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Abstract: To further improve the path planning of the mobile robot in complex dynamic environments,
this paper proposes an enhanced hybrid algorithm by considering the excellent search capability
of the ant colony optimization (ACO) for global paths and the advantages of the dynamic window
approach (DWA) for local obstacle avoidance. Firstly, we establish a new dynamic environment
model based on the motion characteristics of the obstacles. Secondly, we improve the traditional ACO
from the pheromone update and heuristic function and then design a strategy to solve the deadlock
problem. Considering the actual path requirements of the robot, a new path smoothing method is
present. Finally, the robot modeled by DWA obtains navigation information from the global path, and
we enhance its trajectory tracking capability and dynamic obstacle avoidance capability by improving
the evaluation function. The simulation and experimental results show that our algorithm improves
the robot’s navigation capability, search capability, and dynamic obstacle avoidance capability in
unknown and complex dynamic environments.

Keywords: mobile robot; path planning; ant colony optimization; dynamic window approach;
deadlock problem; dynamic obstacle avoidance

1. Introduction

Mobile robots have various applications in various fields, and their autonomous
navigation in ambient space is crucial [1]. When robots have a priori information about
the environment, they can plan a global path from the starting point to the endpoint and
optimize some certain goals, an ability which has received much attention [2]. However,
it is difficult for robots to have a priori environmental information, especially about the
dynamically changing factors, such as climatic conditions [3], unknown obstacles [4], and
unfamiliar terrain [5]. The robot needs to detect the surrounding environment in real-time
and make multiple plans to obtain a feasible, safe path. Good results have been achieved in
path planning research for solving unknown static environments [6–9], while the unknown
dynamic factors [3–5,10] constrain the reliable and robust motion of the robot in general
environments and present a significant challenge.

As the complexity of the environment and the difficulty of robot tasks increase, tradi-
tional path planning methods are challenging to achieve the desired results. Ant colony
optimization (ACO) has strong robustness and adaptability for solving global path planning
problems [11]. In recent years, related scholars have proposed many improvement strate-
gies and methods. Luo et al. [12] introduced optimal and worst solutions in pheromone
updating to expand the influence of high-quality ants and weaken the power of worst
ants, which accelerates the algorithm’s convergence. Dai et al. [13] proposed a smoothing
ACO that optimizes the number of path turns and path length. You et al. [14] designed a
new heuristic operator to improve the diversity and convergence of the population search.
To improve the solution accuracy of the algorithm, Xu et al. [15] proposed a mutually
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collaborative two-layer ant colony algorithm, using the outer ant colony for global search
and the inner ant colony for local search. Ao et al. [16] took the motion characteristics of
the USV into account for smoothing the paths, the continuous functions in orientation and
curvature achieved, which reduced the fuel consumption and space-time overhead of USV
to a certain extent.

In theory, such algorithms ensure an optimal global path obtained, but it may not be of
high practical value due to the unpredictability of local information. Local path planning
based on real-time sensor information is efficient and highly adaptable to local environments,
such as the BUG algorithm [9], DWA [10], the fuzzy logic algorithm [11], and the artificial
potential field algorithm [17]. Due to the lack of global information, it is challenging to
guarantee accessibility and path optimality. Hybrid path planning methods have received
extensive research and attention [6], with global paths as guides and local planning executed
online. The fusion algorithms A*–DWA [7,18,19] and Dijkstra–DWA [20–22] are the most
widely studied hybrid algorithms. To achieve global path tracking and local unknown
obstacle avoidance for the robot in complex and unfamiliar environments, Chi et al. [7]
use the improved A* algorithm to plan the robot’s navigation path and the DWA for local
obstacle avoidance. Some scholars [18] also considered obstacles with motion properties in
the fusion algorithm. The mechanism of Dijkstra-DWA studied by Liu et al. [22] is similar to
Chi et al. [7]. Differently, Liu et al. [22] take the mobile objects interfering robot’s motion
and verify the algorithm’s obstacle avoidance performance in a natural environment. Some
scholars [23,24] have recently fused ACO with DWA for dynamic obstacle avoidance studies.
Shao et al. [23] exploit improved ACO to plan the robot’s path and use DWA for dynamic
obstacle avoidance. Still, the robot uses a priority strategy for obstacle avoidance where
obstacle passage is prioritized. If there are many mobile obstacles in the environment, the
robot’s safety cannot be guaranteed. Jin et al. [24] consider a variety of motion states obstacles
to interfere with the robot’s motion without assuming their volume and size. Although
a good obstacle avoidance effect has been achieved, it is impractical. In addition, the
hybrid algorithm for Rapidly-exploring Random Trees (RRT)–DWA has been investigated
by several scholars [25].

With the rise of artificial intelligence, this type of path planning has received much at-
tention. Chen et al. [26] proposed a bidirectional neural network to solve the path planning
problem in an unknown environment. Wu et al. [27] transformed the path planning task
into an environment classification task, using Convolutional Neural Network (CNN) to
perform path planning. Reinforcement learning is a class of algorithms applied to unknown
environments. As one of the three major branches of machine learning, reinforcement
learning [28] does not need to provide data, unlike supervised and unsupervised learning.
All the learning material will be obtained from the environment. By continuously exploring
the environment and learning the model based on the other feedback generated by various
actions, the intelligence will eventually complete the task in the specified environment
with the optimal strategy. Since V. Mnih et al. [29] proposed Deep Q-Network (DQN),
deep reinforcement learning has continued to make breakthroughs, and some researchers
now try to solve path planning problems by deep reinforcement learning. In the grid
environment, Piotr Mirowski et al. [30] exploit multimodal perceptual information as input
and make decisions by reinforcement learning to accomplish navigation tasks in grid space.
Panov et al. [31] utilize the Neural Q-Learning algorithm to achieve the path planning
task. Lei et al. [32] combined CNN with DDQN to investigate path planning in dynamic
environments. Lv et al. [33] proposed an improved DQN-based learning strategy that
builds an experience-valued evaluation network in the beginning phase and uses a parallel
exploration structure when the path roaming phenomenon occurs. The study also con-
sidered exploring other points than the roaming points to improve the experience pool’s
breadth further.

Robots in unknown and complex dynamic environments require global navigation
and dynamic obstacle avoidance capabilities. This paper proposes an effective ACO hybrid
DWA dynamic path planning algorithm, and the planning ability and dynamic obstacle
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avoidance ability of the hybrid algorithm in complex environments have been further
enhanced by the following improvements:

• A new dynamic environment construction method is proposed to address the lack of
practical dynamic factors in current path planning research.

• The robot’s navigation trajectory is planned by the improved ACO, which improves
the robot’s adaptability to complex environments in the grid map. We propose a
non-uniform initial pheromone method to avoid the blindness of the ants’ initial
search and improved heuristic functions using corner suppression factors to enhance
the smoothing ability of the ants’ paths of exploration. To improve the algorithm’s
convergence, we updated the pheromone hierarchically according to the quality of
the ants. In addition, the deadlock problem is solved by the retraction mechanism we
designed. Considering the actual path requirements of the robot, we smoothed and
optimized the paths.

• Constructing the robot model based on improved DWA, our primary focus is to utilize
the global path planned by IACO as the robot’s navigation information, then analyze
and improve the robot’s sampling window and evaluation function to enhance the
path tracking capability, dynamic obstacle avoidance capability, and motion stability.
Finally, we have verified the effectiveness of the fusion algorithm through extensive
simulation experiments.

2. Environmental Model Construction

Current research on mobile robot path planning is usually based on more ideal en-
vironments that lack consideration of certain dynamic environmental factors. This paper
proposes a new approach to environment model construction to further extend the research
on dynamic path planning.

