objects; that is, all data and all objects
relations of real-world elements
(house, user, family, conveniences,
appliances, and IoT):
9. Learn and show seasonal data
with precision and helpful information;
10. Predict energy-consumption
data with precision according to all
parameters related to his software
objects.

Data
organization

Huge centralized database,
where sets of user-profile
foundation to process
intelligent services.

A federation of databases. Each
database corresponds to one group
of user-consumer implementing
digital twin of real-world energy
consumers.
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IoT devices collect each event, and each energy-consumption datum corresponds to
one user-consumer software object. Conversational interactions may be supported by the
memory associated with this user-consumer software object. This implementation uses
a NoSQL implementation tool and organizes one database for each energy-consumption
user as detailed, with a digital twin implemented as a set of software objects. With this
architectural decision, personalization is superior to the conventional approach.

A machine learning parametrization procedure is superior when compared to the
conventional approach because all data applied are corrected to their own control: user-
customer structure data (home, family, convenience, appliances, IoT devices) and time
series. With this, seasonal modeling is accurate and valuable according to the data provided
with respect to energy-consumption prediction, considering that the parameters show more
precision than the conventional implementation.

Digital Twin adoption brings research challenges, especially for industrial applications.
One relevant aspect is data organization. As described in Table 2, the database federation
is the foundation of data organization, whereby each user-consumer is the owner—there is
no centralized and colossal database.

In this context, other opportunities arise about data usage: the European GDPR [51]
(General Data Protection Regulation) and Brazil’s LGPD [52] (Lei Geral de Proteção de
Dados) are laws regarding data privacy. This database federation creates the condition to
enable user empowerment as a data principal and controller. In this case, the platform acts
as a data operator service, providing user autonomy and coverage.

3.2. Smart Home Testbed

The smart home testbed was based on data collection architecture of energy consump-
tion presented in [3], implemented in the early 2020 in four Brazilian households.

Specifically, the digital twin Proof of Concept for this work is built upon a household
with four inhabitants and 31 energy consumption time series collected with smart meter
and smart plug IoT devices.

The smart meters have a data collection system tolerant to connection failures, en-
suring the integrity of data during network outages through the connection with an
intermediary for data temporary storage [53].

The hourly consumption and internal temperature data of the residence are sent to a
remote database, which are used by the proposed solution to forecast energy consumption
and train machine learning models.

Currently, the database has information on the period from January 2020 to December
2021, with a gap from January 2021 to April 2021 due to modifications made to the smart
meters used, resulting in a total of 19 months of data. Figure 2 shows load profiles of
minute granularity in a weekday from different appliances monitored, such as television,
refrigerator, computer, air conditioner, and living room light bulbs.

3.3. Mlops

Each stage of the pipeline has multiple steps, as shown in Figure 3. In the offline
environment, tests were performed for prototyping models and experimenting new func-
tionalities.

The online pipeline, on the other hand, albeit similar to the offline environment, has
differences regarding the degree of automation, runtime constraints, and error handling.
In the first stage of the pipeline, which only occurs in online environments, the automated
search for data is performed, either in internal databases or through external interfaces,
requiring the correct handling of exceptions due to unavailability or transfer errors. The
next pre-processing step includes feature cleaning and engineering, in addition to the
treatment of anomalies and missing values performed manually in offline environments.
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Figure 2. Daily load profile of different appliances during a weekday.

Figure 3. Online and offline pipelines for machine learning projects.

In offline environments, exploratory data analysis is then performed, in which data
familiarization, anomaly detection, and distribution and correlation analysis between
features occur in order to iteratively refine the previous pre-processing step. In the next
step, the model is built by defining its hyper parameters, either manually or automatically
through grid search, and trained according to available data.

Finally, in the model evaluation step, its accuracy is measured, and the hyper parame-
ters that optimize the defined metric are selected. Thus, it is important to analyze and to
choose which metrics will be the most appropriate and relevant to the problem.
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3.3.1. Data Loading

Input data are received from cloud storage service, which stores the total energy
consumption and by sectors, as well as the internal temperature of the residence, with a
sampling frequency of one hour. Every hour, files are searched for in the cloud, and if the
files not present in the local files are found, they are downloaded to the local directory.

3.3.2. Pre-Processing

During pre-processing, raw data are checked for missing hours and anomalies. To be
considered an anomalous value, the consumption must be less than zero, and temperature
must vary by more than 10ºC from the previous value.

