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Abstract: Prognostics and health management (PHM) is an essential means to optimize resource
allocation and improve the intelligent operation and maintenance (O&M) efficiency of marine systems
and equipment (MSAE). PHM generally consists of four technical processes, namely health condition
motoring (HCM), fault diagnosis (FD), health prognosis (HP), and maintenance decision (MD). In
recent years, a large amount of research has been implemented in each process. However, there
is not any systematic review that covers the technical framework comprehensively. This article
presents a review of the framework of PHM in the marine field to fill the gap. First, the essential
HCM methods, which are widely observed in the academic literature, are introduced systematically.
Then, the commonly used FD approaches and their applications in MSAE are summarized, and
the implementation process of intelligent methods is systematically introduced. After that, the
technologies of HP have been reviewed, including the construction of health indicator (HI), health
stage (HS) division, and popular remaining useful life (RUL) prediction approaches. Afterwards,
the evolution of maintenance strategy in the maritime field is reviewed. Finally, the challenges of
implementing PHM for intelligent ships are put forward.

Keywords: marine; condition monitoring; health management; prognostics; fault diagnosis

1. Introduction

With the development of modern technology, the level of ship automation and intel-
ligence is gradually improving, and then the O&M technology for MSAE is facing new
problems. The ship alarm monitoring system (AMS) relying on human experience and
knowledge can no longer meet the condition assessment requirements by maintenance en-
gineers. The traditional ship maintenance modes characterized by corrective maintenance
(CM) and planned maintenance (PM) have gradually highlighted the disadvantages of
“over repair” and “missing repair” lead to the increasing of ships’ operation costs. With
the advancement of comprehensive equipment monitoring, assessment, diagnostics, and
prognostics technology, the PHM of MSAE based on a more proactive maintenance strategy
has gradually become a new trend of intelligent O&M.

Currently, based on the perfect situ monitoring and advanced analysis methods, PHM
technologies, approaches, and applications are developing rapidly. Its application objects
gradually expand to military, aerospace, ships, and so forth. There are some representative
PHM systems in these fields, such as PHM system for F-35 aircraft, AHM system for
helicopter, IVHM system for spacecraft, and ICAS and PEDS system for ships [1], and so
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forth. At present, PHM technology has been widely studied and popularized in FD and
HP of marine diesel engines and rotating machinery. The PHM of the marine diesel engine
was established, and the performance prediction was realized [2]. Various applicable
data and suitable technologies were integrated for engine PHM [3]. Lee et al. presented
a comprehensive review of the PHM design for rotary machinery systems, followed by
introducing a systematic design methodology and converting multivariate data to abstract
prognostics information [4].

Modern MSAE is a complex system composed of mechanical, electrical, and hydraulic
systems, consisting of interrelated subsystems, equipment, and components. Exception
of any component may result in changes in health conditions. A viable PHM system
framework provides condition monitoring, early fault detection, and isolation of any node
in the system. The outcome of an effective PHM model provides a tool to monitor the
health condition and help make O&M decisions. It is more urgent for intelligent and
unmanned ships to realize the PHM to improve the integrated management of HCM,
health assessment, FD, performance prediction, and maintenance implementation.

The PHM solutions of MSAE mainly cover a complete process (Figure 1), from capturing
the data, information, and knowledge (DIaK) up to utilizing the results for decision-making
(in maintenance, operation management, life cycle optimize control, system design, etc.).
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A technical list of each process is shown in Table 1. At first, HCM process is to
obtain ship condition parameters, realize real-time online monitoring of the mechanical
system, and complete condition assessment and anomaly detection. The HCM consists of
three basic processes, data acquisition, data processing, and condition monitoring. With
intelligent technology and modern sensing technology, vast amounts of ship data are being
collected. The data collected on-board involve navigation, MSAE condition perception,
and environmental data. Data processing should first ensure the data’s accuracy and
integrity, and then extract and deduce valuable and meaningful data for health management
from a large number of possibly disordered and complex to understand data. Condition
monitoring realizes early warning, alarm and anomaly detection according to online data.
Then, based on the abnormal problems of HCM, FD focuses on the failure modes and
their causes and demonstrates the relationship between the monitoring data and the fault
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condition. After that, the realization of HP is to obtain the failure data of mechanical
system through HCM and FD, and then establish the degradation model to complete the
life prediction. This part focuses on the evolution of the fault process and estimates the future
behavior through the necessary models to realize the failure risk assessment and change of
control strategy. The HP program generally consists of HI construction, HS division, and RUL
prediction. Finally, MD is done according to the results of HCM, FD, and HP. An MD describes
the O&M vision of how to maintain the health and safety of assets in a whole life cycle.

Table 1. Technical list of each process.

Technical Processes Constitution Description

HCM

• Data acquisition HCM is to use various monitoring data, information, and
knowledge to realize the monitoring and assessment of MSAE
health conditions.

• Data processing

• Condition monitoring

FD

• Fault feature selection
FD exhibits an important role in demonstrating the relationship
between the HCM information to the health condition.• Fault diagnosis model

• Fault description

HP

• HI construction
HP aims to predict the RUL of machinery based on the historical
and ongoing degradation trends observed from HCM information.• HS division

• RUL method

MD

• Corrective maintenance

MD is to consider the coordination of health and safety of assets
from a management perspective in the whole life cycle.

• Preventive maintenance

• Predictive maintenance

• Proactive maintenance

This paper aims to systematically review the methods, strategies, and application of
MSAE in prognostics and health management. We set three keywords for searching the
relevant kinds of literature, such as ship, marine, and mechanical systems. A systematic
search is undertaken for the specific words combined with the methods and strategies in
the four processes of HCM, FD, HP, and MD in the article title, abstract, and keywords.
The search period is mainly from 2010 to 2020, and the search source is Web of Science. We
excluded the papers of biology, navigation, chemistry, and port navigation in the marine fields.
Some related articles with similar characteristics to MSAE are also included in the scope of
discussion. A total of more than 300 articles have been retained through the processes.

There are also some excellent review papers related to PHM of ship mechanical system.
For example, Rao et al. [5] provided a review on the online condition monitoring and self-
repairing techniques for in-service marine diesel engine. Xie et al. [6] reviewed different
blade fault types and current blade fault detection methods. Cipollini et al. [7] mainly
focused on data-driven models and gave a review on the problem of performing Condition-
Based Maintenance for naval propulsion systems. However, these papers just reviewed
the technical processes and lacks a systematic review covering the whole program of the
PHM about its advancements in recent years. A review still leaves a blank space to cover
the PHM framework comprehensively in the maritime domain systematically. In order to
overcome the shortcomings above, this article systematically reviews the research status
and future development trend of PHM in the marine field. Compared with the existing
review papers, the contributions of this review are detailed below.



Machines 2022, 10, 72 4 of 53

(1) This article reasonably divided the whole PHM system of MSAE into four functions:
HCM, FD, HP, and MD;

(2) An exhaustive review was given on the PHM technology by analyzing and summa-
rizing a large number of references to provide a perspective for researchers and essential
guidance for designers and O&M engineers;

(3) Various technologies and applications of PHM in the marine field were summarized;
(4) In order to meet the needs of intelligent ships for PHM, five new health manage-

ment technologies were proposed, omnidirectional condition perception, DIaK integrated
coding technology, treatment of uncertainty problems, proactive perception, and engineer-
ing self-healing and immune system.

This paper is organized as follows. Section 2 discusses the HCM. Section 3 summarizes
the existing FD technology in the marine field and focuses on the application of intelligent
machine learning diagnosis technology. In Section 4, the HP is discussed, including
processes and methods. Section 5 concentrates on the maintenance strategies and reviews
the commonly used approaches and metrics. Section 6 discusses the future challenges of
PHM as well as opportunities for MSAE. Conclusions are drawn in Section 7.

2. Health Condition Monitoring

HCM is a means to monitoring MSAE health conditions through measurement condi-
tion parameters (such as temperature, pressure, level, and so forth, acquired from various
sensors installed on the MSAE), external sensors data, and information. The foundation
of PHM is HCM, which provides basic health condition information for the following
three processes.

2.1. Data Acquisition

A data acquisition system comprises data acquisition devices, signal processing and
transmission equipment, and data storage devices [8]. The data acquisition terminal is
mainly composed of various sensors to obtain MSAE state parameters through various
sensing methods. This data can reflect the failure evolution and performance degradation
process of the system effectively. The most widely used signals of measurement sensors
on-board include temperature, pressure, voltage and current, speed, and so forth. The
obtained parameters are transmitted to the central data processing unit (server) according
to specific coding and communication protocol. The data are further classified, processed,
and stored for various analyses. With the rapid development of sensing and measurement
technology, more and more intelligent condition perception methods have been proposed,
designed, and applied to modern ships.

2.1.1. Data Collection

The data collected on-board involve navigation, MSAE, ship status, and environment
data, which are used as condition parameters to realize the PHM process of HCM, FD, HP,
and MD. Some researchers have attempted to research marine machinery performance
using the measurement parameters [9].

(1) The navigation (bridge) data affecting the health condition of MSAE mainly include
speed, drafts, rudder angle, and wind speed. Some of these data can be obtained directly
from sensors, such as wind speed, draft, and so forth. Some of them come from the
received external information, such as meteorological data, GPS data, and so forth. These
navigation data are usually used as the condition or identification mark of MSAE health
mode judgment, and some of them can also be used as the input of the model for more
accurate decision-making [10];

(2) MSAE parameters include sensor measurement data, recorded manual data, ex-
perimental data, mooring test data, sea trial data, and so forth. The measuring sensors
mainly include the sensors provided by the equipment and the sensors configured by the
system integration. Due to different equipment manufacturers, the equipment usually
has different data interfaces, and some data are not output. The manually recorded data
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are directly read from the instrument, recorded, and stored by the engineers. At present,
various test data are mainly used to facilitate comparison and query so that engineers can
further understand the performance and use of equipment [7]. These data can provide
training samples for FD and failure prognostics to improve the efficiency of PHM.

The application of intelligent sensors and sensor networks will maximize the acquisi-
tion of MSAE condition information and provide effective support for intelligent O&M [11].
ABS issued a guidance note to help guide intelligent technology applications in the mar-
itime domain [12]. Through the implementation of intelligent monitoring, more operation
and status information can be leveraged to support and improve daily operations and be
the foundation of a PHM program [13].

2.1.2. Data Transmission

According to the data transmission mode and spatial location, the transmission mode
could be divided into local data transmission and remote data transmission.

(1) Local data transmission

Local data transmission is to transmit the collected data to the monitoring system and
send it to the local storage unit through various transmission modes, such as CAN bus [14],
ZIGBEE wireless transmission [15], Ethernet [16], and so forth, to facilitate the completion
of control, monitoring and data management. These three ways can be single and also
be combined to enhance the flexibility and scalability of the data transmission. CAN bus
has the characteristics of high transmission rate, high reliability, simple line, and so forth,
which can be easily implemented in the engine room. Ethernet communication is easier
to build a network on ships with Ethernet wiring than CAN bus. The ZIGBEE wireless
transmission can solve the problem of ship wiring difficulties to a certain extent;

(2) Remote data transmission

Remote data transmission uses maritime satellites, offshore base stations, and other
communication facilities to achieve data transmission from ship to shore. Data stored on
the ship are transmitted to the land data center by transmission technologies (as shown
in Table 2) that will be selected by the company [17]. Usually, the company completes the
selection according to the communication cost and the urgency of data.

In recent years, the cost of satellite communication has gradually decreased. With
the application of maritime broadband, remote data transmission is no longer the main
influencing factor of ship-to-shore communication. Some ships have been able to realize
the transmission of video data.
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Table 2. Remote data transmission technologies.

Communication
Technology Communication Features Scope of Application

Universal mobile
communication network.

Low communication cost and large network
bandwidth; small coverage and low network security. Suitable for inland rivers and offshore ships.

Automatic identification
system (AIS)

Can directly realize the speed measurement
navigation function of ship positioning and
monitoring and carry out information broadcasting;
high service cost, seriously affected by
electromagnetic environment interference,
communication distance is limited.

Suitable for inland rivers and offshore ships.

Maritime satellite
Can provide data link for ocean-going ships; high
cost, low communication bandwidth, maximum
speed is only 492 Kbps.

Suitable for global navigation ships.

Spread spectrum
communication technology

Strong concealment and good anti-interference
performance; the system uses a wide frequency band
and has a limited data transmission rate and distance.

Suitable for inland rivers and offshore ships.

GPS Accurate positioning and strong anti-interference ability. Only applicable to ship positioning, unable
toachieve communication.

BDS All-weather, all-day, high-precision positioning;
short message communication has low cost and high Suitable for global navigation ships.

2.1.3. Data Storage

Through the gateway, all the measured and processed parameters are stored in a local
server. The storage time of all data stored in a database or files depends on the model and
application software [18]. Not all data generated by ship operation need to be stored. Some
important operation parameters need to be stored on the ship for more than half a year, and
some non-important historical data should be deleted regularly to reserve enough server
storage space.

In this case, the onboard server will periodically generate a large number of files.
Before shoreside transmission, these data need to be compressed by a certain algorithm to
reduce the number of data transmissions.