2.1. Modelling of the Known Environment

A standard method for describing the working environment of a mobile robot is
the grid method, which divides the environment into a grid of Mrows and Ncolumns,
with the black grids representing the obstacle areas that make the robot impassable and a
white grid representing the areas where the robot can pass. Based on the previous ideal
environment, this paper will add the dynamic factor environment shown in Figure 1,
including unknown static obstacle (the orange grid) and unknown dynamic obstacle (the
circular mobile obstacle), after the global path planning process has been implemented.
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2.2. Modeling of the Unknown Environment

The robot’s movement is usually disturbed by other unknown obstacles in its envi-
ronmental space. Better research results on unknown environments focus on unknown
static obstacles [7,8]. In contrast, research on unknown dynamic environments [19,24,25]
contains problems such as lack of consideration of moving objects’ speed and volume size
and unreasonable obstacle avoidance mechanisms in the robots themselves. Considering
the above issues, a new dynamic environment modeling requirement is proposed, and a
better approach to the robot’s obstacle avoidance strategy will be presented following.

To facilitate the expansion of the volume size of the mobile obstacles, we will consider
a circular obstacle instead of a square obstacle [23] limited by the grid method and build a
red threat circle with a size of n times the radius R_ob of the mobile obstacle, which can
significantly improve the robot’s recognition area of blocks and enhance obstacle avoidance
(we verify with the corresponding experiments). Where: R_Sob = nR_ob, the absolute
velocity vector is (vbcosθ, vbsinθ), and θ is the directional angle of the velocity vector vb.
The model of the mobile obstacle is shown in Figure 2.
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Figure 2. Mobile obstacle.

For the ensuing study, we define the mobile robot and its dynamic environment
as follows:

(1) The starting point, endpoint, and global environmental information are known.
(2) The mobile robot has sensors that can acquire external information and sense the

actual volume size and speed of movement of the moving obstacle.
(3) The mobile robot is based on a two-wheel differential model with the dynamics

constraints considered. It has a well-developed power system and sufficient energy to
accelerate, decelerate, and avoid obstacles.

(4) Considering the uncontrollable action of mobile barriers, this paper will focus on the
uniform velocity motion and set its movement speed as less than the maximum linear
speed of the robot.

(5) The route of the mobile obstacles motion can be obtained by the security A* algo-
rithm [34], and the dynamic environmental factors are ignored in the planning process.
Based on this, we will set the corresponding motion speed for the mobile obstacles
and obtain the position information for each moment in advance for the robot to
collect data and execute the obstacle avoidance strategy.

3. Global Path Planning
3.1. Ant Colony Optimization (ACO)

Ant colony optimization is an efficient heuristic algorithm that uses distributed com-
putation. The ants choose the direction of movement mainly based on the accumulated
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pheromones on the path. Assuming that the ant k is located at the node i at time t, the
probability of selecting the next node j is determined by Equation (1).

pk
ij(t) =


[τij(t)]

a [ηij(t)]
β

∑
j∈allowedi

[τij(t)]
a [ηij(t)]

β , j ∈ allowedi

0, otherwise
(1)

ηij(t) = 1/djE (2)

where allowedi denotes the set of optional adjacent grids of ant k in grid i; τij is the
pheromone concentration; ηij is the heuristic function and djE denotes the Euclidean dis-
tance from grid j to the endpoint E; and α and β denote the relative importance degree of τij
and ηij, respectively. The ant’s search for the optional path is influenced by the pheromone
update strategy, which is traditional.

∆τk
ij(t) =

{
Q
Lk

, j ∈ allowedi
0, otherwise

(3)

τij(t + 1) = (1− ρ)τij(t) +
m

∑
k=1

∆τk
ij(t) (4)

where Q is the pheromone intensity; ∆τk
ij denotes the pheromone increment of the path;

Lk denotes the total length of the path traveled by the ant k; ρ is the pheromone volatility
factor; and m denotes the total number of ants.

3.2. Improved Ant Colony Optimization (IACO)
3.2.1. Initial Non-Uniform Pheromone

The initial pheromone of the traditional ACO is constant, and the ants tend to move to
the grid closer to the endpoint, which may lead the ants in a wrong direction and then con-
tinue searching. To improve the quality of the ants’ search paths and to prevent them from
falling into dead ends effectively, this paper proposes a method for non-uniformly assign-
ing pheromones based on obstacle density concerning the non-uniform initial pheromone
strategy proposed by Luo et al. [12] based on the distance relationship as follows:

τi,j(0) = C · f (i) (5)

f (i) = card(allowedi)/8 (6)

where C is an amplification factor of the feasibility function, which is taken as needed; f (i)
is the feasibility function; and card indicates the number of feasible neighborhood grids
for the grid i, with more selectable grids demonstrating greater path feasibility, more
pheromones are allocated, and conversely, to a lesser extent. In addition, the pheromone
concentration at the map boundary is set to a small constant. Figure 3 shows the ini-
tial pheromone concentration of one map, where C is a constant 10 and the boundary
pheromone concentration is set to 2, the brighter-colored areas indicate higher pheromone
concentrations and more excellent path selectivity.
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3.2.2. Design of Heuristic Functions

The traditional heuristic function is shown in Equation (2), which guides the ant to
explore the path by the distance relationship from the ant’s current position to the endpoint.
The attraction effect becomes more pronounced as the ants get closer to the endpoint.
Conversely, the attraction effect is insignificant for parts far from the endpoint. Ant may
suffer severe deadlocks and produce more redundant turning points due to the lack of
guidance from favorable inspirational information [35]. For this reason, we considered
both the heuristic effects of the starting point, the current node, and the endpoint, and then
we added a corner suppression factor as shown in Equation (8) to enhance the smoothing
ability during ant exploration to reduce redundant nodes. The heuristic function we
designed is shown in Equation (7).

ηij =
dSj

dij + djE
· Eturn (7)

Eturn =

{
u1/Lgrid, turn(J) = turn(J − 1)
u1/
√

2 Lgrid, otherwise
(8)

where dSj is the distance from the starting point S to the next node j; dij is the distance
from the current node i to the point j; djE is the distance from the point j to the endpoint E;
Eturn is the corner suppression factor; Lgrid is the side length of the grid, and we default
to 1; u1 is the smoothness weight, taken according to the actual situation; and turn(J) and
turn(J − 1) are the current and previous directions to be transferred by the ant k in the
eight-neighborhood range, respectively. The most beneficial effect of our heuristic function
is that when turn(J) is the same as turn(J − 1), it will increase the probability of ant k
choosing this path, thus reducing the number of redundant turning points and improving
the smoothness of the path. To further demonstrate the effectiveness of the improved initial
pheromone strategy and the designed heuristic function, we analyzed it in Section 6.1.1
using first-generation ant populations with no pheromone update disturbance.

3.2.3. Improving Pheromone Updates

Pheromone update refers to accumulation and volatilization, mainly local and global
update processes. This paper improves the pheromone update rule by the optimal-worst
ant system and the elite ant system. After each round of iteration, we will divide the
optimal layer ants, the worst layer ants, and the ordinary layer ants by path length. Then,
perform local pheromone updating based on Equations (10)–(12) to increase the role of
the optimal solution in guiding and weakening the part of the worst solution. We have
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also introduced the enhancement factor of the elite ant of Equation (14) into the global
pheromone update to speed up the algorithm’s convergence further.

∆τk
ij(t) =

{
∆τbest + ∆τworst + ∆τother, j ∈ allowedi
0, otherwise

(9)

∆τbest =
Q1

Lbest
, Q1 = bQ (10)

∆τworst =
Q2

Lworst
, Q2 = Q/w (11)

∆τother =
Q3

L
, Q3 = Q (12)

where ∆τbest, ∆τworst, ∆τother are the local pheromone increments of the optimal, worst
and other paths in the current iteration, respectively; Lbest, Lworst, L correspond to the
lengths of the three tracks, respectively; b and w are the number of optimal ants and worst
ants in the current iteration, respectively; and Q1, Q2, Q3 are the pheromone intensity of
three types of ants, respectively.