There were occurrences of temperature anomalies in which variations in relation
to the previous hour exceeded 20 ºC, as well as instants with missing temperature and
consumption readings. In these cases, it was assigned as a reading error, and these values
were discarded.

For defining features, three past hourly consumptions were added, referring to 25,
24, and 23 h ago in relation to the instant to be predicted, in addition to calendar-related
attributes, such as the time of day, day of month, and month of the year to be predicted.
The choice of these features for the final prediction model was made in the exploratory
data analysis step.

However, new features can be added by modifying input files, such as adding the
internal temperature of the residence, or also generated by modifying the source code of
the pre-processing step, such as adding the first derivative of hourly energy consumption.
In this manner, the other steps of the pipeline do not need further modifications.

3.3.3. Exploratory Data Analysis

In [3], energy consumption prediction models were developed by using Extreme Gra-
dient Boosting (XGBoost), long short-term memory neural networks (LSTM), and support
vector machines (SVM) architectures. The results showed that the XGBoost architecture
obtained better accuracy in most of the monitored households, and this architecture was
chosen for this study.

XGBoost is an open source ML library for regression and classification models using
decision tree ensembles [54]. Its implementation allows training models in a parallelized
and distributed fashion. The models also accept the existence of missing values in the input
data in both training and prediction stages.

In order to analyze the gain of introducing new features, a base reference model was
deployed, using only the last 24-hour consumption and calendar data: time, day of the
week, day of the month, month, and year. This reference model was compared with other
models with additional features in addition to those used in the reference model, as shown
in Table 3. Cross-validation was used for each household, obtaining the mean squared error
(MSE) and the adjusted error with a 2-hour window and norm 4 [32] from all households.
Table 3 also shows the percentage reductions of MSE and the adjusted error relative to the
reference model.

Table 3. Analysis of the addition of features on model accuracy.

Model MSE Adjusted Error

Reference Model 0.0479 (0%) 0.2535 (0%)

Reference +
1st Derivative 0.0476 (−0.62%) 0.2529 (−0.24%)

Reference +
Indoor Temperature 0.0502 (+4.80%) 0.2568 (+1.30%)

Reference + Consumption
from 25 and 23 h ago 0.0415 (−13.36%) 0.2043 (−19.40%)
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The addition of the residence internal temperature as a feature of the model eventually
reduced its accuracy, while the use of the first derivative of the energy consumption had
little significant gains. Due to these results, these features were not considered in the
final model.

Low weekly correlation was observed for all residences, with no great variation
between weekdays and weekends, as shown in Figure 4 for one of the residences. Note
that the consumption data refers to the year 2020, and this low variation may be related
to the quarantine period due to the COVID-19 pandemic. This effect confirms what is
presented by [55], in which consumption during weekends was higher than in weekdays
for the residential sector in 2018 and 2019 but had similar consumptions for weekdays and
weekends in 2020.

Figure 4. Box plot of the total consumption per day of the week for one of the households.

Energy consumption was higher during winter, as observed in Figure 5, due to the
increased usage of air conditioning. A greater variance of consumption can be observed
during the summer, although its median is similar to other seasons. This could be explained
by greater air conditioning usage, as well as holidays and inhabitants absences.

Figure 5. Box plot of the daily consumption for each month for one of the households.

Figure 6 shows the autocorrelation function of sampled energy consumption with
hourly frequency for one of the monitored households. In the plot, a larger value on the
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ordinate axis indicates high correlation between the time series and the series lagged in
time by k units, with k represented by the abscissa axis. One can observe autocorrelation
peaks for 24-h lags, evidencing daily seasonality.

Figure 6. Autocorrelation function of the hourly energy consumption (95% significance band).

Figure 7 shows the first decision tree of the model, which observed the relevance of
the time of day in model prediction, while Figure 8 shows the importance of the features
for one of the households calculated as the number of times each feature appeared in
XGBoost’s decision trees. The possibility of obtaining information related to the internal
structure of the model is important as it allows debugging the operation and investigating
performance drops or instability.

The models are also evaluated with extreme or even invalid inputs, assessing their
robustness. The inputs tested are as follows: consumption equal to zero, negative, infinite,
and with missing values.

Figure 7. First decision tree for XGBoost prediction model.