2.2. Data Processing
2.2.1. Data Preprocessing

When the ship is in operation, ship managers and engineers need to identify and
analyze a large quantity of real-time information on board. However, data obtained from
the MSAE, ship navigation, and environment contain errors caused by measurement
uncertainty, manual recording problem, transmission, storage process error, and so forth.
Abnormal data can easily lead to misjudgment of MSAE health conditions, leading to
wrong decision-making and catastrophic accidents. Therefore, it is necessary to preprocess
the ship’s data. There are generally three preprocessing methods, as shown in Figure 2,
data imputation, outlier detection, and redundant data deletion.
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(1) Data imputation

Affected by various uncertainties, datasets from MSAE tend to contain a large amount
of missing data [19,20]. The lack of data will lead to the deviation of diagnosis and
prediction results, which will affect the decision-making of condition-based maintenance
(CBM). Therefore, the imputation method is vital for increasing the quality of the original
dataset and improving the decision-making for intelligent O&M.

Cheliotis et al. developed a new mixed imputation method to improve data quality [21].
The mixed-method is applied in the primary engine data set from a chemical vessel, and the
results show that the average errors are smaller than the original algorithm. By correcting
the sensor data from the HCM of MSAE, this mixed imputation algorithm tremendously
improves the quality of the original data set. It relieved the conflict that the increasingly
popular data-driven methods need complete data set for feature learning in the MSAE.
Other imputation methods were applied to wind turbines [22] and cluster monitoring [23].
The effects of different missing data imputation methods were compared using cargo ships’
sensor data [24];

(2) Outliers detection

Outliers in the data greatly impact the judgment of health conditions, so they need to
be filtered out in advance during analysis. Jeon et al. presented a data gap analysis method
that enables real-time detection of exception data in ships and marine data [25]. The method
first detected original data after a series of data pretreatment and then sequentially detected
the abnormal data in a relative error interval based on the predicted data obtained from the
ship’s performance element learning model. Wang et al. employed an abnormal detection
scheme that can be used directly in process monitoring or process control. Compared with
the traditional detection method, the assumption of the program is less, and it is more
suitable for the modern industrial process [26]. Li et al. proposed a data cleaning and
monitoring algorithm that can screen the abnormal data caused by natural factors and
human factors [27]. Huyghues-Beaufond et al. presented a hybrid frame for detecting
and removing extensive abnormal data [28]. The stacked auto-encoder method is widely
used to monitor the contamination of abnormal values. The stacked auto-encoder has a
powerful feature of functional extraction, which greatly retains the original information
of the data [29]. The proposed method has superiority by comparing experiments with
traditional abnormal value detection algorithms;
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(3) Redundant data deletion

The redundant data on the ship mainly includes two parts. One is that in the process
of data acquisition and transmission, some duplicate data will be generated due to the
influence of sensors, transmission networks, and other influencing factors. The other is
that some data acquisition cycles are short, and the data does not change in a short time.
Redundant data will increase the amount of system calculation and affect the effect of
model analysis.

Data preprocessing is a process to improve data quality and reduce noise. There are
many sensors on the ship. The collected data has high dimensions and contains nonlinear
data, which is very complex. At present, there is no general data preprocessing method
suitable for all working conditions. Nowadays, most of the research methods are offline
processing. More effective and stable ship real-time data processing methods are needed in
the future, such as automatic data imputation and cleaning.

2.2.2. Feature Processing

Feature processing is a program to find out the useful features for classification and
recognition from many features. This process also could compress the dimension of feature
space, that is, to obtain a group of “few but fine” classification features with low classification
error probability. At present, the feature processing methods in the application field of ships
mainly include feature selection and feature extraction. The multi-dimensional data collected
from ship complex equipment or systems need to be processed with these methods to obtain
main operation characteristics, as shown in the blue block diagram in Figure 3.
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(1) Feature selection

Feature selection is the process of selecting the relevant features of the data set from
the original feature space according to a particular evaluation criterion. The selected feature
data are a subset of the original data set, and it is an inclusive relationship [30]. A suitable
method must be selected to analyze the original data to adapt to different algorithms’
analysis and processing needs. Boullosa-Falces et al. and Ellefsen et al. employed the
Pearson correlation analysis method to filter and analyze the data to obtain the optimal
subset of equipment failure characteristics and reduced the impact of extreme data on
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the analysis results [31,32]. Tu et al. applied the Max-Relevance and Min-Redundancy
method to process and analyze the data characteristics according to the correlation and
redundancy [33]. To reduce the negative impact of irrelevant and redundant features
between marine equipment status data on the analysis process, Wei et al. used K-means
Clustering to select clustering features of ship equipment fault history data, which provides
an effective tool for equipment failure analysis [34]. K-means clustering is a simple feature
extraction method, which use a “central object” (gravitational center) obtained by the mean
of each cluster center object. To improve the convergence speed of K-means in large-scale
ship data, Shi et al. and Yan et al. proposed objective function and feature weighting to
optimize it and apply the Fuzzy C-means clustering algorithm to process ship data [35,36].
Gaussian mixture model (GMM) algorithm, frequency sequence subtraction (FSS), and
other methods were also applied to the selecting of features [9,37]. These feature selection
methods can obtain the feature data set, remove the redundant data while retaining the
characteristics of original MSAE data, and simplify the complexity of problem analysis;

(2) Feature extraction

Feature extraction is to transform the original feature space in a certain way through a
particular method to obtain new features. The different feature extraction methods of the
transformation result can be roughly divided into two categories: dimensionality reduction
and decomposition extraction [38]. Haddad and Strangas used linear discriminant analysis
to extract fault features and reduce the dimensionality of the main fault features to improve
the accuracy and efficiency of fault recognition [39]. Zhou et al. presented principal
component analysis (PCA) to analyze various oil parameters to reduce dimensionality,
effectively realizing the state detection of marine steam turbines [40]. Yang et al. adapted
ensemble empirical mode decomposition partly to decompose and extract the statistical
ship propulsion shafting features of intrinsic mode functions and obtain a suitable fault
feature vector set for corresponding analysis and diagnosis [41]. This is the type of data
decomposition method. To improve the data analysis ability of the feature extraction
method, some researchers applied the kernel function to optimize the extraction method
and obtained comprehensive algorithms such as kernel independent component analysis
(KICA) and kernel principal component analysis (KPCA) [42,43].

These feature extraction methods can effectively solve the dimension disaster caused
by high-dimensional data and reduce the impact of data noise on the analysis results.
However, when analyzing the MSAE data affected by many factors, the combined methods
have greater advantages. Li et.al found that it could not meet the needs of fault diagnosis
using the Fourier transform method to analyze the instantaneous angular velocity of marine
diesel engines affected by multiple excitations. The combined method of EMD and KICA
could be used to extract the feature, which effectively improves the efficiency and accuracy
of main engine fault diagnosis [44]. The combination of multiple methods performs better
in obtaining the data characteristics of MSAE and has advantages in condition monitoring.

2.2.3. Data Fusion

Due to the complex characteristics of ship machinery, a single set of data cannot fully
express the overall operating condition. For example, the ship’s navigation status is affected
by fuel conditions, equipment working status, navigation area, weather conditions, and
ship fouling [45]. Data fusion is the use of a certain algorithm to fuse multiple pieces of
information from a single sensor or information provided by different types of sensors into
a new and more expressive evaluation criterion. According to the characteristics of ship
data, the fusion method can be roughly divided into three categories, namely data-level,
feature-level, and decision-level, as shown in Figure 3.

The data-level fusion operation object is usually the measured data. Hou et al. applied
support vector machines (SVM) and various evaluation functions to analyze the data
and realize the ship’s propulsion system’s fault detection and health management [46].
Jiang et al. used the BP neural network method to realize the fault diagnosis of the
turbocharger [47].
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The feature-level fusion was oriented to feature fusion after the selection of monitoring
objects. Jiang et al. applied the wavelet neural network to analyze the characteristic data
extracted by Fourier and other methods and integrated the characteristic data of various
equipment states, which further improves the accuracy of the actual fault state diagnosis of
the ship [48]. For different types of ship monitoring data such as temperature, pressure,
Wang et al. apply the normalization method to reduce the amplitude difference between
the data, then combined PCA and BP neural networks to identify diesel engine failure
modes [49].

The decision-level fusion is the fusion of data-oriented diagnosis and analysis results.
Xu et al. proposed ER rules to integrate different fault diagnosis models of ship main
engines, further established the primary engine wear fault diagnosis model, and improved
the robustness and fault tolerance [50]. To ensure the navigation safety onboard, ship
propulsion system needs to complete the state monitoring of the main engine, gearbox,
shafting, and propeller. The main engine and gearbox are prone to failure and FD is
necessary. The life of the main engine directly affects the ship’s health management and
needs failure prognostics. The decision fusion of the monitoring, diagnosis, and prediction
results of the whole system is helpful to obtain specific O&M decisions.

The data of the ship mechanical system come from different kinds of sensors with huge
intensity differences, such as marine diesel engine exhaust gas temperature (More than
300 ◦C) and lubricating oil pressure (0.3 MPa). Before data fusion, we need to normalize the
data by scaling or transforming features to the same range to ensure that each data will have
an equal contribution. The data are rescaled from different ranges to a predetermined range,
and the original data distribution can be retained or not. Many normalization methods
have been utilized in the research areas such as maritime accident data normalization [51],
ship mechanical equipment data normalization [52]. Various types of data have different
amounts of information, so the weight problem needs to be considered in the normalization
process. The variable sorting for normalization was utilized to solve this problem in recent
years in which considered the random consensus strategy to estimate the weights before
implementing normalizations [53].” A novel Feature Wise Normalization approach was
employed for the effective normalization of data which a unified solution is presented to
address the shortcomings of traditional data normalization [54]. The general solution was
formed based on a normalization unit established by various methods. This method could
also be applied to marine field.

The current feature processing methods are mainly aimed at static data, and there
are few applications for dynamic data processing. Most methods use high efficiency as
the main evaluation criterion, and the applicability and safety of the methods need to be
improved. Due to the harsh and complex working environment of MSAE, the diversity,
dynamics, and high-latitude information monitored by sensors will be the main challenges
for feature processing in the future.

2.3. Condition Monitoring

The condition monitoring system of MSAE uses various measurement and monitoring
methods to record and display the operation condition, alarm the abnormal status, provide
data and information for the fault detection, and deal with the upcoming and existing faults
to achieve the purpose of automatic control. Condition monitoring technology is a very
mature technology that is mainly used to distinguish between normal and abnormal states
or discover potential and valuable information [55]. The traditional condition monitoring
method is based on parameters alarm or manual identification, and the decisions are made
when the corresponding parameters exceed their limits or threshold [56,57].

2.3.1. Categories of Condition Monitoring

There are many categories of condition monitoring such as online and offline, local
and remote, data and video, equipment-level, and system-level. The condition monitoring
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of some special equipment, such as marine diesel engines, can be divided into conventional
sensor monitoring and oil monitoring.

(1) Equipment-level condition monitoring

The actual state monitoring methods often integrate a variety of monitoring methods.
Chandroth et al. proposed a method combining vibration data and performance data
(cylinder pressures) to realize diesel engine condition monitoring [58]. Watzenig et al.
performed the condition monitoring by constructing the thermodynamic model of the
main and auxiliary diesel engines [59]. To further enhance the oil monitoring technology
into marine field application, Yan et al. proposed a new online condition monitoring and
remote FD system for marine diesel engines. The new system consisted of three parts,
such as online signal acquisition, remote feature extraction, and fault diagnosis in the
laboratory center [60]. To further improve the performance of monitoring and diagnostic,
some researchers have made many contributions to the intelligent condition monitoring of
MSAE. Yiannis et al. presented a novel approach for clustering data containing measure-
ments of physical parameters for a marine diesel engine cylinder. This model monitored
the condition of the main engine by clustering parameter measurements under normal
conditions [61]. Asuquo et al. illustrated a fuzzy modeling approach utilizing IF-THEN
rules and demonstrations of its usefulness [62];

(2) System-level condition monitoring

Different from single equipment condition monitoring, the system here can be large
equipment on board, such as marine diesel engine and marine generator, or a combined sys-
tem, such as the ship propulsion system, which can be further extended to the engine room
monitoring system. At present, ship system-level condition monitoring mainly focuses on
the diesel engine, propulsion system, cooling system, lubrication system, fuel system, and
so forth. Lazakis et al. presented a novel methodology for system-level engine performance
monitoring, which utilizes noon-report data with minimal data assumptions [20]. Condi-
tion monitoring was applied to the marine gas turbine propulsion system, and the real-time
monitoring of system condition was realized [63]. Except for the proposed condition moni-
toring for the marine systems, ship AMS were implemented on modern vessels to support
the efficient O&M [64]. A modular solution example of such a system is SeaPerformer
which has been successfully implemented on a large number of merchant ships;

(3) Visualization tools for condition monitoring

There are many ways to express the results of condition monitoring, which can be
roughly divided into curves or form (Figure 4a) or graphs (Figure 4b), and so forth. Yan
et al. judged the severity of engine fault according to the diesel engine images using
the online ferrographic sensor [60]. Yiannis et al. used self-organization mapping (SOM)
topology graphs and tables to show the clustering of critical performance parameter data
of engine cylinders to provide helpful data insight [61]. These curves or images can more
simply and intuitively describe the health state of the diesel engine. However, it is usually
only applicable to the case with a single parameter or few parameters. When monitoring
the status of a multi-parameter system, the multi-parameter description method needs
to be adopted. the radar chart method is usually used to describe the changes of system
function [65], as shown in Figure 4c.
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2.3.2. Monitoring System for Ship Application

Among the existing condition monitoring system used onboard, Kongsberg, Transas,
and Siemens occupy absolute advantages. According to the development process of
monitoring technology, the marine condition monitoring system has experienced four
stages: conventional instrument monitoring, centralized system, distributed system, and
Fieldbus distributed system [66–68]. The typical feature of a centralized monitoring system
(Direct digital control system) is to use the computer with a strong function to centrally
monitor and control the power devices and systems in the engine room. The typical
representative used on-board is the data chief-III system of Norcontrol company. The
distributed monitoring system (distributed Multi-level microcomputer monitoring system)
is a centralized and decentralized system composed of a microcomputer, digital regulator,
programmable controller, and other units. Its typical representatives include the data chief
1000 system of Norcontrol and the SimOS ima32c system of Siemens. Fieldbus distributed
system (Fully distributed monitoring system) uses Fieldbus as the internal control network
of each subsystem and realizes the configuration of the control system at the field level. At
present, the representative products of such systems include the chief data C20 developed
by Norcontrol company.