AS the decisions of the ants in the current iteration will be influenced by the previous
ants, if the path obtained by the aforementioned method is not optimal, it will mislead
the following ants. Therefore, we select elite ants from within i iterations according to
Equation (14) and introduce an increase factor in the global pheromone update to amplify
the influence of the elite ants, which speeds up the convergence of the algorithm to some
extent. The improved global pheromone update is as follows.

τij(t + 1) = (1− ρ)τij(t) +
m

∑
k=1

∆τk
ij(t) + q(t) (13)

q(t) =

{
δ NCmax

NC·L∗(i) , L∗(i) = min(L)
0, other

(14)

where m denotes the total number of ants; δ is the influence value of elite ants; NC and
NCmax are the current and maximum number of iterations, respectively; min(L) is the
optimal path length of the current iteration; and L∗(i) is the path length of the elite ants
within i iterations.

3.2.4. Improving the Pheromone Volatility Factor

The optimal-worst ant system and the elite ant system speed up the algorithm’s
convergence. To avoid the positive feedback mechanism of the ant colony leading to the
optimum local problem, we improve the pheromone volatility factor ρ to enhance the global
searchability. If there is no new elite ant, the pheromone volatilization factor is adjusted;
otherwise, it is a constant ρ0. The improvement strategy is as follows:

ρ(t + 1) =
{

ρ(t)(1 + NC/NCmax), L∗(i) = min(L)
ρ0, otherwise

(15)

3.2.5. Deadlock Handling Strategy

When the robot’s environment is complex (e.g., an environment with U-shaped ob-
stacles), the presence of the forbidden table mechanism may lead to a deadlock situation
where ants do not have a suitable grid to move. Ant retraction and ant death strategies
are common approaches to solving this problem [36]. However, when the environment
consists of many or large traps, the ant retraction strategy causes the ants to constantly
mark and judge their surroundings, with forwarding and backward situations, resulting in
algorithm inefficiency. Similarly, the ant death strategy causes ants with deadlock to die
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naturally, which means the pheromone is updated inefficiently and poorly in algorithm
accuracy.

In this paper, a deadlock measure is proposed based on the ant retreat strategy. As
shown in Figure 4, when an ant falls into a deadlocked state at grid D, it is allowed to retreat
to the previous path grid T3 and fill the grid D with a virtual obstacle (the blue grid). If the
ant is still in a deadlocked state, we continue the backtracking and filling operations until
the ant is outside the trap entirely. The beneficial effects of the strategy are (1) ensuring the
diversity of the ant colony and improving the adaptability of the algorithm effectively to
complex environments and (2) using virtual obstacles to fill in the deadlocked region and
then prevent subsequent ants from falling into that part again, improving the algorithm’s
solution speed effectively.
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3.2.6. Path Smoothing Optimisation

Paths obtained by both the ACO and A* algorithm consist of path nodes in the
grid center. The paths, in this case, have more invalid nodes, and the curvature is also
discontinuous, which does not satisfy the actual path requirements of the robot. To this, we
design a new path smoothing method shown in Figure 5, where the initial path consists of
a concatenation of grid centroids, and the original route is a black dashed line with many
redundant nodes. We optimize the tracks which no longer limit the grid’s center and take
the safety distance d into account, as follows:

1. Iterate through all nodes of the path. If the current node is on the same line with two
adjacent nodes, the current node is removed;

2. Iterate through the starting point and the turning point. From the starting point,
each node will be connected to the following turning point as the alternative path
in succession and judge the relationship between the distance di of each path to the
obstacle grid and the safety distance d. If di ≤ d, the alternative path is ignored;
if di > d the redundant nodes of the original route are removed to generate this
optimized path (the blue dashed line). In this paper, the safety distance d for the paths
of the robot and mobile obstacles are 0.707 and 1.414, respectively.

3. The three-time B-sample curve has second-order continuity, which can better satisfy
the continuity of the mobile robot in terms of velocity and acceleration (the kinetic
characteristics are not considered).

(1) Extract the critical nodes as control nodes Pi(i = 0, 1, . . . , n) after removing the
redundant nodes.

(2) According to Equation (16), the segmental B-sample smoothing [37] is per-
formed on the turning point to generate the B-sample curve.

(3) To control the B-spline curve to avoid crossing obstacles, Huang et al. [38]
adjusted the curve based on the convexity of the curve wrapping. The B-spline
curve is retained when the barrier is outside the characteristic triangle formed
by the control point Pi. Suppose the obstacle intersects the characteristic
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triangle, and the B-spline curve crosses the obstacle. In that case, a set of
triangles with a similarity ratio k is selected within the characteristic triangle
(k from 1 to 0, the scale is chosen according to the experiment). This triangle
is utilized to generate new control points to determine the shortest B-spline
curve that will not cross the obstacle.

C0,3(u) =
1
6
[

1 u u2 u3 ]


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1




P0
P1
P2
P3

, 0 ≤ u ≤ 1 (16)

Machines 2021, 9, x FOR PEER REVIEW 8 of 28 
 

 

  
(a) (b) 

Figure 4. Deadlock handling strategy diagram; (a) Ant deadlock diagram; (b) Improved fallback 
strategy. 

3.2.6. Path Smoothing Optimisation 
Paths obtained by both the ACO and A* algorithm consist of path nodes in the grid 

center. The paths, in this case, have more invalid nodes, and the curvature is also discon-
tinuous, which does not satisfy the actual path requirements of the robot. To this, we de-
sign a new path smoothing method shown in Figure 5, where the initial path consists of a 
concatenation of grid centroids, and the original route is a black dashed line with many 
redundant nodes. We optimize the tracks which no longer limit the grid’s center and take 
the safety distance 𝑑 into account, as follows: 

 
(a) 

  
(b) (c) 

Figure 5. Schematic diagram of path smoothing optimisation; (a) Editable node determi-
nation; (b) The path of mobile robot; and (c) The path of mobile obstacle. 

1. Iterate through all nodes of the path. If the current node is on the same line with two 
adjacent nodes, the current node is removed; 

2. Iterate through the starting point and the turning point. From the starting point, each 
node will be connected to the following turning point as the alternative path in suc-
cession and judge the relationship between the distance 𝑑𝑖 of each path to the obsta-
cle grid and the safety distance 𝑑. If 𝑑𝑖 ≤d, the alternative path is ignored; if 𝑑𝑖 >𝑑 the redundant nodes of the original route are removed to generate this optimized 
path (the blue dashed line). In this paper, the safety distance 𝑑 for the paths of the 
robot and mobile obstacles are 0.707 and 1.414, respectively. 

S T1

T2

T3

D

di
Original
Optimized
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The path of mobile robot; and (c) The path of mobile obstacle.

Figure 5a is a schematic diagram of control point selection, in which the characteristic
triangle consists of control points {p0, p1, p2}. There is no collision between the character-
istic triangle and the obstacle in the left figure, save the curve. In the right figure, there are
collisions, and the measure is to generate new B-sample curves based on control points{ 8

p0, p1,
8

p2

}
determined by similar triangles until there are no further collisions. Figure 5b

is the mobile robot path planning diagram, where IACO planned the black path, the route
marked in blue is optimized by steps 1 and 2, and the red trace is obtained by step 3.
Figure 5c shows the dynamic obstacle motion path diagram, where the black dashed line is
received by the security A* algorithm [34], and the blue dashed line is optimized by steps 1
and 2.