3.3.4. Model Training and Prediction

The model uses the XGBoost library to predict the hourly consumption of the next
24 h, and it is trained with consumption features of the last 23, 24, and 25 h, the time of day,
day of the week, day of the month, day of the year, and month.

In order to perform XGBoost hyper parameter tuning, a grid search is performed
with cross validation with partitions of four subsets for each household, varying tree size,
learning rate, and objective function to be minimized. After training the models for each
combination of hyper parameters, the one with the smallest mean square error is chosen.
The random seed used by XGBoost is fixed automatically, ensuring the reproducibility of
results. Both data and code are versioned via Git and DVC version control systems.

Figure 9 shows an example of energy consumption prediction for one of the house-
holds performed during the month of July, and it is possible to observe the daily seasonality
of energy consumption.
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Figure 8. Importance of features for the prediction model of one of the project residences.

Figure 9. (a) Prediction (red) and actual value (black) of energy consumption for the months of
December 2020 and January 2021. (b) Zoom in on the first week of the test data.

3.3.5. Inference

The system in online environment was deployed as a Flask application on Apache2
server hosted on Amazon Elastic Compute Cloud (EC2), performing retraining periodically
every 24 h and permitting the reception of calls in REST API format for the consumption
forecast of households monitored.

The API can be used by other systems to query users’ consumption forecast. Figure 10
shows an example of an application, whereby a website was developed in Dash plat-
form [56] to perform consumption forecasts in user-customizable time periods.

The calls made to the API and training time are monitored and saved in log files. When
an anomalous value is encountered, as defined in Section 3.3.2 (negative consumption or
temperature variation greater than 10 °C), an alert is added to the log files.
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Figure 10. Website for visualizing consumption forecasts.

3.3.6. Evaluation

In order to analyze the effects of time granularity, different house appliances were
evaluated using multiple time granularities. The prediction result for each combination of
appliance and granularity is compared by using both error metrics and ACF for seasonal-
ity analysis.

Accuracy evaluation in a static environment is performed using the method proposed
in [41]. In this method, multiple models are trained, each based on training data from
different instants, to reflect the arrival of new data in an online environment.

Daily training seasonality is considered, with data partitioning 80% for training and
20% for testing. The hyper parameters are set by means of grid search. The adjusted error
is used to compare the updated model with the previous one, and the one with the lowest
error is used.

4. Results
4.1. Mlops Tests

Table 4 shows the tests performed by the system automatically following the metrics
defined in [36] and whether they were performed autonomously (A), manually (M), not
performed (-), or are not applicable (N/A).

Data Tests 4 and 5 are not applicable to the project in the current status as there is
no personal data collection that allows identifying them for privacy concerns of users.
Model 2 test does not apply because they are not currently monitored online metrics. Test
Infrastructure 6 is not applicable due to the insufficient number of users to launch new
versions (rollouts), nor is Monitoring Test 3 because there is no difference between offline
and online training data.
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Table 4. Tests related to data.

Category Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Data A M M N/A N/A A M

Model A N/A A A M M -

Infrastructure A - - A M N/A -

Monitoring - A N/A A M A -

Due to the relatively low complexity of the pipeline and low retraining cost, no
tests regarding integration (Infrastructure 3 test) and rollback (test Infrastructure 7) were
performed. Since the XGBoost library already performs a large series of unit tests to ensure
correct code execution for training and predicting models, the verification of the model
specification was considered as outside the scope of the project (Infrastructure 2).

As there is a low number of users at the moment, the project has not yet addressed
issues of social inclusion of the system (test Model 7). When new users are invited to
participate, representativeness of the Brazilian population will be important so as not to
bias the system.

So far, there have been no changes in the structure of the input data; thus, monitoring
changes (Monitoring test 1) are not currently performed, although in future steps if new
features obtained from external sources, such as the weather forecast, are entered, this test
will be of greater importance.

Since the model forecasts consumption for the next 24 h, real-time monitoring of the
quality of forecasts made (Monitoring test 7) was not performed, as its accuracy can only
be measured 24 h after the forecast.

Exploratory data analysis proved to be extremely important, satisfying several tests
(Data 2, Model 5, Infrastructure 5, and Monitoring 5), which, despite performed manually,
can be reused in the future for additions to the pipeline running automatically.

4.2. Use of Digital Twin Data to Improve Forecasting Accuracy

As mentioned in Section 2, using error metrics to choose the most adequate time
frequency for prediction model training might generate biased results depending on which
metric is chosen.