Recent literature shows that CBM is an advanced maintenance strategy in many
industrial fields, as well as in the maritime field [20,69]. Through the real-time monitoring
of the MSAE, a large number of condition monitoring processing can be transformed
into CBM to avoid the occurrence of severe faults and reduce the risk of casualties and
maintenance costs.

2.4. Epilog

Condition monitoring could improve the reliability of MSAE and reduce the failure
rate to improve the system’s overall safety level, reduce the risk of life and property loss,
and minimize the maintenance cost. Although many research achievements have been
made on the related problems of ship condition monitoring, there are also many problems
to be solved as soon as possible. For example, obtaining more comprehensive MSAE
condition information, strengthening communication between equipment and systems,
and intelligent condition assessment needs to be further improved.

3. Fault Diagnosis

The main function of FD is to detect, separate, and identify the faults in MSAE.
Meanwhile, judge whether the fault occurs, determine the location and type and diagnose
fault size and time. FD exhibits an essential role in demonstrating the relationship between
the acquisition data and the health condition, which has got wide attention in MSAE
health management, especially for ship O&M. Based on the way or extent they use a
priori knowledge, FD methods could be classified into four categories, such as physical
model-based method, knowledge-based method, data-driven method, and hybrid method.
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3.1. FD Methods
3.1.1. Physics Model-Based Method

Physics model-based methods construct working processes of MSAE through building
mathematical models based on the failure mechanisms. The core of analytical model-based
technologies is the mathematical descriptions (modeling), and model analysis of process
dynamics and main characteristics [70,71]. The model-based FD implementation process
includes two parts: (I) Generating residual signal, the difference between model estimate
values and measurements parameters; (II) Analyzing and estimating the residuals and
making decisions.

Typical methods based on physical models for FD are bond graphs [72–74], parity
space [75], parameter estimation [76] and state observers [77–79]. Those residuals are
evaluated to realize the identification of abnormal conditions in the monitoring process.
These methods compare the available measured values with the prior information, and the
differences (residuals) between the measured variables and estimated values are used as
the fault indicators.

Many model-based FD methods have been developed and applied to mechanical
systems for fault identification. However, owing to the complexity of MSAE, there are
many problems for building an accurate mathematical model to maintain robustness and
fault sensitivity. Therefore, the model-based FD system has some restrictions in the practical
application of marine engineering.

3.1.2. Knowledge-Based Method

Knowledge-based FD methods are considered approaches that could utilize the expert-
level diagnosis knowledge to solve the identification of fault state instead of manual
judgment, as shown in Figure 5. Those methods are based on the qualitative model of prior
knowledge, and then the FD process is realized by running a mature search algorithm. The
core of the knowledge-based FD system is an export control system composed of an expert
knowledge base, a dynamic database, various inference engines, the user interface, and an
explanation system. More and more attention has been paid to expert system-based FD
technology in dealing with the complex process.
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Rule-based reasoning, fuzzy logic-based reasoning, neural network-based reason-
ing, and case-based reasoning these four different classifications are used to distinguish
knowledge-based diagnosis models according to different inference engines [80].

(1) The rule-based reasoning is employed to complete diagnosis knowledge and then
uses the predetermined rules to realize decision-making. The rule-based reasoning was
achieved better diagnosis performance for FD of marine diesel engines [81], centrifugal
pumps [82], hydraulic systems [83], and bearings [84]. A rule-based reasoning model
for ship power systems is established based on the classification society’s operational
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mode requirements and regulations. The main engines, diesel-electric engines, and energy
storage systems were considered [85]. Rule-based reasoning could build a nonlinear
mapping relationship between feature and health condition, but with the increase of MSAE
complexity, the number of rules required increases greatly so that the reasoning efficiency
will decrease significantly;

(2) Fuzzy set theory is introduced into inference engine to realize fuzzy logic-based
reasoning. Through this method, imprecise non-numerical information description can be
realized. The fuzzy logic-based reasoning method was first applied to power systems [86].
The application of Fuzzy logic-based reasoning for FD on board mainly includes scooter
engines [87], bearings [88,89], gear systems [90]. The performance of the method is affected by
the difficulty of obtaining a fuzzy dataset, which will reduce the fault identification accuracy;

(3) The neural network-based reasoning makes full use of the neural networks’ learn-
ing, association, and memory ability to realize the intelligent reasoning of diagnostic knowl-
edge. The application of the method mainly includes internal combustion engines [91],
bearing [92]. Method implementation depends on sufficient fault data to realize model
training, which is difficult to obtain in MSAE. In addition, the neural network adopts
the black box principle, and the accurate mapping between some physical processes and
diagnostic knowledge is not easy to realize;

(4) Case-based reasoning uses similar existing cases to solve the technical problem. At
present, this method is widely used in ship collision avoidance and ship design, and the
application of MSAE fault diagnosis has not been found.

The knowledge-based fault diagnosis model uses the knowledge of experts to construct
an inference engine to realize fault pattern recognition. The model is highly dependent on
expert knowledge, and the accuracy of expert knowledge directly affects the diagnosis results.
Moreover, the model has no self-learning ability and can only solve the existing problems.

3.1.3. Data Driven-Based Method

The data-driven FD method of MSAE originates from the condition monitoring tech-
nology and has attracted the attention of more and more engineers and researchers. The
implementation procedure of data-driven methods simply involves two steps: a training
model based on historical data and an online FD based on real-time data. In this section,
the data-driven FD methods for MSAE will be summarized in detail.

Data-driven FD methods mainly include signal processing, multivariate statistical
analysis, and machine learning. These methods adaptively learn the diagnosis knowledge
and automatically establish the relationship between the measurement parameters and the
health condition of MSAE instead of expert experience and knowledge.

(1) Signal processing methods

Some of the collected and processed signals carry the fault information, which is
presented as characteristics. Fault diagnosis can be realized by generating fault symptoms
with appropriate signal processing methods [93]. Typical symptoms include time-domain
features such as amplitude, arithmetic or square mean, limit value, partial derivative, the
statistical moment of amplitude distribution or envelope, or frequency-domain features
such as spectral power density, spectral line, and cepstrum analysis. Typically, the existing
signal analysis-based FD methods for MSAE mainly include three categories [94], such as
time-domain methods, frequency-domain methods, and time-frequency-domain methods.
Xi et al. proposed an automatic vibration-source extraction and feature visualization
method fault detection of marine diesel engines where a time-frequency reference signal
constructed by Stockwell transform (ST) method. Then, the t-distributed stochastic neighbor
embedding (t-SNE) is used to extract fault features and realize visualization to intelligently
identify diesel engine faults [42]. The ST method can be indicated as:

y(τ, f ) =
∫ ∞

−∞
x(t)| f |e−π(τ−t)2 f 2

e−j2π f tdt, (1)
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where x(t) is the sensor signal, τ and f are the time and frequency terms, and the
| f |e−π(τ−t)2 f 2

is a Gaussian window. When the integration result of the Gaussian window
is equal to 1 in the integration operation, we can obtain:

Y =
∫ ∞
−∞ y(τ, f )dτ =

∫ ∞
−∞

∫ ∞
−∞ x(t)ω(τ − t, f )e−j2π f tdtdτ

=
∫ ∞
−∞ x(t)e−j2π f t

{∫ ∞
−∞ ω(τ − t, f )dτ

}
dt = X( f )

(2)

where X( f ) is the Fourier transform of x(t). The original signal x(t) can be recovered by
performing inverse Fourier transform on Y based on Equation (2). Then, t-SNE is used to
select the most obvious fault characteristics. This method learns a map F by measuring
the pairwise similarity of the elements in parameter set D, and projects D into a low
dimensional (usually 2 or 3) embedding E = [e1, e2, · · · el ]

T , as shown in Equation (3). pj|i =
exp

(
−F(di ,dj)

2
/2σ2

i

)
∑k 6=i exp(−F(di ,dk)

2/2σ2
i )

, and pj|i = 0

pij =
(

pi|j + pj|i

)
/2l

, (3)

where pij and pj|i are the joint and the conditional probability between di and dj, σi is
the bandwidth of the Gaussian kernels. The pairwise similarity of the elements in E is
expressed as

p̃ij =

(
1 + ‖ei − ej‖2

)−1

∑k 6=h

(
1 + ‖ek − eh‖2

)−1 , and p̃ii = 0 , (4)

where p̃ij is the joint probability between ei and ej.Lastly, the location of embedding element
ei will be determined by optimizing the Kullback-Leibler divergence between the joint
distributions pij and p̃ij. The implementation process is shown in Figure 6.
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The signal processing methods could cost a lot of human and financial resources
since they require expert experience, extensive computational and storage resources, and
robustness of the selected features, limiting their practical applications in PHM.

(2) Multivariate statistical analysis

Typically, the applications of multivariate statistical analysis methods in MSAE mainly
include PCA, independent component analysis (ICA).

• PCA

PCA can reduce the dimension of the dataset and retain the essential information of
original measurement parameters to the greatest extent. This is very important for complex
MSAE with many correlated variables.

For a given data matrix with N observation samples and M variables, PCA identifies
the sub-space with the largest variance in the M-dimensional variable space and linearly
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transforms the original variables into the principal components (PCs). Select the first A
components from PCs and capture most of the percentage of variance. Its model expressed as

X = TA · P′A + E , (5)

where TA is the score matrix of size N × A, PA is the loading matrix of size M× A, and
E is the residual matrix of size N ×M, corresponding to the variance not captured by the
PCA model.

The scores for a new observation, tnew, are computed by projecting the row vector
corresponding to that observation, xnew, onto the model subspace:

tnew = xnew · PA . (6)

Once the scores have been computed, the residuals, enew, are calculated:

enew = xnew − tnew · P′A . (7)

Zhan et al. presented the use of a multi-class SVM for the FD of marine diesel
engine cylinder covers, based on vibration analysis and PCA [95]. PCA as a foremost
step of integration fault detection method of marine current turbines was proposed by
Xie et al. [37]. The PCA-based approach was used for building on-board sensor classifiers
for water contaminant detection [96].

• ICA

ICA is capable of separating independent sources contained in the observations and,
therefore, suitable for MSAE with multiply sensors data.

For a given sample set x ∈ Rd can be expressed as linear combination of m unknown
independent components s = [s1, s2, · · · , sm] ∈ Rm, that is,

x = As, (8)

where A ∈ Rd×m is the mixing matrix.
ICA tries to estimate A and s only from the known x. Therefore, it is necessary to find

a de-mixing matrix W which is given as:

^
s = Wx, (9)

such that the reconstructed vector
^
s becomes as independent as possible. For convenience,

we assume d = m, and E
(
ssT) = I. The whitening transformation is expressed as

z=Qx=QAs=Bs, (10)

where whitening matrix Q = Λ−1/2UTx, B is an orthogonal matrix. The relationship
between W and B is as

W = BTQ. (11)

Hence, Equation (9) can be rewritten as

^
s = Wx = BTz = BTQx = BTΛ−1/2UTx. (12)

According to Equation (11), the ICA problem can be reduced to find an orthogonal
matrix B.

ICA-based scheme decomposes these acoustic signals for diesel engine fuel injection
FD [97]. Li et al. applied a new ICA to identify the characteristic of the engine vibration
signals to improve the fault detection performance for marine diesel engines [98]. Jing et al.
proposed the ICA and SVM for diesel engine condition monitoring and FD [99].
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(3) Traditional Machine learning

In recent years, these traditional machine learning theories, including ANN and SVM,
are applied to MSAE fault diagnosis.

• ANN-based FD model

ANN-based FD model has strong self-learning ability. It can obtain diagnosis knowl-
edge from input data and realize fault pattern recognition.

Given the training dataset {xi, yi}
m
i=1 with m samples, where xi ∈ Rd includes d features

and yi ∈ Rl includes l health states, the output of the h th hidden layer is expressed as

(
xh

i

)
j
= σh

(
nh−1

∑
i=1

ωh
j · xh−1

i + bh
j

)
, j = 1, 2, · · · , nh, h = 1, 2, · · · , H, (13)

where
(

xh
i

)
j

is the output of the j th neuron in the h th hidden layer, and x0
i = xi, nh is the

number of neurons in the h th hidden layer, σh represents the activation function of the
h th hidden layer, nh−1 is the number of neurons in the (h− 1) th hidden layer, ωh

j is the
weights between the neurons in the previous layer and the j th neuron in the h th hidden
layer, and bh

j is the bias of the h th hidden layer. The predicted output is

(
^
yi

)
k
= σout

(
nH

∑
i=1

ωout
j · xH

i + bout
j

)
, k = 1, 2, · · · , l, (14)

where
(

^
yi

)
k

is the predicted output of the k th neuron in the output layer, σout is the

activation function of the output layer, ωout
j and bout

j are respectively the weights and bias
of the output layer.