4. Local Path Planning
4.1. Dynamic Window Approach (DWA)

DWA is a local path planning method for predictive control that samples multiple
velocities (linear and angular velocities) in the velocity space and simulates the robot’s
trajectory at these velocities within a specific time interval. Based on the evaluation metrics,
we selected the best speed from multiple sets of simulated trajectories to drive the robot’s
motion [19].
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4.1.1. Kinematics Model

The two-wheel differential speed model of the mobile robot is shown in Figure 6,
where: L is the width of the robot. In the experiment, we can ensure the safety of the
robot movement by setting the safety radius Rsa f e; v(t) and ω(t) are the linear and angular
velocities, respectively. The motion state of the robot during the time interval of the
sampling period ∆t is: 

x(t) = x(t− 1) + v(t)∆t cos(θ(t− 1))
y(t) = y(t− 1) + v(t)∆t sin(θ(t− 1))
θ(t) = θ(t− 1) + w(t)∆t

(17)

where x(t), y(t), θ(t) denote the position and angle of the robot in the x, y directions at
the time t, respectively; the linear velocity v(t) range of variation depends on the nearest
distance to the obstacle and the maximum linear deceleration; the content of angular
velocity ω(t) variation is determined by both the closest distance to the obstruction and
the maximum angular deceleration.
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4.1.2. Determination of Robot Motion Velocity Range

In the velocity space, DWA describes the robot’s obstacle avoidance problem as
an optimization problem with constraints, including incomplete motion constraint on
the differential robot, dynamics constraint on the robot structure, and environmental
constraints.

(1) The maximum and minimum speed constraints for the robot are:

vs =
{(

v, w
)
| v ∈ [vmin, vmax], w ∈ [wmin, wmax]

}
(18)

(2) Motor acceleration and deceleration constraints: as different motors have different
performances, the acceleration of the robotis also different, and the robot is constrained
by the speed that can be reached in the nexttime interval.

vd =
{
(v, w) | v ∈

[
vc − av

min∆t, vc + av
max∆t

]
, w ∈

[
wc − aw

min∆t, wc + aw
max∆t

]}
(19)

where vc , wc are the linear velocity and angular velocity of robot at the current
moment, respectively; amin

v , amin
w are the minimum linear deceleration and minimum

angular deceleration, respectively; amax
v , amax

w are the maximum linear acceleration
and maximum angular acceleration, respectively; and ∆t is the sampling time.
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(3) Braking distance constraint: the entire robot trajectory can be subdivided into several
linear or circular motions. To ensure the robot’s safety, the current speed should
decelerate to 0 before hitting the obstacle in the maximum deceleration conditions.

va =

{
(v, w) | v 6

√
2dist(v, w)avmin , w 6

√
2dist(v, w)awmin

}
(20)

where dis(v, w) is the distance between the simulated trajectory and the nearest ob-
stacle. From the expression 0− v2

a = −2dist(v, w)amin
v and 0−w2

a = −2dist(v, w)amin
w ,

the simulated velocity must satisfy the condition of Equation (20) to ensure the safety
of the robot moves to a greater extent.

The above constraints limit the robot to a certain speed of motion, which we can
represent by a velocity set {Vr|Vr = vs ∩ vd ∩ va}.

4.1.3. Evaluation Function

We sampled multiple velocities from the velocity space and then selected the optimal
trajectory from them by designing an appropriate evaluation function. The essential criteria
are that the robot in local navigation should efficiently avoid obstacles and move quickly
and steadily towards the target. The conventional evaluation functions as follows:

G(v, w) = σ[xheading(v, w) + ydist(v, w) + zvel(v, w)] (21)

where heading(v, w) is the azimuth evaluation function and to evaluate the azimuth devi-
ation between the end direction of the simulated trajectory and the target at the current
speed; dist(v, w) is the function to evaluate the distance from the trajectory to the obsta-
cle; vel(v, w) is the current speed magnitude evaluation function; σ is the normalization
operation, and x, y, z are the weighting factor of each evaluation function.

4.2. Improved Dynamic Window Approach (IDWA)

Conventional DWA lacks global path guidance and is prone to local optimality, for
which IACO planned the navigation path. Conventional DWA has good robustness and
good obstacle avoidance in static environments, but it may be ineffective when highly
moving obstacles arise in the motion space. To enhance the effectiveness of dynamic path
planning, the following improvements are made to the evaluation function.

4.2.1. Modifying the heading(v, w) Function

This function is a navigation function. Considering the situation shown in Figure 7, it
is clear that the turning trend of trajectory 1 is more desirable. However, according to the
original evaluation function to calculate the angle by the end position of the trajectory, we
find λ1 > λ2, which shows that trajectory 2 has a higher rating than trajectory 1, which is
not realistic [39]. In this paper, we changed the navigation target point of the robot after
several time intervals on the predicted trajectory we found θ1 < θ2, with trajectory 1
receiving a higher rating.
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Most scholars have optimized the global path and extracted key nodes as the nav-
igation points of the robot, but most of them have not considered that the selection of
navigation points is not significant if the navigation points are too far from the current
position of the robot. In this paper, the heading function is improved according to the
robot’s state of motion so that the navigation points are selected concerning the robot’s
current position. First, the average distance ∆s between adjacent path nodes after three
B-sample optimizations is calculated by Equation (22), and the desired move-out distance
ds is determined, then the navigation point tar is estimated by Equation (24):

∆s =
length(B_spline)

size(B_spline)
(22)

nds = f loor(
ds
∆s

) (23)

tar = B_spline(n + nds) (24)

where length() is the path length of the B_spline curve; size() is the number of nodes for
calculating the path; f loor is the downward rounding function; n is the sequence of nodes
of the current navigation point in the original global path, and the information about the
robot’s present moment of navigation point tar is obtained by the expected increase in the
number of nodes nds.

As shown in Equation (25), the modified heading(v, w) function will calculate the
deviation angle in terms of the position of the predicted trajectory after several node
intervals nds and give a score accordingly. The robot’s trajectory tracking and navigation
capabilities have been improved to a certain extent.

heading′(v, ω) = 180◦ − |Θ(r, tar)−Θ(r)| (25)

where Θ(r, tar) is the predicted angle at which the robot’s position r at the next moment
points to the navigation target point tar, obtained with its current linear velocity v and
angular velocity ω; and Θ(r) is the predicted direction of the robot’s motion.

To ensure the stability of the robot movement and to avoid acceleration and decelera-
tion of the robot wandering between navigation points, the following navigation point tar∗

information is obtained from Equations (22)–(25) when the robot is moving towards the
current navigation point tar and the condition of Equation (26) is satisfied.

tar∗ = B_spline(n + 2nds), dis(r, tar) < d1
||[min(dis(r, obs)) < d2&dis(tar, min_obs) < d3]

(26)

where dis(r, tar) is the distance from the predicted position r to the target point tar;
min(dis(r, obs)) is the shortest distance from the expected position r to the obstacle obs in
the robot motion space, and the obstacle is noted as min_obs; dis(tar, min_obs) is the dis-
tance from the target point tar to the obstacle min_obs; and d1, d2 and d3 are the reference
distances, respectively, and taken as needed.

4.2.2. Modifying the dist(v, ω) Function

The function is an obstacle avoidance function. The traditional obstacle list infor-
mation [40] is shown in Equation (27), including global known obstacles obs_closed and
unknown static obstacles obs_static, which lacks the consideration of unknown dynamic ob-
stacles obs_dynamics(t). For this reason, this paper optimizes the obs to update dynamically
over time, as shown in Equation (28):

obs = [obs_closed, obs_static] (27)

obs(t) = [obs(t−1), obs_dynamics(t)] (28)
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Considering the situation shown in Figure 8, it is clear that the trend of obstacle avoid-
ance for trajectory 1 is more desirable. The robot needs to estimate the state information
of the mobile obstacle after ∆t seconds in advance to simulate a path in velocity space
that will avoid the obstacle. Based on the line velocity vobi (i = 1, 2, . . . , n) of the mobile
barriers and the current speed v of the robot, we define the prediction time ∆t as follows:

∆t = k1int(
v

vob
) + k2 (29)

vob = min(vob1, vob2, . . . , vobn) (30)

where int is an upward rounding function; k1, k2 are the correction factors, to be taken as
required; and vob is the minimum perceived velocity of the mobile obstacle in the robot’s
motion space.
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The modified dist(v, w) function will calculate the distance from the current simulated
trajectory point to the predicted movement of the moving obstacles after ∆t time, and
discard those trajectories whose shortest distance from the obstacle is less than or equal
to the robot’s safety radius Rsa f e. In addition, the function has an upper limit on the
obstacle distance Dmax, which ignores barriers that are too far from the robot, as shown in
Equation (31).

dist′(v, ω) =

{
min[Dmin(r, obs(t + ∆t)), Dmax], Dmin(r, obs(t + ∆t)) > Rsa f e
discarded, Dmin(r, obs(t + ∆t)) ≤ Rsa f e

(31)

where Dmin is the shortest distance from the robot’s simulated trajectory r to all obstacles,
and the calculation of the motion state of all moving obstacles is advanced by ∆t seconds.

