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Abstract: With the rapid development of industry, people’s requirements for the functionality, stabil-
ity, and safety of electronic products are becoming higher and higher. As an important medium for
power supply and information transmission functions of electronic products, high-quality soldering
of cables and connectors ensures that the devices can operate normally. In this paper, we propose
a multi-level feature detection network based on multi-level feature maps fusion and feature en-
hancement for detecting connector solder joints, classifying and locating qualified solder joints, and
detecting seven common defective solder joints. This paper proposes a new feature map up-sampling
algorithm and introduces a feature enhancement module, which better preserves the semantic infor-
mation of higher-level feature maps, while at the same time enhancing the fused feature maps and
weakening the effect of noise. Through comparison experiments, the mAP of the network proposed
in this paper reaches 0.929 and the top-1 accuracy reaches 92%. The detection capability of each
type of solder joint is greatly improved compared with the effect of other networks, which can assist
engineers in the detection of weld joint quality and thus reduce the workload.

Keywords: connectors; solder joint defect; multi-level feature fusion; feature enhancement

1. Introduction

With the development of technology, electronic products play an important role in peo-
ple’s lives. Within those products, the importance of the connector as a device power supply
and the core link for device information transmission cannot be ignored. High-quality
solder joints ensure that the connector works properly and stably, whereas defective joints
can lead to hidden problems in terms of accuracy, safety, and stability [1–3]. In the industry,
the demand for cables is often insufficient to design a high-quality automatic welding
machine specifically for the batch production of cables, so the main welding process of
wire connectors is still manual. The task of detecting defects in solder joints of connector
wires is currently performed primarily by manual inspection. Manual inspection relies on
the human eye to observe the characteristics of the welding joints, then manual analysis
is conducted empirically to check whether the welding joints meet the requirements of
use so that the defective welding joints can be re-welded at any time to ensure that the
product is used properly. However, intense workloads easily fatigue welders, which in
turn reduces the quality of inspection and welding efficiency. In this case, designing an in-
telligent inspection method to automatically detect defective solder joints in connectors can
significantly reduce the workload of engineers and improve the efficiency of manufacturing
high-quality cables.

Theoretically, the use of image inspection can assist workers in analyzing welded
joint defects and simplify the human visual inspection, thus improving the efficiency of
detection and the quality of welding joints [4,5]. Traditional image detection algorithms
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can usually be divided into three parts: pre-processing, feature extraction, and recognition,
among which the design of feature extraction and recognition is particularly important,
and a large number of algorithms have been proposed by experts in related fields [6–10],
collectively known as automatic optical inspection (AOI). AOI is widely used for the
detection of solder joint defects on the surface of printed circuit boards (PCBs), in which
industrial cameras are used to obtain images and design different algorithms to complete
the task of detecting defects in electronic products, leading to a significant improvement
in detection. Wang et al. proposed a PCB solder joint detection method based on an
automatic threshold segmentation algorithm and an image morphology feature extraction
algorithm, which improved the efficiency and accuracy of PCB solder joint detection [7].
Xiao et al. proposed an image acquisition path planning method and solution algorithm
for PCB surface defect detection, introduced a negative feedback mechanism to address
the problem of the ant colony not being able to get rid of the local optimal solution, and
used a position adjustment method to solve the uncertainty of the local position of the
image acquisition window, which shortened the path length without changing the time
complexity [9]. Fang used Haar-like features and the AdaBoost classifier to detect three
defects of multi-angle polarity capacitors and verified the effectiveness of the algorithm
through experiments [10]. However, AOI usually requires specific algorithms designed
according to the target, which is less universal and the complexity of the algorithm is higher
in some scenarios, so it is not very widely used in industrial applications.