ANN is widely used in FD of the rotor system, hydraulic unit, bearing, and gearbox.
Zhong et al. applied a hierarchical ANN model for the rotating machines, which decompose
large pattern space into several subspaces [100]. This method could be used to diagnose a
variety of faults. Yang et al. presented an FD model using the Kohonen neural network for
the rotary machinery [101]. The probabilistic neural network was employed for efficiently
FD of hydraulic units [102]. Barakat et al. applied the growing neural network to establish
an FD model for bearings, which obtained a better diagnostic effect than traditional meth-
ods. Li et al. realize marine gearbox fault condition monitoring by using a neural network
to analyze its vibration signal [103]. A feed-forward ANN for the condition monitoring
of the air intake and fuel injection system of a medium-speed marine engine had been
proposed [104]. Raptodimos et al. proposed an ANNs fusion SOM method for the HCM of
a marine diesel engine [61].

Although many ANN methods have been successful in mechanical FD, this method
also has disadvantages. One is that the complexity of the model increases significantly
with the growth of input condition parameters. The increasing input data affect training
efficiency and may lead to overfitting of the model. On the other hand, the ANN-based FD
models are based on the black box principle and lack the relationship mapping of physical
processes. Some results could not be reasonably explained.

• SVM-based FD model

SVM is a supervised learning method with the input vectors xi ∈ Rd(i = 1, 2, · · · , n)
and the corresponding labels yi ∈ {−1,+1}. There exists a separating hyperplane and
expresed as

δ · x + b = 0, (15)
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where δ ∈ Rn is a normal vector, the b is a scale, and |b|
‖δ‖ represents the perpendicular

distance from the separating hyperplane to the origin. Two parallel hyperplanes can be
represented as

yi(δ · xi + b) ≥ 1. (16)

SVM tries to maximize the margin between two classes, where the margin width
between the two parallel hyperplanes equals to 2

‖δ‖ . Therefore, the optimization objective
of the linear SVM is

Min 1
2‖δ‖

2

s.t. yi(δ · xi + b) ≥ 1
(17)

SVM is a widely used machine learning method in pattern recognition, especially for
FD of centrifugal pumps [105], rolling bearing [106], gearbox [107], wind turbine [108],
marine diesel engine [109]. Zhan et al. used SVM to realize fault diagnosis of marine
main engine cylinder cover [95]. One-class support vector machine (OC-SVM) was firstly
used to divide the input data of marine turbocharger system into two parts, normal and
abnormal, and only the fault data are used to identify specific fault types [110]. By this
means, automatic fault diagnosis of the system was realized.

Compared with the ANN method, SVM-based FD models have better model inter-
pretability performance and could easily realize the optimal global solution and obtain
high diagnosis accuracy [80]. The SVM method also has disadvantages. Firstly, the method
is mainly suitable for small sample data. With the improvement of ship intelligence, the
method will not be suitable for big data. Furthermore, the performance of the diagnostic
model is affected by kernel parameters, and its selection has a great impact on the accuracy
of the model. Finally, complicated architectures are needed when facing the multi-class
classification problem, and a single SVM model could not meet the requirements.

The performance of data-driven FD approaches mainly relies on the quality and
quantity of state parameters. Insufficient data has become the main factor limiting the
wide application in MSAE. Therefore, the data-driven FD method is applied to some
equipment and components with relatively sufficient data. Whenever the historical data
could not contain complete status information, approaches based on physical model-based
or knowledge-based methods come into play.

3.1.4. Hybrid Approaches

A single FD method has its advantages and disadvantages and has different applica-
tions. There is no general FD method suitable for all the working conditions or scenarios.
Therefore, the hybrid model takes into account the advantages of each model, realizes
the complementarity between models, and then improves the diagnosis accuracy and
decision rationality.

The fusion of more than one FD method into a hybrid model may be realized in many
ways. Physical model and data-driven approach are combined for rotating machinery FD
and HP [111]. Since it is complicated to obtain the complete degradation data from the
operating systems and equipment, the physical model simulation method can be used
to simulate the actual operation condition and generate synthetic data. The combination
of data simulation, through physical modeling, with both supervised and unsupervised
Machine Learning methods has been examined with application to system decay in naval
vessels [7,112]. An innovative hybrid FD method based on manifold learning and the
isolation forest was established to diagnosis the condition of marine diesel engines [113].
ICA, short-time Fourier transform, PCA, and Fuzzy neural network (FNN) are fused as
a new development method to realize marine diesel engines condition monitoring and
FD [114].

3.2. Current New Fault Diagnosis Algorithm

With the rapid development of machine intelligence and sensing technology, modern
intelligent ships have rapidly increased DIaK. Unfortunately, the FD methods based on
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traditional machine learning are unable to make accurate decisions under multiple and
complex information scenarios and different working modes. Therefore, it is necessary to
present some advanced intelligent FD methods. At present, the intelligent FD methods
used by MSAE mainly include deep learning-based and transfer learning-based methods.

3.2.1. Intelligent FD Methods Using Deep Learning Theories

Deep learning, also known as deep neural networks (DNN), employs deep hierarchi-
cal architectures (sparse auto-encoder (SAE), deep belief networks (DBN), convolutional
neural network (CNN)) with multiple neural layers to extracts the information features
automatically, and further realize the mapping between learned features and output results.
SAE is an unsupervised learning method. By constructing a self-encoder structure to obtain
the transform output that can approximate the input signal, the model can obtain the
internal characteristics of data without labels or a small number of labels after training,
which can be used to study the sample missing or imbalance in fault diagnosis. DBN
solves the global optimization problem of multilayer networks by layer by layer training.
Reasonable initial values and weights are selected for the whole network structure, and
then the optimal solution of the network can be obtained by fine-tuning the parameters.
SAE was developed as a monitoring model to realize the FD of the air compressors [115].
DBN was applied to diagnose gearboxes and bearings [116]. The following will briefly
introduce CNN and its process of realizing MSAE fault diagnosis.

The structure of CNN is divided into 2-dimensional and 1-dimensional diagnostic
models. Because 1D CNN can directly process 1D signals such as vibration signals, it is
widely used in fault diagnosis of rolling bearings, motors, hydraulic pumps, and other
equipment. Ince et al. proposed a motor fault diagnosis system based on 1D CNN as shown
in Figure 7, which fused the feature extraction and classification in the traditional fault
detection methods into a single module [117]. The forward propagation from convolution
layer l − 1 to current neuron input layer l can be expressed as

xl
k = bl

k +
Nl−1

∑
i=1

conv1D
(

wl−1
ik , sl−1

i

)
(18)

where xl
k is the input, bl

k is a scalar bias of the k th neuron at the layer l, and sl−1
i is the

output of the i th neuron at the layer l − 1, wl−1
ik is the kernel. Use the input xl

k to calculate
the intermediate output yl

k, which can be written as

yl
k = f

(
xl

k

)
and sl

k = yl
k ↓ ss (19)

where sl
k is the output of the neuron and ↓ ss represents the down-sampling operation with

the factor ss. This method is directly applicable to the real-time data for a single equipment
like a marine motor, so there is no need for a separate feature extraction algorithm, which
makes the system more efficient in speed and hardware. This method is also applicable to
the FD of MSAE by directly extracting signals from the ship end database.
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Figure 7. FD method of MSAE based on 1D CNN.

Diagnosis models based on the CNN method can directly capture the shift variant
properties and learn features from measurement parameters from MSAE without prepro-
cessing to obtain the corresponding characteristics. Furthermore, due to the shared weight
method, the training data of the diagnostic model could be reduced, which is helpful to
accelerate the convergence speed and prevent over-fitting. Like other deep learning methods,
CNN also needs sufficient labeled samples to train the model to improve diagnostic efficiency.

3.2.2. Intelligent FD Methods Using Transfer Learning Theories

Sufficient labeled data are necessary for data-driven methods to train diagnosis models.
However, in marine engineering scenarios, obtaining appropriate data and further labeling
them will be hard to implement. Previous test results or relevant data of the same or similar
MSAE can be used as diagnostic knowledge. For example, the diagnosis knowledge from
manufacturer’s test, such as bench test and sea trial, may help recognize the health condition.
Transfer learning could use the diagnosis knowledge of existing systems and equipment to
realize the diagnosis of new equipment [118]. Feature-based transfer learning approaches
which could realize correcting serious across-domain discrepancy are widely used.

Transfer component analysis (TCA) is a typical feature-based approach and its opti-
mization objective is

min
W

trace
(

WTKLKW
)
+ µ · trace

(
WTW

)
, s.t. WTKHKW = I, (20)

where K =
[
Ki,j
]
∈ R(ns+nt)×(ns+nt) is the kernel matrix of the input cross-domain samples

and Ki,j = k
(
xi, xj

)
, W = K−1/2W ∈ R(ns+nt)×m maps the cross-domain samples from the

space Rns+nt to the m-dimensional space Rm and ns + nt > m,µ is the tradeoff parameter,
H = Ins+nt − 1/(ns + nt)11T is the centering matrix, and L =

[
Li,j
]
≥ 0 can be calculated as

Li,j =


1

n2
s
, xi, xj ∈ Xs

1
n2

t
, xi, xj ∈ Xt

− 1
nsnt

,
{

xi ∈ Xs, xj ∈ Xt

xi ∈ Xt, xj ∈ Xs

. (21)

The optimal feature mapping W∗ obtained by solving Equation (20) can be further
used to calculate the cross-domain features W∗K subject to a similar distribution.

As described in Figure 8, such approaches could be classified into feature mapping,
feature extraction, feature adaptive update, and fault identification.
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The development of intelligent ship technologies promotes the sharing of data between
different ships. The effective extraction, transfer, and application of knowledge in the later
stage will become the critical research content of the ship intelligent O&M. FD model based
on transfer learning, shown in Figure 9. The primary calculation process of the algorithm
includes the construction of input data, empirical and depth feature extraction, feature
transfer learning, fault pattern recognition.

(1) The input data

On the one hand, making full use of the test bench provided by various MSAE
manufacturers, a large number of test data collected from the factory, ship mooring, and
sea trial data, and the massive operation data, a state knowledge transfer learning model
was established to reduce the distribution difference of working conditions and operating
environment in the migration characteristic layer. The problems of non-convergence and
low recognition accuracy caused by insufficient marking information in the existing MSAE
state diagnosis model could be effectively solved. On the other hand, knowledge extraction,
transferring, and adaptation are carried out for the status data of different ship service life,
operation process information of different working conditions and environment, and data
samples of different fault types, to promote the transferring and sharing of characteristic
knowledge among monitoring data.

(2) Empirical and depth feature extraction

Taking the empirical feature and multi-scale depth feature as the input, the sensitive
feature selection and identification ability of random forest are used to complete the
identification of the operation state of MSAE [120]. The parameters of the empirical feature
extraction model and ResNet network were adjusted using the back-propagation network
and gradient optimization algorithm.

(3) Feature transfer learning

The transfer learning needs to go through the following process. The empirical and
depth joint feature transfer learning model for multi-source sensing information is designed,
and the multi-core function space combination structure is constructed. Then the joint
features are mapped to high-dimensional space. Finally, the popular learning mapping
network is designed to complete the low-dimensional re-projection of high-dimensional
spatial features.

(4) Fault pattern recognition

The hybrid kernel functions and the structural parameters of the network are opti-
mized by the iterative method, and then the model training is completed. Based on the
deep transfer learning FD model, combined with the incremental learning method, the
network parameters are optimized using the continuously collected sensor data to further
improve state recognition accuracy.
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Because of the above characteristics of transfer learning theories, it is essential to
obtain sufficient labeled data, which relieves the limitations of traditional machine learning
on FD model training. Accordingly, an intelligent FD model using this method could solve
the problem from theory to marine engineering application.

3.3. Summary of Application

The main applications of FD methods in MSAE are shown in Table 3. At present,
ship FD methods mainly focus on key equipment such as marine diesel engines and
propulsion systems, and the research on auxiliary equipment and system is relatively few.
In addition to independent equipment and system FD, some mature diagnosis systems,
such as the Marine Performance Monitoring System of Norway KYMA Company, and the
CoCoS Engine Diagnostic System of MAN as well as the DICARE of Caterpillar have been
successively developed and applied in the shipping industry.
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Table 3. Summary of application to MSAE fault diagnosis.

Methodologies References Marine Objects

Physics model-based method

Bond graph

(Tan et al., Huang et al.,
Pedersen and Pedersen,

Huang et al., Huang et al.)
[73,74,121–123]

Feedwater system
Condenser

Power system
Diesel engine

Parity space (Benetazzo et al.) [124] Dynamic
positioning system

Parameter estimation
(Wang et al., Nagy-Kiss et al.,
Torres et al. Zhang and Chen,

Zhou, et al.) [76,125–128]

Raisers
Current turbine

Prolusion system

Observers

(Chu et al., Cui et al.,
Lootsma et al., Qiao and Yang,

Wang and Han, Zhou et al.)
[78,129–133]

Underwater thruster
Propulsion system

Unmanned
surface vehicle

Knowledge-based methods

Rule-based reasoning
(Xu et al., Hein et al., Roy,

Coenen and Smeaton.)
[81,85,134,135]

Power system
Diesel engine

Fuzzy logic-based reasoning
(Berredjem and Benidir, Ahmed
and Gu, Shah and Wang, Qiao

and Yang.) [88–90,136]

Boiler Prolusion
system Bearing

Neural network-based reasoning (Wu et al.) [91] Diesel engine

Data driven-based method

Signal processing

(Xi et al., Marichal et al.,
Zhan et al., Freeman et al.,

Dayong et al., Hu et al.,
Cui and Ma.) [42,137–142]

Diesel engine
Separator Systems

Current turbine
Ship Antennas
Rolling Bearing

Multivariate statistical analysis
(Zhang et al., Wang et al.,
Peng et al., Zhong et al.,

Fabiani et al.) [41,43,143–146]

Diesel engine
Ship fuel system
AUV Thrusters

Turbine generators

Machine learning

(Zhan et al., Raptodimos and
Lazakis, Xu et al., Pantelelis et al.,

Cheliotis et al., 2020;
Karagiannidis and Themelis.)