In order to analyze if these results, from entire residence consumption, also ap-
plied to appliance level consumption, forecasting models were trained for nine different
appliances—lights, air conditioning, computer, refrigerator, aquarium, television, modem,
smartphone chargers, and total main sector.

Each appliance was trained with data from five different time granularities—1 min,
15 min, 1 h, 6 h, and 1 day. Thus, a total of 45 models were trained. The forecasts were
evaluated by using MSE and NMSE metrics. Figure 11 shows the mean results for each
metric. It can be observed that better results are achieved for higher time series frequencies
when normalized metrics are used, while better results for lower frequencies are achieved
with non-normalized metrics, confirming what was observed in [8,23] with total residence
consumption data.

A possible solution for time granularity selection for appliance level forecasting is
using Digital Twin house metadata to categorize appliances by ACF plots and analyzing
their prevailing seasonalities. This solution allows the scalability and customization of
forecasts according to specific digital twin models and improved quality and value for the
user, as defined by [35].
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Figure 11. Average MSE and NMSE for 1 min, 15 min, 1 h, 6 h, and 1 day time period granularities.

Figure 12 shows different seasonalities for light energy consumption. Figure 13 shows
their respective forecasts in different frequencies. From these results, choosing an adequate
frequency is important for improving consistency, quality, and value, as defined by [35], as
well as for avoiding information loss [19].

The minute and hourly frequency predictions show little temporal and shape dis-
similarity when compared with daily data. There is daily seasonality present in the data,
as observed in the ACF plot, which can be used to select the most adequate frequency
for forecasting. Thus,in order to assist and automate this decision, the appliance classes
retrieved from the digital twin model can be used in conjunction with ACF plots to select
time frequencies to optimize information value for users by consumption forecasts.

4.3. Digital Twin Ontology

Figure 14 presents the smart home digital twin. It comprises persons, home, facility,
room classes, and subclasses. The instances are related to the household used in the proof
of concept. The four individuals live in Household ABC, which is an instance of Home. The
Home class has the Room subclass, which is related to Household ABC instance. There are
four household energy consumption sectors, all related to Household ABC. Each person
may have a relation of private or shared room, and a device has a relation installed in
some room. All these relations are illustrated in Figure 15. Additionally, each device has a
data property describing its MQTT Topic, which is the Publish-Subscriber protocol used in
smart home implementation.
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Figure 12. Lights ACF plot for minute, hourly, and daily frequency data.
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Figure 13. Lights forecast for minute, hourly, and daily frequency data.
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Figure 14. Household ABC digital twin ontology.

Figure 15. Digital twin smart home ontology relations and data property.

The brother person perspective is depicted in Figure 16. One may observe that the
brother has a private room relation with his room. Brother room is a room of Household
ABC, and home office and light bulb devices are installed in this room. A conversational
agent may use this knowledge to recognize the speaker as the brother, and process the
command “turn my light off” to infer that it must switch off the LightBrotherRoom and
not another light bulb present in another room, thus saving a conversation iteration for
increased usability. The automation command may be issued to the smart home backend
based on the MQTT Topic of the LightBrotherRoom device.
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Figure 16. Brother perspective in digital twin smart home ontology.

The kitchen perspective shown in Figure 17 may be useful for a smart home automa-
tion and energy management system that must know all the devices installed in the kitchen.
Based on smart plugs with device-level monitoring, household-level monitoring may be
performed based on smart home digital twin ontology.
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Figure 17. Kitchen perspective in digital twin smart home ontology.

5. Discussion
5.1. Comparison with Related Work

As shown in Table 5, most works used offline experiments, disregarding MLOps
challenges to energy consumption forecasting. While [24] used hierarchical models to
increase its resilience to missing data, his focus was mainly on data and model related
challenges and did not address infrastructure and monitoring issues. A wider range of
time granularities and forecasting horizons were used in comparison with related studies
on residential energy consumption, and the period available for experiments is similar to
other studies.

Table 5. Residential consumption forecasting papers comparison.