4.2.3. Modifying the vel(v, w) Function

The function makes the robot move fast, and the score is only related to the robot’s
linear velocity. In general, fluctuations in angular momentum tend to cause oscillations,
and excessive volatility in angular velocity can affect the stability of the robot’s motion [41].
Considering the situation shown in Figure 9, we assume that the linear speeds of trajectories
1 and 2 are the same. Trajectory 1 has a more uniform angular variation and a more desirable
turning trend. Referring to the heuristic function improvement of IACO in this paper, the
speed score and vel(v, w) function are improved as follows:

p =

{
u2, ω1 ≤ |(ωt−2 −ωt−1)− (ωt−1 −ωt)| ≤ ω2
u2/
√

2, otherwise
(32)

velocity′(v, ω) = v + p (33)
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where P is the angular velocity score; ωt−2, ωt−1 and ωt are the angular velocity of the
robot at the first two moments, first one moment and the current moment, respectively;
and u2, ω1 and ω2 are the correction factor.
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5. Hybrid Path Planning

In this paper, ACO and DWA are fused to obtain the robot’s global navigation path
using IACO and construct a robot’s kinematic model for dynamic path planning using
IDWA. The basic process of the hybrid path planning method is as follows:

Step 1. Build a grid map for the mobile robot.
Step 2. Plan a global path based on the IACO with smoothing optimization.
Step 3. Extract the nodes of the global path and obtain the navigation points of the

robot according to Equations (22)–(24). The distance and azimuth angle from the current
position to the local target will be calculated in the IDWA.

Step 4. When the robot moves towards the position of the local target point, once a
new obstacle appears in the environment and is within the detection range of the robot, the
information (position, volume size, and speed of movement) will be sensed by the robot
and the corresponding strategy will be executed to avoid the obstacle.

Step 5. When the robot approaches the local target point, or a new obstacle appears
on the original path that prevents the robot from approaching the local target point, a new
target point will be reacquired according to Equation (26).

Step 6. The path planning and movement process will stop when the mobile robot
reaches the global target point or when the global target point is unreachable due to
obstacles occupying.

A flow chart of the hybrid path planning algorithm is shown as Figure 10:
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6. Simulation Experimental Analysis

This paper uses Matlab 2016a software to conduct experiments on a Windows 10
computer with a 2.2 GHz processor and 8 GB of RAM.

6.1. Performance Analysis of the IACO
6.1.1. Initial Population Validity Analysis

We propose an initial pheromone approach considering smoothness and a heuristic
function with a corner suppression factor, making the paths be fewer turning points and
higher smoothness in a natural environment. To exemplify the effects of population diver-
sity and path smoothing, we conduct experimental analyses in a conventional environment
through the first generation of ant colonies without pheromone update disturbances. The
number of ants is 50; the initial pheromone concentration of the traditional ACO is 10;
the initial pheromone concentration in this paper is assigned according to Equations (5)
and (6), with C set to 20 and the pheromone concentration on the boundary set to 2. The
experimental results are shown in Table 1 and Figures 11 and 12.
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Table 1. Initial population algorithm performance comparison table.

Evaluation Criteria Traditional ACO This Paper

Average path length /m 47.9479 42.9443
Worst path length /m 82.0760 64.8660

Optimal path length /m 32.0380 32.1400
Number of turns for optimal path 12 4

Number of ants dead 15 0
Optimal search time /s 0.3287 0.1822
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The experimental simulation results show that the first generation of traditional
ACO finds paths based on heuristic functions under the same conditions of pheromone
concentration, resulting in more concentrated paths with poor population diversity, which
is not conducive to the exploration ability of the algorithm. In this paper, IACO has a
better guiding effect on the first generation of ants, and the distribution of ants in the whole
space is more uniform. The population diversity is better, which is more likely to guide the
subsequent ants to achieve the globally optimal path. From Table 1, we can see that our
initial population pathfinding effectiveness is significantly better than the traditional ACO.
In subsequent experiments, we will utilize the improved pheromone update strategy to
further demonstrate our algorithm’s effectiveness in solving the contradictory population
diversity and convergence speed.
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6.1.2. Analysis of the Effectiveness of Deadlock Solutions

To verify the effectiveness of the deadlock problem-solving strategies in this pa-
per, the traditional ant-death strategy and the retraction strategy are chosen to conduct
comparative experiments in a specific large-scale deadlock map environment. After ex-
tensive experiments in this environment, the following parameters are selected for the
retraction and death strategies, respectively: α = 1, β = 7, ρ = 0.7, Q = 10, m = 50;
α = 1, β = 15, ρ = 0.9, Q = 10, m = 50. The parameters in this paper are shown in Table 2.
The path and iteration diagram of all ants are added to reflect the level of pathfinding for
different strategies, and the results of the simulation experiments are shown in Table 3 and
Figures 13–15.

Table 2. Main parameters of the simulation experiment.

Algorithm α β Q ρ c u1 δ

Traditional ACO 1 10 100 0.3 - - -
Luo et al. [12] 1.1 7 100 0.2 - - -
Dai et al. [13] 1 10 50 0.3 - - -
You et al. [14] 1 2 1 0.2 - - -

This paper 1 7 10 0.7 20 1 10

Table 3. Performance comparison table of algorithms for deadlock environment.

Evaluation Criteria Retraction Strategy Death Strategy This Paper

Length of path/m 125.1840 37.2100 32.7260
Number of turns for optimal path 25 19 3

Number of iterations —— 13 5
Number of ant deaths before the
algorithm reaches convergence 0 108 0

Optimal search time /s 24.5955 2.4646 1.3852
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Figure 13. Retraction strategy optimisation path diagram; (a) Optimal path diagram; (b) All ants’ 
paths diagram; (c) Iterative diagram of the optimal path; and (d) Iterative diagram of ants’ paths. 
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Figure 13. Retraction strategy optimisation path diagram; (a) Optimal path diagram; (b) All ants’
paths diagram; (c) Iterative diagram of the optimal path; and (d) Iterative diagram of ants’ paths.

Machines 2021, 9, x FOR PEER REVIEW 17 of 28 
 

 

   
 

(a) (b) (c) (d) 

Figure 14. Death Strategy Optimisation Path Diagram; (a) Optimal path diagram; (b) All ants’ paths 
diagram; (c) Iterative diagram of the optimal path; and (d) Iterative diagram of ants’ paths. 

   
 

(a) (b) (c) (d) 

Figure 15. Diagram of the optimal path of this paper; (a) Optimal path diagram; (b) All ants’ paths 
diagram; (c) Iterative diagram of the optimal path; and (d) Iterative diagram of ants’ paths. 