[50,61,95,147–149]

Diesel engine
Turbocharger
Ship systems

Hybrid approaches
Method fusion

(Jiang et al., 2021; Wang et al.,
Li et al., Xu et al.,

Sánchez-Herguedas et al.,
Qin et al., Zhou et al.)

[40,48,50,113,114,150,151]

Diesel engine
Propulsion shaft system

Data and information fusion (Xie et al., Li et al.) [37,114] Current turbine

3.4. Epilog

This section reviews the FD methods on-board. The advantages and disadvantages
of different diagnosis methods are analyzed, and their applications in the shipping field
are summarized. Although the FD methods have achieved good application onboard, they
still face many problems.

• Under normal conditions, some MSAEs are not allowed to run to failure as an un-
expected failure could result in a breakdown of the ship, maritime traffic accidents,
casualties, and environmental pollution. Consequently, failure data in various modes
are difficult to be obtained in marine fields.
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• Marine machinery, such as main engines, propulsion systems, always works under
rough sea conditions. Some external uncertainties from the outside environment (wind,
wave, and current) and internal environment (vibration, noise, and electromagnetic)
are mixed into the measurement parameters, thus increasing the difficulty of fault
pattern recognition.

• Working modes identification is important. The MSAEs work alternately in a variety
of working modes. When the modes are different, the optimal value (baseline value)
and limits (thresholds) of the same variable will be significantly different, which will
increase the difficulty of fault identification.

4. Health Prognostics

As the main task of PHM, HP is a process of reasonably estimating the remaining
life of mechanical equipment by using the degradation trend from HCM information. HP
could make real-time health condition evaluation and accurate RUL prediction for the
whole system and its auxiliary components in operation, so those marine engineers could
make optimal maintenance decisions and ensure reliability and safety [152,153]. The HP
framework of MSAE is mainly composed of three parts: HI construction, HS division, and
RUL prediction. This chapter systematically reviews the literature of these three parts.

4.1. HI Construction

The effective prediction of RUL mainly depends on the explicit HI that fully reflects
the dynamic performance degradation [154]. HI is a statistical or quantitative indicator
that was used to display the health condition of MSAE. A suitable HI not only helps to
promote data visualization but can also continuously characterize the health conditions of
the monitored system throughout the life cycle, correctly reflect the degradation, and has an
apparent monotonic trend [155]. Therefore, how to obtain explicit HI is an important problem.

For different devices, the expression forms and construction methods of HI are also
different. Some equipment has the dominant characteristics of degradation, such as RMS
and kurtosis of bearing, the discharge pressure of the pump, and so forth, which can be
classified as a single HI type. The implicit assumption is that the degradation characteristics
of the equipment could be described with a single sensor parameter so that the prediction
method can be modeled with this signal. However, this simple assumption may not be valid
in many complex equipment and system-level applications since a single feature often leads
to unreliable prediction analysis [156,157]. When multiple signals can be collected, each
signal contains some information about the health state of the system. Only modeling with
a single parameter that can best characterize its degradation could not accurately predict
the degradation process and wastes many monitoring data. Therefore, combining multiple
available sensor signals to construct the synthesized HI to evaluate the degradation process
is an accurate and effective method [158]. The following will summarize the research of
single HI and synthesize HI, respectively.

4.1.1. Single HI

Where there is a complete degradation mechanism shown to be related to the equip-
ment or the whole system, and its fault physics could be represented by a single sensor
signal which reflects most characteristics of the potential degradation process, it is an easy
and reliable method to use the single HI to characterize the health condition of MSAE [159].
Single HI could be statistical features directly extracted from the time series of monitoring
data, such as root mean square (RMS), skewness, kurtosis, and so forth. [160].

RMS evaluates the overall condition of the equipment by tracking the progress of the
fault and is not sensitive to early faults.

srms =

√√√√ 1
N

N

∑
i=1

(xi)
2. (22)
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Skewness represents the symmetry of the probability density function of the signals of
a time series.

γskewness =
N ·∑N

i=1(xi − x)3{√
∑N

i=1(xi − x)2
}3 . (23)

Kurtosis describes the peak or flatness of the signal distribution.

gkurtosis =
N ·∑N

i=1(xi − x)4{√
∑N

i=1(xi − x)2
}2 . (24)

In Equations (22)–(24), xi is the ith member of points in the dataset x, N is the number
of data points in the dataset x, x is the mean value of the dataset x.

Malhi et al. presented the peak values and RMS for mechanical RUL prediction and
analysis [161]. RMS and kurtosis values are also used as single HI to predict the RUL of
equipment such as bearings [162,163], compressors [164]. The following Refs. [165,166] used
the statistical features extracted from time-domain signals to realize the RUL prediction. In
addition, the degradation information in the frequency domain signal, such as the power
density, the average amplitude, and so forth, could also be used as a single HI to predict the
RUL of gears, thrust bearings, and pumps [167–169]. Hanachi et al. proposed two model-
based performance indicators—heat loss and power deficit—as single HI to monitor the
performance degradation of gas turbines [170]. Other kinds of literature have completed a
lot of models and analysis researches on a single HI [158,171,172]. However, the equipment
uniqueness of a single HI cannot be extended to other systems and completely describe the
degradation characteristics of the complex system, which limits its application in MSAE.

4.1.2. Synthesize HI

Many MSAE are systems composed of multiple components, and the complexity
improvement leads to the lack of dominant failure features. Therefore, it will be challenging
to describe the changes in system functions with a single HI. Although multiple single
HIs could be used for separate analysis, it usually leads to a large deviation from RUL
prediction. Consequently, it is an effective method to reasonably fuse all sensor signals
related to degradation into one dimension to construct the synthesized HI [173].

Synthesize HI construction can be divided according to whether the method is op-
timized or not. Baraldi et al. used EMD and auto associated kernel regression model to
combine different features to reflect the weighted sum of HS, which is a non-optimization-
based method [174]. Loukopoulos et al. applied the PCA method to build synthesize HI for
compressor valve failure, hoping to reduce information loss [175]. Zhou et al. used reduced
kernel recursive least squares simplified kernel recursive least squares algorithm to build
synthesized HI [176]. To overcome the problem that the trend of some HI is not obvious
in the whole life cycle and could not be used to predict RUL, Liao et al. proposed genetic
programming method to automatically find the high-level features in degraded signals
and improve the monotonicity of HI [177]. Compared with non-optimization methods, the
optimization-based methods focus on the construction of HI according to the needs of their
respective models, to purposefully improve its service performance and make it a more
efficient HI construction method.

Different fusion methods of synthesizing HI are divided into two categories: data-level
fusion and feature-level fusion. Data-level fusion directly fuses the measured multi-sensor
information into 1D, which can more accurately describe the health condition of the system
than a single sensor signal. Yan et al. developed a data level fusion method to fuse multiple
sensor data under multiple operating conditions into one synthesized HI to describe
degradation [178]. Feature level fusion integrates the feature information generated by
independent analysis methods. A priori knowledge about degradation mechanisms and
physical laws is usually employed to create the required features. Liu et al. applied
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the feature level fusion method cascade correlation neural network to multi-sensor data
fusion [179]. In contrast, the synthesized HI constructed based on data level fusion is more
conducive to health condition visualization and more suitable for degradation model and
RUL prediction [158].

Most fusion methods constructed synthesize HI by the linear combination of original
sensor signals [178,180–182], but for more and more complex systems, multi-sensor signals
usually have multiple sources and are affected by various degradation factors. Therefore,
nonlinear fusion models have attracted more and more attention. Zhang et al. proposed
an HI construction method based on a profound multilayer perceptron revolution neural
network, which considered outlier regions simultaneously [183]. Hong et al. used wavelet
packet–empirical mode decomposition combined with self-organization mapping neural
network to construct confidence value as HI to realize performance degradation evalu-
ation and RUL estimation [184]. Upadhyay et al. utilized the Gaussian mixture model
and Jensen-Rényi divergence to construct the HI to ensure monotonicity when bearing
conditions deteriorate [185]. Yu et al. used the automatic encoder based on a bidirectional
recurrent neural network to convert the run-to-failure data of multiple units of the same
system collected by multiple sensors to construct one-dimensional HI to reflect the health
degradation mode [186].

The traditional data fusion method requires the researchers to determine the relevant
characteristics in advance. Khanh et al. developed the method of HI automatic construc-
tion based on genetic programming, which reduced the user’s preliminary work [187].
The method could be widely used in practical work and is also an essential direction of
synthesizing HI development in the future.

4.2. HS Division

The degradation curve constructed by HI could reflect the change of degradation
trend with different fault severity in the life cycle. According to the changes, the health
condition can be categorized into different stages. Therefore, various FD and RUL predictions
methods are applied to different degradation stages. This section mainly analyzes the division
of degradation stages and the determination of degradation starting and ending points.

4.2.1. Degradation Stage

According to the changing trend of HIs, the degradation processes of MSAE could be
divided into different HSs. HS can intuitively show the degradation process of the system,
which is helpful to guide the selection of RUL prediction methods. At present, there are
mainly three different forms of degradation for dividing HS in most literature, namely
single stage, two stages, and multi-stages, as shown in Figure 10.
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Figure 10a shows only a single gradually increasing trend from health to failure,
indicating only a single HS in the degradation process. Therefore, it can be modeled with a
single degradation model, and RUL prediction can be realized.
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The degradation trend in Figure 10b shows two different stages, the HS at the be-
ginning of the operation and the fault stage after a period of operation. At present,
the HS of most MSAE can be divided according to this type. According to the delay
time concept, Wang et al. defined a two-stage fault process: steady development and
rapid increase, and studied the method of identifying the starting point of defects [188].
Wang et al. applied a two-stage degradation method to distinguish between health data and
degraded data to avoid the interference of health data on RUL prediction accuracy [189].
Qian et al. detected fault occurrence according to a two-stage alarm threshold combined
with the AR model and Kalman filter [190]. Georgoulas et al. improved the accuracy of
two-stage division by using the method of adaptive alarm threshold [191]. Through the
division of two-stage health status, we can see that the data in the HS does not show the
trend related to degradation. The fault and RUL prediction analysis shall be carried out
when the system and equipment begin to fail. Therefore, a series of unnecessary modeling
and calculation for the analysis of HS data can be avoided. Because of the situation, HS is
used to detect the initial machinery degradation and define it as the first prediction time
(FPT) to guide the start of the RUL prediction process.

The two-stage division is only applicable to the case where the trend of machinery in
the degradation stage is consistent and can be represented by a single degradation model.
However, changes in operating conditions or failure modes will affect the degradation
trend of machinery, so it may be necessary to further divide it into three or more HSs
according to the degradation. As shown in Figure 10c, the HS is divided into three stages:
health, degradation, and critical. Kimotho et al. divided the degradation process of
bearings into several different stages [192,193]. Hu et al. defined four HSs for generator
bearing: excellent, good, alert, and dangerous according to the degree of deterioration [194].
Hong et al. determined four different degradation stages according to the confidence
value (CV) of health state and the change rate of CV and developed different prediction
models according to different HSs [195]. In addition, the clustering algorithm [196–198] and
the AI classification method [199–203] are also applicable to the division of different HSs
and have achieved good results. A single model is not enough to express its degradation
process when performing failure analysis and RUL prediction on equipment with three
or more HSs. It is necessary to establish corresponding models according to the different
degradation characteristics of each stage.

4.2.2. Time-to-Start and Failure Threshold

The analysis of the degradation stage can guide the selection of appropriate methods
or models. When starting RUL prediction, it is necessary to set the time-to-start as the
prediction starting point while according to a failure threshold to set the prediction ending
point to ensure the implementation of the RUL prediction process. Therefore, the prediction
start time and end thresholds are also an urgent problem to be solved in failure prognostics.

(1) Time-to-start (TTS)

The starting point of prediction is to determine the beginning of the prediction process.
The data before this time is usually used as training samples to predict the health condition
after this time. Therefore, selecting an appropriate prediction starting point can avoid the
interference of health signals to the model or the loss of key information and improve the
RUL prediction efficiency. However, due to the influence of noise and random occurrence of
early faults, a more accurate method is needed to determine the appropriate starting point
of prediction. Zhang et al. used the system degradation state model to detect the deviation
between the baseline and corresponding current distribution and identified the fault starting
point with the specified confidence and false alarm rate [204]. Yang et al. used the first CNN
model and the proposed 3/5 principle to identify the initial fault point [205]. Li et al. proposed
an adaptive prediction starting point selection method based on 3σ interval [206].
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(2) Failure threshold

The failure threshold is the endpoint of RUL prediction. It is considered that the
equipment cannot meet functional requirements when the degradation curve exceeds the
fault threshold. The determination of fault threshold plays a key role in the accuracy of
RUL prediction. It is usually defined as degradation reaching the predetermined limits set
by experts. However, due to the impact of uncertainty, it is difficult to determine the failure
threshold. Yu et al. divided the health state into two stages and added a false alarm trigger
mechanism [207]. Li et al. used the probability trigger mechanism to determine the alarm
threshold [208]. Shakya et al. combined Chebyshev inequality and Mahalanobis distance
to determine failure threshold [209]. Alkan et al. applied the PCA method based on the
variance-sensitive adaptive threshold to overcome the problems of false alarms caused by
using a fixed threshold [210]. Moreover, some studies had shown that the failure threshold
was not clearly defined and may be probabilistic, and the possibility of using a probabilistic
failure threshold was beneficial [152,211].