Paper # of
Houses

Appliance
Data Models Used Metrics Time

Granularity
Forecast
Horizon

Experiment
Period

[6] 25 no SVR, ANN NRMSE 30 min 1–24 h 18 months

[8] 27 no
Gradient
boosting RMSE 30 min 1–24 h 35 months

[23] 7 yes Multiple MAPE 15–60 min 15–1440 min 9 months

[21] 1 yes LSTM MAPE 30 min 30 min 24 months

[24] 20 no Hierarchical NMAE, NQS hourly 24 h 12 months

[25] 93 no ANN R2, MAPE, SDE hourly 1–24 h 17 months

Wiseful 4 yes Gradient Boosting MSE, NMSE 1–1440 min 15–1440 min 19 months

One of the main difficulties in quantitatively comparing our results with related work
is related to the different datasets and metrics used, as discussed in Section 2. Even if
all studies used the same metrics, unless a universal dataset is used, comparing them
quantitatively is unfeasible. The main focus of our study was to analyze the develop-
ment approaches used to tackle MLOps challenges, as well as to optimize appliance level
load forecasting.
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Considering appliance consumption forecasting, it was possible to generate accurate
predictions by choosing custom time frequencies for each appliance class using digital
twin appliance metadata and ACF analysis for seasonality, as opposed to the approaches
in [8,23] in which they used accuracy metrics.

5.2. Known Limitations and Future Work

The proposed solution supports more granular personalized recommendations than the
approach based on collaborative filtering, as each household and its users are modeled in a
specialized ontology [13,14]. However, a future study direction is to test, with real users, how
smart home ontology supports engaging conversations and making personalized suggestions.

Human IoT is a concept explored in this project and added as an essential aspect of
the platform. Distinct from the original objective of using IoT to collect data in real-time
from the physical world [57], another key element is allowing the user to complement
digital twin information regarding house physical dimensions; family people; energy
monthly cost; electrical appliances with details, such as vendor, age, and technologies;
and other pieces of information that, if combined with curate attitude, might produce
valuable information. In this study, ontology was constructed with a manual method, but
automating this process with user inputs in natural language may be a promising future
research direction.

One opportunity is to integrate the gamification elements and other motivational
factors to extend the gamified management platform proposed in [15] with a conversa-
tional interface based on a smart home digital twin ontology. Another opportunity is to
use our smart home digital twin to investigate MLOps aspects when deploying reinforce-
ment learning models as the ones presented in [17], in addition to the prediction models
presented herein and found in the literature [16].

Finally, one of the most relevant challenges is to secure the digital twin [11], which is
considered out of the scope of this article.

5.3. Development Considerations

One of the main fears at the beginning of the project is related to the large number
of functional changes arising from the start of the project, and the assumption that the
tests implemented at this stage would quickly become obsolete. However, this fear proved
unfounded, since the simple definition of the tests not only verified the correct execution of
the code but also guided the process of development, following Test-Driven Development
(TDD) [58].

Data versioning proved to be important in experimentation during exploratory data
analysis, ensuring the reproducibility of experiments performed in previous versions.
During the development process, it was necessary to balance delivering results and running
tests so that the definition of priorities was extremely important in the course of the project.
The choice of priorities was calculated according to the probability of related problems to
occur, considering the impact of these problems on the system.

Another consideration for running the tests was the modularization of pipeline steps.
By accurately defining its expected features, inputs, and outputs, it makes it easier to
change the source code and experiment with new settings and it is easier to observe how
specific changes impact the results.

6. Conclusions

Research Question 1 was properly addressed by the digital twin household ontology
model that includes topological and behavioral aspects of the residence and relevant
metadata that may be used with the energy consumption forecasts by other systems (e.g.,
smart home with energy management system with solar photovoltaic panels and batteries).

Research Question 2 was also addressed in MLOps experiments that show how the
proposed solution is robust to missing data and supports multiple time granularity of 1 to
1440 min and MSE and NMSE metrics.
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A smart home digital twin integrated with MLOps is proposed to effectively predict
energy consumption at a device level. Our approach may be useful for tackling the
challenges of deploying machine learning prediction models in online environments,
considering the specific scenario of energy consumption forecast. Household metadata
is modeled in an ontology to support facilitated integration of real-time monitoring and
prediction information with new interfaces, such as personalized conversational agents
and dashboards.

The approach was validated by using a residential study case with 31 IoT smart meter
and smart plug devices with 19-month data (measurements performed each second). Our
results show that choosing custom time frequencies for each appliance class and ACF
analysis allowed generating accurate predictions, actively tackling MLOps challenges in
the energy forecast scenario.
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