The simulation results show that the retraction strategy preserves all the ants’ solu-
tions. Still, the ants move forward and backward repeatedly in the deadlocked region, 
leaving a large amount of interference pheromone for subsequent ants. The pathfinding 
ability of ants becomes worse and worse as the iteration progresses, showing that the re-
traction strategy is not suitable for the large-scale trap environment. Although the death 
strategy is more effective than the retraction strategy in terms of path length and iteration, 
the number of ants that died due to deadlock before the algorithm achieved convergence 
is as high as 35.8%, negatively impacting the ability to solve the optimal solution. The 
death strategy can achieve better paths than the retraction strategy, but it is trapped in a 
local optimum and cannot be improved by changing the pheromone volatility factor any-
more. This paper enhances the algorithm based on the advantage of the retraction strat-
egy, which can preserve ants’ survival and improve the solution effect. From the experi-
mental results, the ants in this paper retreat from the deadlocked region in time and add 
a virtual barrier grid to the deadlocked area to prevent subsequent ants from falling into 
this part, which improves the path search quality of the following ants. Our strategy can 
obtain better paths in large-scale deadlock environments, and the search time is also 
shorter, which is more suitable for path planning of mobile robots in a complex environ-
ment. 

6.2. Simulation Experiment Analysis of IACO 
A general environment of 20 × 20 scale and a U-shaped environment are chosen for 

comparison experiments, with a population of 50 ants and the number of iterations set to 
50. 

6.2.1. General Environment 
To verify the effectiveness and superiority of our IACO, the traditional ACO, algo-

rithms from Luo et al. [12], and Dai et al. [13] are selected for comparative experimental 
analysis in a conventional environment that is based on Luo et al. [12]. The results of the 
simulation experiments are shown in Table 4 and Figure 16, where: the black dashed line 
in Figure 16a is the initial path of our algorithm, the blue dashed line is the path after 
optimizing the redundant nodes, and the solid red line is the path of three times B-sample 

0 10 20 30 40 50
Number of iterations

35

38

41

44

Figure 14. Death Strategy Optimisation Path Diagram; (a) Optimal path diagram; (b) All ants’ paths
diagram; (c) Iterative diagram of the optimal path; and (d) Iterative diagram of ants’ paths.
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Figure 15. Diagram of the optimal path of this paper; (a) Optimal path diagram; (b) All ants’ paths
diagram; (c) Iterative diagram of the optimal path; and (d) Iterative diagram of ants’ paths.

The simulation results show that the retraction strategy preserves all the ants’ solutions.
Still, the ants move forward and backward repeatedly in the deadlocked region, leaving
a large amount of interference pheromone for subsequent ants. The pathfinding ability
of ants becomes worse and worse as the iteration progresses, showing that the retraction
strategy is not suitable for the large-scale trap environment. Although the death strategy
is more effective than the retraction strategy in terms of path length and iteration, the
number of ants that died due to deadlock before the algorithm achieved convergence is as
high as 35.8%, negatively impacting the ability to solve the optimal solution. The death
strategy can achieve better paths than the retraction strategy, but it is trapped in a local
optimum and cannot be improved by changing the pheromone volatility factor anymore.
This paper enhances the algorithm based on the advantage of the retraction strategy, which
can preserve ants’ survival and improve the solution effect. From the experimental results,
the ants in this paper retreat from the deadlocked region in time and add a virtual barrier
grid to the deadlocked area to prevent subsequent ants from falling into this part, which
improves the path search quality of the following ants. Our strategy can obtain better paths
in large-scale deadlock environments, and the search time is also shorter, which is more
suitable for path planning of mobile robots in a complex environment.

6.2. Simulation Experiment Analysis of IACO

A general environment of 20 × 20 scale and a U-shaped environment are chosen for
comparison experiments, with a population of 50 ants and the number of iterations set
to 50.

6.2.1. General Environment

To verify the effectiveness and superiority of our IACO, the traditional ACO, algo-
rithms from Luo et al. [12], and Dai et al. [13] are selected for comparative experimental
analysis in a conventional environment that is based on Luo et al. [12]. The results of the
simulation experiments are shown in Table 4 and Figure 16, where: the black dashed line
in Figure 16a is the initial path of our algorithm, the blue dashed line is the path after
optimizing the redundant nodes, and the solid red line is the path of three times B-sample
smoothing; the paths in Figure 16b marked with black, purple and blue are implemented
by Dai et al. [13], Luo et al. [12], and traditional ACO, respectively.

As shown in Figure 16, both the traditional ACO and the Luo et al. [12] can find the
shortest path of 30.9690 m, where the Luo et al. [12] algorithm converges faster, and the
number of turns for both is 15, which is more than this paper and Dai et al. [13]. Too
many turns for the mobile robot will inevitably consume more energy and time. In this
paper and Dai et al. [13], the path length and smoothing factors are considered as the
objective of the search, where the length and the number of turning points of the initial
path obtained by our algorithm are 33.3137 m and 7, respectively, which are slightly better
than the 34.4840 m and 8 of Dai et al. [13]. The B-spline curve is obtained by optimizing
the initial path with 2.3023 m shorter than Dai et al. [13], and it is significantly better than
the other three algorithms in terms of smoothness and curvature continuity suitable for
the robot. We consider hierarchical optimization for our pheromone update strategy, so
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the convergence of our algorithm is the fastest, as can be seen in Figure 16c. The downside
is that as we consider the optimization path twice, the total program run time is 2.755 s,
slightly more than others.

Table 4. General environment algorithm performance comparison table.

Evaluation Criteria
This Paper

Luo et al. [12] Dai et al. [13] Traditional ACO
Original Optimized Spline

Path length/m 33.3137 33.0226 32.1817 30.9680 34.4840 30.9680
Number of turns for

optimal path 7 7 0 15 8 15

Number of iterations 3 —— —— 6 9 28
Optimal search time /s 1.772 0.603 0.380 1.816 1.619 2.084
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6.2.2. U-Shaped Environment

To verify the effectiveness and superiority of our algorithm in a U-shaped environment,
the traditional ACO, Dai et al. [13], and You et al. [14] algorithms are chosen for comparative
experimental analysis, with the map environment based on You et al. [14]. The results of
the simulation experiments are shown in Table 5 and Figure 17, where: the blue grid in
Figure 17a is the virtual obstacle grid used to handle the deadlock strategy in this paper;
the paths in Figure 17b are marked with black, purple and blue are implemented by Dai
et al. [13], You et al. [14], and traditional ACO, respectively.

From Figure 17, we can see that some ants in the pathfinding process of traditional
ACO in the deadlocked region have a death situation, making the optimal path is caught
in the local optimum. The algorithm in this paper obtains the optimal path in the current
environment, which is slightly better than the algorithms of Dai et al. [13], and You et al. [14]
in terms of path length, where: our initial path length is 28.6274 m, 28.1842 m after removing
redundant nodes, and the final B-sample curve is 27.9103 m, which is 4.4% and 2.6%
reduced compared to the path length of Dai [13] et al. and You [14] et al., respectively.
More importantly, the initial path planned by our algorithm has only four turns, which
is better than the algorithms of Dai et al. [13], and You et al. [14] with five and seven
turns, respectively. At a particular time cost, the quality of our paths is much better
after two smoothing operations. In addition, we perform a hierarchical optimization of
the pheromone update, and as seen in Figure 17c, our algorithm converges in the 6th
generation, outperforming other algorithms.
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Table 5. Performance comparison table for U-shaped environment algorithms.

Evaluation Criteria
This Paper

Dai et al. [13] You et al. [14] Traditional ACO
Original Optimized B_Spline

Path length/m 28.6274 28.1842 27.9103 29.2100 28.6557 29.4520
Number of turns for

optimal path 4 4 0 5 7 8

Number of iterations 6 —— —— 23 12 22
Optimal search time /s 1.494 0.543 0.255 1.299 1.355 2.047
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Figure 17. Comparison diagram of path planning; (a) Optimal path diagram of this paper; (b)
Optimal path diagrams of other algorithms; and (c) Optimal path iteration diagram.