4.3. RUL

RUL estimates the remaining service life of a component or system that can operate
according to its expected function before maintenance or replacement [212,213], which is
RULk = teo f − tk, where tk is the current time, teo f is the end of life of the equipment, and
RULk is the RUL at tk. An important feature of ship intelligence is self-awareness and
self-prediction ability, in which RUL prediction plays an important role. RUL prediction is
currently the core part of system PHM and CBM [214]. The major task of RUL prediction is
to forecast the time left before the machinery losses its operation ability based on the condi-
tion monitoring information. It is the last technical process as well as the ultimate goal of
machinery HP [154]. MSAE is a kind of system with low frequency and high consequences.
Accurate RUL prediction of MSAE can predict the safe operation of the ship and the time
when the system equipment performs its expected functions, and then guide it to achieve
predictive maintenance to reduce expensive unplanned maintenance [215–217]. The main
difference between its RUL prediction and other engineering systems lies in its complex
working environment and diverse operation modes [218]. Commercial shipping currently
relies more on inefficient, traditional time-based maintenance procedures, resulting in poor
economical and labor-intensive [212]. Ship failure and shutdown caused by MSAE failure
will bring potential safety hazards and cause substantial economic losses. Appropriate
maintenance actions can be arranged in advance through a practical PHM framework,
timely detection of failures, and effectiveness to avoid catastrophic failures and reduce
maintenance costs [219].

RUL prediction process could be realized through direct and indirect methods [175,220–222].
The direct calculation process takes the machine history and current information as input to
establish the relationship model between information and RUL. This method does not need
to determine the fault threshold in advance and can directly estimate RUL. The indirect
calculation process first needs to determine the failure threshold, establish the HI and
health condition model, and finally calculate the time when HI reaches the threshold.

Based on different technologies and methodologies, we subdivide the methods of RUL
prediction into three different categories, that is, degradation model methods, machine
learning model methods, and hybrid model methods [223–226], as depicted in Figure 11.
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4.3.1. Degradation Model

The physical degradation model simulates the degradation process through the nom-
inal life model. The general application depends on the model understanding of the
physical process and potential system degradation characteristics [153,213]. The empirical
degradation model is a data-driven model for statistical analysis through a large number of
monitoring data. The advantages and disadvantages of these two methods are summarized
and analyzed below.

(1) Physical Degradation Models

Based on the physical degradation model, the RUL prediction method needs to con-
sider the different operation modes and environmental conditions. The physical meaning
of equipment degradation and professional theory were used to create failure mode, which
is employed to estimate the RUL [117,152,227]. When using this method, it is vital to
understand the fundamental physical model of the system for calculating the damage rate
and its accumulation process over time. The physical degradation model could obtain
higher accuracy RUL prediction results when the equipment is relatively simple, and the
degradation is caused by a single degradation factor.

The common prediction based on the physical model is crack propagation modeling.
Li et al. used lognormal random variables to establish a random defect propagation model
based on the deterministic defect propagation rate model for RUL prediction [228]. Li et al.
employed a physical model method based on Paris law to predict the residual life of gear
fatigue cracks [229]. Daigle et al. established a detailed physical model of a centrifugal
pump to describe its degradation process [230]. Oppenheimer et al. established a life model
based on the Forman crack propagation law of linear elastic fracture mechanics for machine
RUL prediction [231].

The main advantage of this method is to realize the RUL prediction from the dynamics
of the equipment degradation mechanism. If the model parameters have a one-to-one map-
ping relationship with physical coefficients, better degradation description and accurate
prediction results could be obtained [94]. Nevertheless, the degradation models vary with
equipment or systems, so the application of the method is limited. The modeling process
also involves much professional knowledge, and it may be necessary to use assumptions
and expert knowledge when describing the operation process and estimating parameters.
In addition, mathematical models are usually expressed by complex differential equations
or partial differential equations, which require a powerful computational solver and high
computational cost [224]. Moreover, the difference of internal materials, the complexity and
diversity of the external working environment, and the interaction of various components
result in difficulty fully understanding the actual physical process of degradation and es-
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tablishing an accurate physical model for RUL prediction [232–235]. Therefore, the physical
degradation model is mainly used for RUL prediction modeling of simple equipment such
as fan, bearing, and pump in the practical application of MSAE.

(2) Empirical Degradation Model

The empirical degradation model—also known as the degradation model based on a
statistical method—is a degradation mechanism model summarized by technicians in the
process of long-term use. It does not necessarily have physical significance. The empirical
degradation model can obtain the probability distribution of life or remaining life by model-
ing the monitoring data compared with the physical degradation model. It is convenient to
quantify the uncertainty of life or remaining life [236]. Si et al. [237] and Sikorska et al. [152]
summarized the statistical data-driven methods used in RUL prediction, divided into a
non-random empirical degradation model and stochastic empirical degradation model.

The non-random empirical degradation model ignores the internal mechanism of
equipment degradation, adopts typical distribution curves, including the Exponential
model [238–240], Weibull model [241], Proportional hazards model [242], and so forth. The
advantage of this model is to describe the degradation trend of the equipment through the re-
gression model and predict the RUL of equipment by extrapolation. However, its disadvantage
is that the degradation trend model based on experience is arbitrary and uncertain.

The stochastic empirical degradation model fully considers the influence of uncertainty
in the degradation process [214] and can describe the random time variability in the process
of equipment degradation. Many stochastic empirical degradation models have been
used for RUL prediction, including Wiener process [243–246], Gamma process [247,248],
Inverse Gaussian process [249–251], Markov model [219,252–258]. The Wiener process
has good physical and mathematical properties and can explain the time variability and
nonmonotonic process of the degradation process. However, due to its dependence on
the Markov hypothesis, and mainly focuses on the current degradation level and ignores
the historical data, resulting in inaccurate RUL prediction. Gamma process and Inverse
Gaussian process are limited to Markov condition, which can only simulate monotonic
degenerate trajectory, resulting in an impractical model. Markov model is suitable for
describing multi-stage transition process in the degradation process, but it is difficult
to obtain training samples in different degradation stages in practical application. The
advantage of the stochastic empirical degradation model is that it can obtain the analytical
expression of RUL. However, it needs to use the advanced stochastic process theory for
mathematical derivation, which is not conducive to the application and promotion in
MSAE, the model parameter identification is difficult, and the prediction accuracy needs to
be improved. In addition, the degradation trend model based on experience is arbitrary,
and it is difficult to explain the degradation mechanism when the results are inaccurate.

In practical application, the mechanical system usually presents a nonlinear degra-
dation process. Therefore, in addition to considering the uncertain influence in the degra-
dation process, it is necessary to establish a nonlinear degradation model to describe the
degradation process of machinery [259,260]. Li et al. used an exponential model to repre-
sent the nonlinear degradation process, but this method is only effective for the exponential
degradation process [206]. Liu et al. responded to the nonlinear degradation process by in-
troducing acceleration factors and predicted RUL combined with the linear autoregressive
model [261]. Zio et al. described the nonlinear degradation process using the Paris Erdogan
model and predicted RUL using the PF algorithm [262]. Si proposed an adaptive nonlinear
prediction model and considered the influence of uncertainty for RUL prediction [260].
Gasperin et al. proposed a statistical method to extract features from vibration signals,
build a dynamic model and predict its evolution with time to estimate when the gear
reaches the critical stage [167].

However, this method has great limitations, which include: (1) the reliable data not
being available; (2) the influence of multiple failure mechanisms of the engineering system;
and (3) the mismatch between component failure distribution and model distribution. The
statistical method may overlook the failure mechanism or imply that there is only a single
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failure mechanism of the equipment or system, which is inconsistent with the real complex
engineering system’s reality, which will affect the accuracy of RUL prediction [213].

4.3.2. Machine Learning Method

Due to the complexity of MSAE and the diversity of equipment, there are great
differences between different ships. MSAE is usually composed of multiple components
with multiple failure modes. It is almost impossible to understand all potential failure
physics and their interactions of complex systems [153]. Consequently, the model-based
method has some limitations in this field. With the development of modern sensor systems
and data storage and processing technology, the RUL prediction method based on machine
learning has been widely used and popularized. The following is a review of common
machine learning methods.

(1) ANN

A variety of neural network models have been applied to RUL prediction [220].
Tian et al. constructed an ANN model with historical age and multi-state monitoring
measurements as inputs and life percentage as output for more accurate RUL prediction of
pumps [263]. Gebraeel et al. established an ANN model and applied the degradation signal
database to realize the RUL prediction at any time during the service life of the bearing [264].
Mahamad et al. used the feed-forward neural network (FFNN) model based on Levenberg
Marquardt’s (LM) training algorithm to predict the RUL [265] Vachtsevanos et al. developed
a dynamic wavelet neural network prediction model [266].

In addition to typical neural network models, many deep learning models have been
developed for RUL prediction. Yang et al. used the dual CNN model to intelligently predict
RUL only using the original signal [205]. Cui et al. proposed an adaptive performance
degradation assessment method of marine turbochargers based on component generalized
feature mapping [267]. Zhang et al. used long short-term memory (LSTM) recurrent neural
networks (RNN) to predict RUL independently of offline training data and can predict
RUL earlier than traditional methods when offline data are available [268]. Sun et al. used
the deep TL network based on SAE to transfer the SAE trained by historical fault data to a
new object, and RUL predicted the new target without supervision information [269].

The ANN method can achieve good results in tendency, monotonicity, and scale
similarity. It often uses a signal processing method to extract equipment degradation
features, and then uses the deep learning method to learn the mapping relationship between
health indicators and degradation key features, to realize equipment RUL prediction.
However, the neural network method is a typical “black box” model, which has low
transparency and needs a large number of high-quality training data. The nodes and
weights also need to be preset manually or optimized by using the optimization algorithm,
which reduces their generalization ability in different situations.

(2) SVM/RVM

The least-squares SVM (LS-SVM), OC-SVM, and multi-class SVM have been success-
fully used in RUL prediction. Dong et al. proposed a bearing degradation prediction
method based on PCA and optimized LS-SVM [270]. Carino et al. realized RUL prediction
of equipment through OC-SVM [271]. Islam et al. modified LSSVM into OC-LS-SVM based
on Bayesian inference-aided for accurate TTS point detection and applied recurrent least-
square support vector regression (RLS-SVR) model for robust RUL estimation by predicting
the future degree-of-defectiveness HI (DDHI) value [272]. Benkedjouh et al. presented
isometric feature mapping to construct the HI and forecasted it using an SVR method to
estimate the bearing RUL [273]. However, it is difficult to determine the penalty coeffi-
cient of SVM, and the kernel function must satisfy the Mercer theorem. To overcome the
shortcomings of SVM, a supervised learning RVM is developed as its alternative method.
In addition to the unrestricted use of any kernel function, its advantages also include the
automatic estimation of complex parameters without cross-validation, the generation of
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a probability output, and the use of Bayesian approximation to solve the uncertainty of
prediction in SVM.

Define a set of input data {xi, ti}N
i=1 where xi is the input variable vector, ti is the target

value, N is the length of the data, the RVM regression can be indicated as

t(x) =
N

∑
i=1

ωiK(x, xi) + ω0 + εn, (25)

where ω = [ω1, ω2, · · · , ωN ] is the weight, ω0 is the bias, K(x, xi) is kernel function, and
εn = N

(
0, σ2) is error term with zero mean Gaussian process and variance σ2. The Gaussian

kernel function is usually preferred and given by

K(x, xi) = exp
[
−(x− xi)

T(x− xi)/2S2
]
, (26)

where S2 is the width. More details of the algorithm can be found in the Ref. [274].
There are mainly three different RVM training algorithms: sequential sparse Bayesian

learning, MacKay iterative learning, and Expectation-Maximization (EM) iterative learning
algorithm. An EM-RVM algorithm is used to predict the RUL of lithium-ion batteries in
hybrid vessels, which can monitor its health and prevent the occurrence of failure [213].
Wang et al. used RVM to establish the prediction degradation curve in the statistical
and sparse form [159]. Widodo et al. applied the data running to fail to predict the
survival probability of a single unit of machine components through the RVM model [275].
Relevance vector machine (RVM) is a sparse probability model based on a Bayesian training
framework, which can overcome the shortcomings of SVM. At the same time, RVM can deal
with high-dimensional, nonlinear, and small samples and provide probability prediction. It
has the advantages of good sparsity, generalization ability, and high prediction accuracy.
These advantages make it more suitable for solving the problems of prediction with multiple
uncertainties in MSAE and difficult to obtain training samples.

(3) Gaussian process regression (GPR)

GPR is a nonparametric method that does not need to assume the candidate model
structure in advance. Otherwise, the GPR method has advantages in life prediction when
data are unreliable, noisy, or missing. Up till now, this model has been mainly applied
in the prediction of bearing and battery life. BošKoski et al. used Rényi entropy to
extract the degradation characteristics of the bearing and input it into the GPR model to
predict the RUL of the bearing [276]. Yu firstly decomposes the battery capacity curve by
empirical mode decomposition (EMD), then uses different GPR and logistic regression for
the decomposed natural mode function and residual part, respectively, and finally adds
the results of the two parts to predict the remaining life of the battery [277]. Wang et al.
selected the signal peak value and its position feature after wavelet transforms as the input
of GPR and effectively predicted the battery’s remaining life [278]. Kong et al. combined
radial basis function KPCA and GPR to predict RUL [279]. Liu et al. used the improved
GPR method to realize multi-step ahead RUL prediction [280].