6.3. Experimental Analysis of the IACO-IDWA

To validate the performance of our improved ACO fusion improved DWA, the A*
fusion DWA algorithm [7], which is currently widely studied for hybrid path planning, is
chosen for experimental analysis of algorithm comparison in unknown static and unknown
dynamic environments. Chi et al. [7] use the improved A* to plan global paths with a high
degree of safety (maintaining a safe distance from obstacles), combined with the traditional
DWA for local path planning. The standard parameters of our DWA and the DWA of Chi
et al. [7] are: the maximum velocity is 1 m/s; the maximum angular velocity is 20o/s; the
velocity resolution is 0.01 m/s; the angular velocity resolution is 1o/s; the acceleration is
0.2 m/s2; the angular acceleration is 50o/s2; the parameters of the evaluation function are:
x = 0.1, y = 0.05, z = 0.2; the prediction period is 3s; the safety radius Rsa f e= 0.7 m; the
desired displacement distance ds is 5m; the navigation point reference distance d1, d2 and
d3 are 2m; the prediction time (moving obstacle) parameter: k1 is 10, k2 is 0; and the angular
velocity scoring parameter: u2 is 0.1 , ω1 is 0, and ω2 is 0.1 rad.

6.3.1. Unknown Static Obstacle Environments

Our algorithm is compared with Chi et al. [7], and the results are shown in Figures 18–20
and Table 6. In this case, the black dotted line represents the global path of each algorithm,
where the original path length planned by Chi et al. [7] is 36.5210 m, and this paper is
35.4772 m. After the global path planning is completed, we add unknown static obstacles to
the common part of the path, where: the paths marked with blue and purple represent local
paths of Chi et al. [7] and our algorithm, respectively.

In Simulation Experiment 1, when a random obstacle is added to the map, both Chi
et al. [7] and our algorithm can plan a path from the starting point (top left corner) to the
target point (bottom right corner). The actual path length of the robot driving in this paper
is 35.8240m, which is 2.2% optimized compared to Chi et al. [7]. As the initial path of Chi
et al. [7] maintains a safe distance from the obstacles and reduces the constraints of barriers
on the robot pathfinding space, the algorithm takes lesser time than our algorithm. As
shown in Table 6, the robot still could avoid the obstacles better and more safely to reach
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the target point by increasing the number of random obstacles, with the driving path length
also growing, but the path length of our algorithm is always better than Chi et al. [7].
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Figure 18. Comparison of path planning results for unknown static environment 1; (a) Local path
planning [7] (b) This paper; and (c) Line speed comparison diagram.
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Figure 19. Comparison of path planning results for unknown static environment 2; (a) Local path
planning [7] (b) This paper; and (c) Line speed comparison diagram.
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Table 6. IACO- IDWA path planning performance table.

Number of Unknown
Static Obstacles

Path Length/m Optimal Search Time/s

Chi et al. [7] This Paper Chi et al. [7] This Paper

1 36.6681 35.8240 402.3918 409.8574
2 37.1823 36.1200 419.0973 417.4700
3 37.7814 36.5060 447.5673 422.6949
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In Simulation Experiments 2 and 3, the algorithm of Chi et al. [7] has more seek time
than our algorithm as the new random obstacle is placed at a more critical location on
the global path, then the robot is influenced by the more enormous spatial constraints
of the environment. The DWA used in Chi et al. [7] is based on the turning point of the
global path as the key navigation point, and when the navigation point is less helpful in
guiding the robot, it is costly for the robot to search for a path that can bypass this obstacle.
Therefore, in Figures 19c and 20c, we can observe that the movement speed of the robot
in Chi et al. [7] varies dramatically and more persistently than our robot between 200–300
and 400–600 control nodes. The algorithm in this paper calculates the deviation angle with
the desired trajectory node position by a modified heading(v, w) function, which is not
limited to the traditional DWA that only considers the path turning point case. Moreover,
in this paper, when the robot moves towards the current navigation point and satisfies the
condition of Equation (26), the following navigation point is obtained in advance, which
avoids the acceleration and deceleration situation where the robot wanders between local
target points, and the stability of robot motion more than Chi et al. [7]. In summary, the
hybrid algorithm in this paper can achieve obstacle avoidance in an unknown environment
and better fit the globally optimal path.

6.3.2. Unknown Dynamic Obstacle Environments

In the previous section, we verified the effect of the hybrid path planning of the
improved algorithm. Still, due to the difference in the path planned by the global algorithm,
the obstacle avoidance effect of our algorithm cannot be fully explained. Therefore, in
this section, we verify the dynamic obstacle avoidance effect of the algorithm by a mobile
obstacle in the 10 × 10 obstacle-free environment. Consider three types of moving blocks
with different characteristics (size, speed), as shown in Table 7. In the experiment, the actual
radius of the mobile obstacle is extended twice to generate a threat circle which expanded
threat circle can increase the robot’s recognition range of barriers and play a certain degree
of buffering effect on the robot’s braking. The start point coordinates of the mobile robot
are (3.5, 7.5), and the endpoint coordinates are (6.5, 2.5). The start point coordinates of the
mobile obstacle are (6.5, 4.5), and the endpoint coordinates are (3.5, 6.5).

Table 7. Mobile obstacle movement states.

Simulation Experiment Actual Radius R_ob /m Radius R_Sob of Threat Circle Speed of Movement of m/s

1 0.15 0.3 0.1
2 0.3 0.6 0.1
3 0.3 0.6 0.4

To facilitate the study, we modify the obstacle list of the function in Chi et al. [7] to
be dynamic through Equation (28). Usually, most scholars study DWA in a way similar to
Chi et al. [7], that is, for the detection distance Dmin in Equation (31) taken as the distance
from the robot to the geometric center of the obstacle. A reasonable safety radius Rsa f e
is set for the robot, so the predicted trajectory will not consider those areas where the
detection distance is less than the safety radius Rsa f e. Considering the limited space for
robot movement, if the volume of mobile obstacles is too large, a more effective safety
radius Rsa f e needs to be chosen to ensure the simulated trajectory process, for which we
improved it and added a set of experiments based on Chi et al. [7]. The detection distance
considered in the improved algorithm [7] and this paper will be the distance from the robot
to the surface of the obstacle threat circle.

The mobile obstacle in Simulation Experiment 1 is considered smaller in size and
lower in motion speed. From Table 8 and Figure 21, we can see that all three methods
avoid the obstacles, and the robot also travels a similar path length, with the algorithm
in Chi et al. [7] taking the least time to avoid the obstacle. In Simulation Experiment 2,
the volume size of the moving obstacle is double that of Experiment 1, and the robot in
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Chi et al. [7] collides with the threat circle shown in Figure 22a, but after improving the
obstacle detection method of Chi et al. [7], its can successfully avoid the obstacle safely.
The algorithm in this paper predicts the motion of the moving block for ∆t periods and
pre-avoids the obstacle at position (4, 6.2), with better safety in obstacle avoidance than the
improved algorithm [7]. Simulation Experiment 3 further increased the speed of obstacle
motion to 0.4 m/s. From Figure 23, we can see that in a dynamic environment with a
larger volume and more enormous motion speed mobile obstacle, the robot in Chi et al. [7]
collided with it, and the improvement crossed the threat circle, nearly colliding with the
mobile obstacle. The theoretical maximum linear velocity of 1 m/s that we set for the robot
is not achieved due to the robot receiving motion constraints, dynamics constraints, and
obstacle constraints. Hence, our robot successfully searched for a path to avoid the obstacle
at the cost of time for path search. From the above experiments, it is clear that our algorithm
is suitable for a wide range of dynamic environments, and the following experiments will
validate the algorithm in more complex dynamic environments.

Table 8. Performance analysis of IACO-IDWA for path planning.