In general, the machine learning method relies on massive historical information to
establish a model and predict RUL. It has high flexibility, does not need a lot of profes-
sional knowledge and detailed understanding of the exact degradation law, and has low
requirements for the physical knowledge of the inherent fault mechanism of the system. It
is suitable for complex equipment with a limited understanding of the physical level of the
system, such as diesel engines in MSAE. Although machine learning models have some
advantages in practical application, there are also several problems in the implementation
of these models. First, it is difficult to accurately define the fault threshold due to the
nonlinear nature of degradation caused by the uncertainty of the environment, load, and
self-degradation. Second, the training machine learning algorithm is facing the challenge
of a lack of running to the fault data set. In most cases, obtaining the actual MSAE fault
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data is usually time-consuming and expensive, and generally, no data set can reflect the
real fault evolution.

4.3.3. Hybrid Failure Prognostics

Similar to the fault diagnosis model, the hybrid method, which combines the degrada-
tion model and prognostics method, overcomes the problem of a single degradation model
or prognostics method that could not accurately predict the health condition. The hybrid
method can use their advantages and makeup or minimize their weaknesses [224,281,282].
Therefore, the hybrid of signal processing, degradation model, and prediction method
is a new trend in RUL prediction. According to different hybrid contents and forms, hy-
brid methods mainly include degradation model fusion, prediction methods fusion, and
degradation model and prediction methods fusion.

(1) Degradation Model Fusion

To better describe the different degradation trends of equipment in different degrada-
tion stages, different models are used to describe different degradation processes, which
is more in line with the actual degradation situation. Man et al. used the Wiener process
with drift and PH model for constructing the models of stochastic degradation signals and
time-to-event data, respectively, to predict the RUL [226]. Lu et al. combined the physi-
cal law of crack propagation, Paris equation, and measurement model to build a failure
precursor process model for RUL estimation [283]. Peng et al. studied the inverse GPR
model with a random effect for RUL prediction using the general Bayesian framework [284].
Lei et al. established the RUL prediction model based on the fusion of stochastic process and
Kalman particle filter (KPF) algorithm [214]. Wang et al. established a Bayesian method for
the Wiener process with change points considering measurement error [285]. Considering
the influence of degradation mechanism and other factors, Yan et al. proposed a Wiener
process model based on two-stage physics to describe the two-stage degradation process
accurately and then predict RUL [286].

(2) Prognostics Method Fusion

Prognostics method fusion has achieved good application in the prediction of bat-
tery remaining life. Ma et al. presented a hybrid neural network model to determine the
hidden degradation function and predict the RUL of lithium-ion batteries [287]. Wei et al.
used the particle filter (PF) method to dynamically update the hyperparameters of the
SVR model, overcome the disadvantage of poor prediction ability when there are signif-
icant differences between the training set and test set, and improve the robustness and
generalization ability of the model [288]. In addition, it has also achieved good results
in the fields of air compressor, bearing and so on. Loukopoulos et al. integrated SOM,
Multiple Linear Regression (MLR), and Polynomial Regression (PR) models to estimate
the RUL of reciprocating compressor [175]. Niu et al. used a neural network to fuse the
features extracted from the signal at the feature level, then used smoothing and wavelet
decomposition to denoise, and used multivariate nonlinear model regression to predict
the time series when the deterioration curve triggered the alarm threshold, to realize the
HCM and RUL prediction of the compressor [289]. Ding et al. proposed a kernel regression
depth transfer metric learning method and successfully applied it to RUL prediction of
bearings under multiple working conditions [290].

The above method successfully solves the single-point prediction of RUL. However,
because the prediction method will be affected by various sources of uncertainty, such
as operation uncertainty, modeling uncertainty, and prediction method uncertainty, the
method based on point estimation alone cannot provide sufficient confidence for the
prediction results, resulting in inaccurate results. Therefore, in the prediction method
of MSAE, it is very necessary to explain and quantify the prediction uncertainty and
improve the prediction results. To solve this problem, Wang et al. proposed the fusion of
two Bayesian models to provide a probability distribution for the uncertainty in the final
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prediction results, and the framework is shown in Figure 12 [143]. The Bayesian theorem
can be expressed as

p(w|X, Y ) =
p(w)p(Y, X|w )

p(Y|X )
(27)

where (X, Y) is the observed variables, w is the unobserved parameters.
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Firstly, the diesel engine HCM data are preprocessed to extract the required training
set and test set data. Secondly, through the indirect estimation method, Bayesian neural
network (BNN) is used to model the relationship between HCM data (IAS signals) and
HI data (IMEP data), so as to realize the diesel engine health monitoring and prediction
process. The model consists of an input layer, two hidden layers, and an output layer.

There are n sets of HCM data D = X, Y corresponding to the input features of IAS
signals X =

{
xi}n

i=1, xi ∈ R1×m and the output value of IMEP Y =
{

yi}n
i=1, yi ∈ R. The

parameters z of BNN model are then trained by xi and yi. The new output value ŷi+1 could
be expressed as

ŷi+1 =
∫

f
(

xi+1, z
)

p(z|D )dz (28)

According to the VI algorithm, a variational distribution q(z) is approximate to the
true posterior p(z|D ), so the ŷ could be written as

ŷi+1 ≈
∫

f
(

xi+1, z
)

q(z)dz (29)

where f is the nonlinear activation function.
Then Bayesian logistic regression (BLR) model is used to model the predicted HI

data, and the degradation performance with uncertainty is evaluated and quantified with
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a confidence interval to generate a series of possible final results rather than a single
prediction value.

The input of BLR model is the IMEP value yi, and output ci is a Bernoulli variable
where the normal condition is 1 and the fault condition is 0. The transition expressed by
percentage from normal to fault can be formulated as

p(c|y, θ ) = Bernoulli
(

1
1+eθy

)
=

N
∏
i=1

(
1

1+eθyi

)ci(
1− 1

1+eθyi

)1−ci (30)

where θyi = α + βyi, α and β are the process parameters, yi is the predictd value of IMEP,
and the binary output is ci ∈ 0, 1.

Variational inference (VI) and Markov Chain Monte Carlo (MCMC) are used to train
and infer the relevant parameters in the two Bayesian methods, respectively. Finally, the
new data are used to train BNN and BLR models, and the optimal parameters are retained
for further prediction and assessment with uncertainty quantification. This method con-
siders the uncertainty of parameters, which can improve the prediction performance, the
robustness, and prevent overfitting of the model. With the understanding of the environ-
ment, the decision made by the model becomes more deterministic, plays a significant role
in condition-based prognostics, and makes the maintenance decision of marine engines
more comprehensive.

In addition, another point of interest is the adaptive fusion model of automatic selec-
tion machine learning algorithm. Hu et al. summarized the shortcomings of the traditional
data-driven prediction method using training data sets to construct multiple candidate
algorithms and considered that a single algorithm may lack robustness and waste resources
in constructing abandoned alternative methods. Therefore, a multi data-driven integrated
prediction method based on three weighting schemes is proposed [153]. The future devel-
opment direction is how to automatically build alternative data-driven methods and select
the fusion of various methods adaptively.

(3) Degradation Model and Prognostics Methods Fusion

Tran et al. used the normal operation data to create the identification model and used
the RMS of the residual for the construction of HI, combined Cox’s PH model and SVM to
build a fusion model of a three-stage method to predict the RUL of the compressor [164].
Yu et al. integrated Bayesian inference-based SOM, logistic regression (LR), and high-order
particle filtering (HOPF) to build a data-model-fusion scheme to evaluate and predict the
health degradation of the machine [291]. Aiming at the problems of incomplete historical
data and lack of prior knowledge in the process of fault prediction, Zhou et al. Combined
Weibull proportional risk model with the least-squares linear regression function to pre-
dict the RUL of marine diesel engines [292]. Byington et al. combined model-based and
vibration-based features with data-driven methods to evaluate the current health state of
the coupling and predict the RUL [293]. These methods aim to integrate the advantages
of the degradation model and prognostics method for reliable machine health assessment
and prediction. It not only solves the problem that the degradation model cannot directly
reflect the degradation degree, and the complex parameters are difficult to define, make it is
difficult to build a real model for machine degradation propagation, and is not suitable for
equipment whose physical parameters and failure modes may change under different con-
ditions. At the same time, it also solves the disadvantage that the prognostics model needs
to use historical data including normal and fault operation in the training process, which
are difficult to obtain in MSAE. These fusion model methods improve the applicability and
accuracy of RUL prediction of MSAE.
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4.4. Epilog

Although RUL prediction has been widely used and made remarkable achievements in
machinery, electronics, vehicles, aviation, and so on, there are still the following limitations
in applying RUL prediction in ships.

(1) Ship manufacturing is a large-scale project. The performance of MSAE put into
operation is different, and even the performance parameters of the two sister ships will be
significantly different. Therefore, the prediction model is not universal.

(2) Choosing an appropriate HI construction method and reasonable division of HS
greatly impacts the accuracy of prediction. Meanwhile, identify the starting point of failure
and failure threshold are the main obstacle to the universal application of RUL in MSAE.

(3) Due to extensive investment and low return, many ship-owners are reluctant to
use the RUL prediction program.

Considering the above reasons, there are still some limitations in the application of
RUL in MSAE. With the development of sensors, IoT, and big data, the collected degradation
signals about equipment will be more sufficient. Therefore, the data-driven RUL prediction
method and fusion RUL prediction method are the primary development direction in the future.

5. Maintenance Decision

A maintenance decision describes the O&M vision of maintaining the health and safety
of assets in the whole life cycle. The specific repair process includes inspection, repair,
upkeep, and renewal of the systems, subsystems, and components. In order to improve
maintenance efficiency and reduce cost, maintenance strategies have also shown many
types [294]. Figure 13 depicts the evolution of maintenance strategy in the maritime field.

Machines 2022, 11, x FOR PEER REVIEW 36 of 53 
 

 

assessment and prediction. It not only solves the problem that the degradation model can-
not directly reflect the degradation degree, and the complex parameters are difficult to 
define, make it is difficult to build a real model for machine degradation propagation, and 
is not suitable for equipment whose physical parameters and failure modes may change 
under different conditions. At the same time, it also solves the disadvantage that the prog-
nostics model needs to use historical data including normal and fault operation in the 
training process, which are difficult to obtain in MSAE. These fusion model methods im-
prove the applicability and accuracy of RUL prediction of MSAE. 

4.4. Epilog 
Although RUL prediction has been widely used and made remarkable achievements 

in machinery, electronics, vehicles, aviation, and so on, there are still the following limita-
tions in applying RUL prediction in ships.  

(1) Ship manufacturing is a large-scale project. The performance of MSAE put into 
operation is different, and even the performance parameters of the two sister ships will be 
significantly different. Therefore, the prediction model is not universal. 

(2) Choosing an appropriate HI construction method and reasonable division of HS 
greatly impacts the accuracy of prediction. Meanwhile, identify the starting point of fail-
ure and failure threshold are the main obstacle to the universal application of RUL in 
MSAE. 

(3) Due to extensive investment and low return, many ship-owners are reluctant to 
use the RUL prediction program.  

Considering the above reasons, there are still some limitations in the application of 
RUL in MSAE. With the development of sensors, IoT, and big data, the collected degra-
dation signals about equipment will be more sufficient. Therefore, the data-driven RUL 
prediction method and fusion RUL prediction method are the primary development di-
rection in the future.  

5. Maintenance Decision 
A maintenance decision describes the O&M vision of maintaining the health and 

safety of assets in the whole life cycle. The specific repair process includes inspection, re-
pair, upkeep, and renewal of the systems, subsystems, and components. In order to im-
prove maintenance efficiency and reduce cost, maintenance strategies have also shown 
many types [294]. Figure 13 depicts the evolution of maintenance strategy in the maritime 
field.  

Level of complexity

Ge
ne

ra
te 

be
ne

fit

Run to fail
Schedule maintenance

Classcal CBM

CBM+

E-maincenance

Corrective

Preventive

Predictive

Proactive

M
ai

nt
en

an
ce

 ev
olu

tio
n

First  generation Second  generation Third  generation Fourth  generation

• RM 
• CM

• PM
• TM

• CBM
• RCM

• CBM+
• PdM
• RCM
• RBM

 
Figure 13. Evolution of maintenance strategies in the marine domain. Figure 13. Evolution of maintenance strategies in the marine domain.

• The first generation maintenance method mainly adopts the run to failure maintenance
method. That is, the maintenance process is operated until it breaks down. The typical
maintenance practices are routine maintenance (RM), (ii) CM [295].

• Second-generation maintenance is mainly preventive maintenance. With the increas-
ing complexity of MSAE, the maintenance cost increases. The maintenance policies
adopted are (i) PM, (ii) time-based maintenance (TM).

• The maintenance strategies adopted during the period 1980–2000 are called the third
generation maintenance. The typical maintenance character of this period is mainly
predictive maintenance. (i) CBM, (ii) reliability centered maintenance (RCM).

• The traditional maintenance methods are transforming to more proactive types, this is
the recent generation maintenance. This generation is highly characterized by the in-
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ception of risk-based maintenance (RBM) in addition to RCM, Predictive Maintenance,
CBM, and CBM+.