Simulation Experiment Chi et al. [7] Improved Algorithm [7] This Paper

1
Length of the robot’s driving path/m 5.8415 5.9656 6.0727

Optimal search time /s 73.3436 89.7258 81.2701

2
Length of the robot’s driving path/m 5.8415 6.0905 6.2377

Optimal search time /s 106.3393 125.5351 76.1026

3
Length of the robot’s driving path/m 5.9284 6.4851 7.0157

Optimal search time /s 82.5480 99.0592 124.8771
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Figure 21. Comparison of path planning results for unknown dynamic environment 1; (a) Chi et al. 
[7]; (b) Improved algorithm [7]; and (c) This paper. 
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Figure 21. Comparison of path planning results for unknown dynamic environment 1; (a) Chi
et al. [7]; (b) Improved algorithm [7]; and (c) This paper.
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Figure 22. Comparison of path planning results for unknown dynamic environment 2; (a) Chi
et al. [7]; (b) Improved algorithm [7]; and (c) This paper.
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Figure 23. Comparison of path planning results for unknown dynamic environment 3; (a) Chi
et al. [7]; (b) Improved algorithm [7]; and (c) This paper.

6.3.3. Complex Dynamic Environments

The above experiments have verified the effectiveness of IACO global path planning
and the obstacle avoidance capability of IDWA. This simulation further demonstrates the
dynamic obstacle avoidance feasibility of the fusion algorithm in complex environments by
setting up different levels of unknown complex environments, illustrated by a simulation
example below.

In this example, firstly, a static environment for the robot is established in a 40 × 40
grid environment, and the optimal global path with a path length of 55.5667m from the
starting point (1.5, 40.5) to the endpoint (40.5, 1.5) is planned based on IACO, as shown
by the black dashed line in Figure 24. Next, setting unknown dynamic obstacles in this
environment, the robot moves along the global path, judges the surrounding environment
in real-time, and avoids obstacles according to their conditions. The experimental results
are shown in Table 9 and Figures 24–26, and due to the difference in computer performance,
the algorithm running time does not represent the actual robot movement time. In this
case, the number of control nodes of the robot represents its motion time, and every ten
nodes simulate 1s in natural environments.
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Table 9. Comparison table of robot paths.

Path Length/m Number of Robot
Control Nodes

Optimal Search
Time/s

Static path planning 55.5667 —— 2.2415

Dynamic path
planning

Simulation Experiment 1 56.2028 1206 357.1979
Simulation Experiment 2 56.6224 1215 417.6458
Simulation Experiment 3 57.3136 1228 437.0259
Simulation Experiment 4 58.4793 1248 524.4448
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In Simulation Experiment 1, the robot performs real-time path planning along the
global path, and the path is essentially the same as the original. Once again, IDWA’s track
tracking capability is proven. The robot passed safely under this path without colliding
any obstacles, and the final path length is 56.2028 m, taking 120.6 s.

Simulation Experiment 2 is based on Experiment 1. We set up a mobile obstacle with
an actual radius R_ob of 0.3 m, a threat circle R_Sob of 0.6 m, and an unknown static
block. We designed the mobile barrier to move in opposite directions to the robot, where:
the starting point coordinates are (10.5, 33.5); the endpoint coordinates are (3.5, 38.5); the
movement speed is 0.16 m/s; and the trajectory is marked in black dashed. At the moment
of process 1, the robot finds the mobile obstacle moving towards itself with a speed of
0.16 m/s through the sensor, executes the obstacle avoidance strategy, and completes the
obstacle avoidance at the moment of process 2. An unknown static obstacle is sensed at
position (14.5, 29.5) during the movement towards the local target point, and the obstacle
avoidance strategy is executed again. By the improved heading(v, w) function, the robot
eventually moves to the endpoint, and the final path length is 56.6224 m, taking 121.5 s.

Simulation Experiment 3 added a further mobile obstacle 2 with an actual radius R_ob
of 0.2 m and a threat circle radius R_Sob of 0.4 m and larger volumes of unknown static
obstacles to Experiment 2. We designed the mobile obstacle 2 to move in the same direction
as the robot, where: the starting coordinates are (7.5, 34.5), the ending coordinates are (15.5,
27.5), and the speed of movement is 0.08 m/s. After avoiding the mobile obstacle 1, the
robot detects a mobile obstacle 2 ahead occupying the original path at a rate of 0.08 m/s and
again executes the obstacle avoidance strategy and overtakes it at the moment of process 3.
The unknown static obstacles are sensed at position (25, 20), which occupies the robot’s
path, and the robot executes the obstacle avoidance strategy until the end. The final path
length is 57.3136 m, and the time taken is 122.8 s.

Simulation Experiment 4 further builds on Experiment 3 by adding two mobile obsta-
cles and several unknown static obstacles, where: mobile obstacle 3 has an actual radius
R_ob of 0.4 m and a threat circle radius R_Sob of 0.8 m, and we designed it to come from
the side of the robot with starting coordinates of (39.5, 18.5) and ending coordinates of (16.5,
25.5), moving at a speed of 0.288 m/s; the actual radius R_ob of mobile obstacle 4 is 0.375 m
and a threat circle radius R_Sob of 0.75 m, and we design it in the robot’s global path, with
the starting point coordinates are (38.5, 13.5) and the ending point coordinates are (34.5,
9.5), moving at a speed of movement is 0.09 m/s. After avoiding mobile obstacle 1 and
mobile obstacle 2, the robot detects a mobile obstacle 3 coming towards itself at 0.288 m/s
on its side at process 4 and executes an obstacle avoidance strategy to avoid it after process
5 and 6 successfully. During the local exploration process, mobile obstacle 4 is detected to
have stopped moving, and the robot treated it as an unknown static obstacle to avoid and
eventually moved safely to the end position. The final path length is 58.4793 m, and the
time taken is 124.8 s.

The changes in linear velocity, angular velocity, and attitude angle of the robot in the
Simulation Experiment 4 have been recorded in Figure 25. We can see that the robot’s
motion is generally stable after improving the evaluation function, and it can maintain
a uniform speed throughout the motion, and the change of angular velocity is relatively
smooth.

7. Conclusions and Future Work

This paper investigates a new hybrid algorithm for dynamic path planning in view
of the ant colony algorithm’s excellent robustness and search capability and the dynamic
window approach’s local obstacle avoidance advantages. To further refine the dynamic
factors of the robot in the natural environment, a new dynamic environment construction
method is proposed. The robot obtains a global reference trajectory based on an improved
ant colony algorithm in unknown territory and uses mounted sensors to gain information
about the strange environment for dynamic obstacle avoidance.
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We are taking into account the poor adaptability of traditional ACO to complex
environments and the difference between the path and the actual requirements of the robot.
We propose a non-uniform initial pheromone method to avoid the blindness of the ant’s
initial search. Then, the smoothing heuristic function with corner suppression and the
improved retraction strategy is used to optimize the ant’s ability to explore paths in complex
environments. To address the inefficiencies of the ACO, pheromones are updated in layers.
Moreover, we present a path smoothing method to satisfy the motion requirements of the
robot better in a grid environment.

Considering the poor navigation capability and poor dynamic obstacle avoidance
capability of the traditional DWA, we construct the robot model with kinematic constraints
using IDWA and utilize the global path planned by IACO as the robot’s navigation infor-
mation. Then we improve the sampling window and evaluation function, which eventually
enhances the robot’s path tracking capability, dynamic obstacle avoidance capability, and
motion stability. The experiment shows that the proposed method enables the robot to
efficiently and safely navigate in global static environments and better dynamic obstacle
avoidance in complex dynamic environments.

In this paper, the robot is kinematically constrained, but this is neglected when plan-
ning global paths, and we will consider it in path planning and path smoothing processes
in the subsequent studies. Moreover, the dynamic environment considered in this paper is
limited to a two-dimensional environment, and it is hoped that our proposed approach
will be of some use to subsequent researchers in studying three-dimensional dynamic
environments.
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