5.1. Corrective Maintenance

CM is a post-maintenance strategy. When the equipment breaks down unexpect-
edly due to problems, take appropriate corrective measures to restore the function of the
equipment. The maintenance process mainly includes repairing or replacing faulty parts.
Therefore, this strategy is only applicable to equipment whose failure consequences will not
cause serious problems. The investment required to implement this maintenance strategy
is much lower than any other maintenance strategy, but when applied to critical equipment,
it may increase additional maintenance costs and increase downtime [296].

5.2. Preventive Maintenance

At present, a planned maintenance system (PMS) based on ISM code [297] is still
widely used by shipping companies. PM is a preventive maintenance method, and opera-
tional equipment is maintained based on a certain working interval or timing. This method
could effectively avoid any potential failure or severe degradation that may impact MSAE
reliability in the near future.

The frequency of implementing PM work depends on the experience of marine engi-
neers or manufacturer’s instructions and recommendations. Implementing PM strategy
in MSAE with high reliability can effectively reduce the failure rate and cost, prolong
life compared to the CM. PM is currently practiced in merchant vessels as the most pre-
ferred maintenance strategy [298]. However, PM does not consider the health condition
of the current MSAE, so this may lead to unnecessary machinery downtime and exces-
sive maintenance problems, which include high repair costs and maintenance-induced
failures [299,300]. As described in [301], time-based PM actions may result in misjudgment
about the MSAE’s health condition as usage is not constant over time.

5.3. Predictive Maintenance
5.3.1. CBM

CBM takes advantage of modern condition perception methods to track MSAE health
state in real-time, realize fault diagnosis and failure prognostics according to DIaK, and
make maintenance decisions in combination with the health state, diagnosis, and prog-
nostics results. It is an important maintenance strategy under PHM. According to this
strategy, the maintenance work will be completed when the MSAE is needed. Figure 14
compares the health stages in which different maintenance methods are performed. The
goal of CBM is to reduce the cost of spare parts, system downtime, and maintenance time,
which requires engineers to complete the work at the right time. Many researchers have
shown that the CBM strategy is more effective than the PM strategy. It is reported in the
literature that the use of CBM may extend maintenance overhaul cycles by up to 50% and
save between 25% and 45% of maintenance costs [212].
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Although CBM can significantly save maintenance costs and reduce failure risk, the
current survey shows that only 10% of the marine industry uses CBM as the preferred
maintenance strategy [302]. One of the main reasons limiting the application of CBM
onboard ships is that the ship is a complex system composed of systems, subsystems,
equipment, and components, whether it is the physical process and function description of
the system, the analysis of DIaK, and even the formulation of maintenance decision-making
need to be completed by professionals with high technical levels.

5.3.2. RCM

RCM is a method developed by the aviation industry to ensure asset availability
and reliability and gradually applied to other fields [303]. The framework of RCM in-
cludes corrective, preventive, and predictive maintenance methods. Although RCM is
successfully implemented in wind turbines [304], power distribution systems [305,306],
transformer [307], and aircraft indicators [308], it is less used in merchant ships due to re-
source and cost constraints [309]. Several classifications such as Lloyd’s Register, DNV GL,
and Bureau Veritas have proposed to apply the RCM method to the merchant’s vessel, and
some provide consulting and analysis services. ABS has developed and published the RCM
merchant shipping comprehensive guidance note [14]. A holistic maintenance strategy
based on RCM principles is utilized to increase the operational reliability of ships [310].
RCM analyses are used to provide a process to optimize maintenance tasks and achieve
optimal reliability for vessels [311]. Amendments to the RCM method were proposed for
the first time for assessing maintenance needs and reliability challenges on unmanned
cargo ships [312].

Despite its applicability and the potential benefits of RCM, merchant vessels often have
relatively unique designs, even sister ships which can still have considerable differences in
MSAE. Therefore, in most cases, the RCM successful application for one ship could not be
directly used for another ship, which hindered the adoption of the RCM method onboard
the ships.

5.4. Proactive Maintenance
5.4.1. RBM

RBM was developed to inspect high-risk equipment and components, strengthens
inspection and maintenance, and reduces failure probability and consequences [295]. The
RBM has been accepted in principle by maritime regulatory bodies, and the adoption of
RBM for ships was relatively less studied. Some researchers have proposed that RBM was
used for hulls and structures, and RCM is recommended for mechanical systems. Those
studies [313–317] may be classified as RBM for ships.

As an important part of maintenance decision-making, RBM can be effectively im-
proved ship availability and optimized maintenance cost. Fully implementation of RBM
for future applications needs sufficient resources which are required from appropriate
organizations in the maritime industry to collect DIaK.

5.4.2. An E-Maintenance

Researchers sometimes consider e-Maintenance as a maintenance strategy, a mainte-
nance plan, a maintenance type (e.g., CBM, RCM, RBM), or maintenance support [318].
As an enterprise-level architecture, e-Maintenance includes the resources, services, and
management necessary to execute proactive maintenance decisions. This support consists
of two parts: e-technologies such as ICT, web technology, new sensors, wireless commu-
nications, and so forth, and the other is e-maintenance activities (operations or processes)
such as e-monitoring e-diagnosis, e-prognosis, and so forth. [319].

Through the e-Maintenance, the pertinent DIaK becomes available and usable at the
right place, at the right time for making the best (anticipated) maintenance decision. Although
E-maintenance has not been applied in ships, it has a broad application prospect in MSAE
maintenance because it can make better use of big data and modern information technology.



Machines 2022, 10, 72 39 of 53

5.5. Epilog

Different maintenance methods have different advantages and disadvantages and
are also suitable for different scenarios. Therefore, selecting an appropriate maintenance
strategy plays an important role in the health management of MSAE. The least that can
be concluded from the literature review is that the maintenance method of MSAE should
be an advanced maintenance management technology based on e-maintenance as the
framework system, CBM, RCM, and RBM as the main maintenance strategy and assisted
by an intelligent algorithm.

6. Future Challenges by Intelligent Ship PHM

The intelligent ship requires PHM systems that must be owing to the ability to pro-
vide comprehensive condition monitoring, reliable diagnostics, and accurate prognostics
information to adapt to the uncertainty of various working conditions. Due to the lack of
crew and the use of highly automated systems, detailed end-to-end solutions are required.
Although PHM has made many achievements in marine engineering, there are still many
aspects that need further research. Through the research summary, we conclude that there
are currently five relevant challenges included the scientific design, effective implementation,
and technological innovation of PHM solutions in MSAE, which will be discussed in order.

6.1. Omnidirectional Condition Perception

Using intelligent sensor technology to build sensor networks, realize intelligent sensor
layout and obtain omnidirectional condition information is the priority problem of ship
intelligent O&M technology.

The performance of sensor networks is affected by the state of sensors, system health
characteristics, working mode, and sensor layout. If the sensor layout is unreasonable, it
will not provide sufficient motoring data, which will be unable to accurately understand
and track changes in health conditions. Although using sensor saturation configuration can
effectively reduce the information loss, it will obtain a large number of irrelevant or even
conflicting data, resulting in the complexity of the system and increasing the cost. These
effects will lead to misjudgment of system health condition [320]. Therefore, determining
the type, number, and location of sensors in the limited space of MSAE to optimize the
sensor arrangement is significantly important to ensure the effective implementation of
PHM. At the same time, the reliability and redundancy of sensors should be considered.

6.2. DIaK Integrated Coding Technology

Modern merchant ships are consist of numerous systems, sub-systems or units, equip-
ment, and component, which are supplied by multiple different suppliers and assembled
by the shipyard. Each manufacturer uses its coding system to encode the information of
mechanical equipment, and the lack of a unified coding standard makes the data interac-
tion and data maintenance difficult between various systems. Therefore, the reasonable
information classification and coding rules for the whole life cycle of MSAE have become
one of the urgent problems to be solved in the development process of the intelligent ship.
Unified information classification and coding can efficiently realize the transmission and
sharing of equipment information in the stages of design, construction, and O&M and
provide a data basis for establishing various information management systems.

6.3. Treatment of Uncertainty Problems

The health management of ship mechanical systems is affected by internal uncertain-
ties such as working conditions and degradation, and external ones such as navigation
environment and abnormal external working conditions. Therefore, the decision-making
of health management should not only consider the completion of internal performance
analysis but also integrate multiple external information to realize comprehensive health as-
sessment, to make scientific operation and maintenance decisions. This external uncertainty
information and its impact mainly include:
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(1) Extreme weather. In extreme weather conditions such as typhoons, the mechanical
system suffers an abnormal influence. For the HCM, it is necessary to solve the challenges
of adaptive adjustment of the alarm threshold. In addition, these impact loads directly
affect the service life of the mechanical system.

(2) Special areas for navigation. When sailing through a special area, some systems and
equipment need to change the working mode to meet the requirements of the convention,
which will directly affect the accuracy of fault mode identification and failure prediction.

(3) Sudden global abnormal information. These sudden problems include canal block-
age, military control, COVID-19 pandemic, and so on. The current COVID-19 pandemic
will directly affect the transportation of ship materials and equipment spare parts, loading
and unloading goods at the port, personnel replacement. These influences will make
maintenance decisions more difficult.

To address these problems, the health management of marine mechanical systems
should focus on building an adaptive baseline and threshold model to adapt to complex
environments and working modes, scientifically divide health stages, and improve the
accuracy of diagnosis and prediction. In addition, ships need more extensive informa-
tion acquisition ability to enhance the acquisition ability of accident information. Receive
real-time weather and port information, use the Internet of things technology to optimize
resource allocation worldwide, integrate this online information into the health manage-
ment model and seek the best solution. To sum up, the integrated health management
system integrating multiple information is the major problem to be solved in the future.

6.4. Proactive Perception

Different from the traditional way of using historical or real-time data, proactive
perception can directly obtain time data or some specific laws of data to get deeper state
information [321]. Each agent or intelligent unit in the MSAE will actively obtain the
operation state data, environmental data, equipment-related information, knowledge from
the intelligent knowledge base. At the same time, the DIaK will actively carry out further
discovery and obtain new data to increase the information amount and information value
of the acquired data.

In some cases, proactive perception should refer to certain models and rules to obtain
the desired information directly from various information sources. It can also obtain short-
term or interval information according to a certain pattern to realize deep judgment. The
proactive perception of the equipment is further realized by the intelligent decision of the
agent. For example, in real ship engine room inspection, active sensing mode can be used to
trigger instead of manual inspection. The premise is to have enough perceptual information,
including video, audio, vibration, conventional parameters, and system equipment-related
information and supporting knowledge base.

6.5. Engineering Self-Healing and Immune System

MSAE is highly uncertain, and some equipment is only suitable for non-invasive
methods. Therefore, more advanced solutions than preventive maintenance are needed to
optimize resource allocation and improve O&M efficiency. Engineering self-healing and
the immune system could be a suitable approach to this problem.

System self-healing includes many methods. The most common strategy is to use the
redundant equipment in the system to replace the recovery function of the failed equipment.
This function must be considered during MSAE design and manufacturing. The second is
to unload non-essential equipment and maintain the main output function. In addition,
when a single or partial component has a problem affecting the system function, use the
interaction relationship among subsystems, equipment, and components in the system
to adjust the function output of normal equipment and make up for the impact of faulty
equipment on the system.

The engineering immune system is an analogy of the biological immune system, which
protects against invasion and infection by identifying and killing the pathogens [4]. The
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system’s goal is to achieve efficient near-zero breakdown performance with as little human
intervention as possible. The system has a high degree of autonomy and can recover and
maintain system functions without external interference. At present, this technology has
been applied to the computer field. To further improve the health management of MSAE,
further development of engineering self-healing and immune systems are essential.

7. Conclusions

This article reasonably divided the whole PHM system of MSAE into four functions.
Through filtering the keywords and assessing the state-of-the-art, we had systematically
reviewed more than 300 related articles in the marine field and analyzed different kinds of
approaches and applications. In the HCM section, three technical means, data acquisition,
data processing, and condition monitoring, were introduced in detail. The FD section
summarized diagnostic methods and applications based on existing research and gave
some solutions for MSAE. HP reviewed relevant implementation methods, divided the
prognosis process into HI construction, HS division, and RUL, and discussed these three
processes in detail. In the MD-making section, we summarized the development process of
ship maintenance technology and expounded on the technical characteristics, advantages,
and disadvantages of widely used maintenance methods. By summarizing the existing
technologies and applications in marine engineering, it is found that there are still several
aspects of being further studied in the marine field. Five urgent technical problems are
proposed, including omnidirectional state perception, DIaK integrated coding, treatment
of uncertainty problems, proactive perception, and engineering self-healing and immune
system. It should be concerned that PHM has experienced significant development in the
last decade. Affected by the particular working conditions of the ship, it is still facing
problems in many theoretical and practical aspects. We consider that the summarized
results and prospects provide valuable guidelines for future research for researchers in the
marine field.

Although this review work has achieved numerous advancements, there are still some
limitations that need further research.

(1) The matching port facilities, policies, and regulations are also the necessary ele-
ments of the PHM solutions. Due to the limitations of topic and article length, the content in
this paper does not cover this part. They are also essential for the overall framework of PHM.

(2) The topics and understandings of this review are established on the current PHM
literature, elaborated on the existing PHM framework technology and application. With the
application of advanced techniques and intelligent O&M concepts, a future autonomous
vessel may have a completely different design, requirements, and constraints. The study of
autonomous ship PHM technologies will be part of our future work.
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