With the introduction of machine learning concepts [11], theories such as deep learn-
ing [12–26], transfer learning [27], reinforcement learning [28], and federation learning [29,30]
have emerged and been applied to many domains, such as natural language processing [31],
weather prediction [32], behavior prediction [33], fault diagnosis [34], and target detec-
tion [35,36]. Among these theories, deep learning, as a subclass of machine learning, has
received extensive attention in defect detection tasks, and various defect detection algo-
rithms based on deep neural networks have performed exceptionally well [13–19,37–40].
Li et al. improved the YOLOv3 algorithm by adding a shallow layer and using the feature
map of PCB components extracted from this layer for detection, thus overcoming the
small-target detection difficulties. The dataset was also expanded using data federation
and data augmentation, which improved the mAP of the network by 16% [17]. Tommaso
et al. improved the YOLOv3 target detection network and proposed a YOLOv3-based
multi-stage model for detecting panel defects in aerial images acquired by UAVs and
predicting the soil coverage area [38]. The model has high generality and is capable of
handling thermal or visible images, and the detection accuracy AP@0.5 for panel defects
can reach 98%. Zhao et al. proposed a lightweight convolutional neural network to achieve
online defect detection on the inner surface of micro tubes [39]. The network uses a shallow
segmentation network with a lightweight convolutional neural network for pixel-level
crack detection, and its accuracy of defect detection reaches 98.5%, with the product of the
average intersection of the segmentation and the concatenation set being 0.834. Zhang et al.
proposed a cost-sensitive residual convolutional neural network [40]. The network adds a
cost-sensitive adjustment layer to the standard ResNet and assigns a larger weight to a few
real defects in the PCB dataset according to the class imbalance. In addition, in the design
of the loss function of the network, Zhang et al. proposed optimizing the cost-sensitive
residual convolutional neural network by minimizing the weighted cross-entropy loss
function. Experiments show that the network can solve the problem of unbalanced class
distribution of real and pseudo-defects on the PCB surface. Deep neural network-based
target detection algorithms usually use convolution and pooling layers to complete fea-
ture extraction and use fully connected layers to classify the extracted features, so that no
special algorithms are needed to be designed for different scenarios. Moreover, the use of
weight sharing in the feature extraction stage greatly reduces the training difficulty and cost.
Therefore, compared with traditional target detection algorithms, deep neural networks
can solve more complex target detection tasks, and the algorithm process is simple and
straightforward, which can greatly improve the detection accuracy.
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Despite the fact that defect detection based on deep neural networks has been exten-
sively explored and many related detection methods have been proposed, the detection
of defects in connector solder joints is very rare. The main reasons for this situation are
related to the following aspects:

1. There are differences in the internal design of different electronic devices, and therefore
the type of connector varies greatly. Different connectors have different pin layouts and
solder joint locations, and the angles of the solder joint images can vary, making it dif-
ficult to design feature extraction algorithms that are adaptable to multiple scenarios.

2. Soldering of cables and connectors is different from PCB and is usually done by
manual soldering. Manual welding is inevitably subject to large welding errors, such
as the temperature of the soldering gun, welding time, the amount of solder used.
The uncertainty of manual welding leads to a variety of manifestations of connector
solder joints, and the same category of solder defects may also show different forms
and textures. Therefore, it is difficult to design feature extraction algorithms and
classification algorithms to effectively differentiate between solder defects.

3. At present, the manufacturing of small numbers of cables is still done by engineers.
They have to complete the welding and manual detection of solder joint defects at
the same time, and this manufacturing process hinders the development of auto-
matic defect detection systems. It is believed that engineers can detect solder joint
defects in real time during the soldering process and re-weld the defective solder joints.
However, in practice, certain solder joint defects require careful observation by experi-
enced engineers, which tends to cause engineer fatigue, leading to them overlooking
certain imperceptible defects in the solder joints, which thus reduces the lifetime of
the devices.

Therefore, research on intelligent detection methods for connector solder joint defects
is essential. Given that deep neural networks are capable of performing defect detection
tasks in various industries with their unique advantages, we believe that deep neural
networks will continue to perform well in connector solder joint defect detection tasks. In
our previous work [19], an improved Faster-RCNN algorithm was used to do detection on
five types of solder joints with a mAP of 0.941 and a top-1 detection accuracy of 94%. The
experimental results strongly demonstrate the feasibility of using deep neural networks for
the connector solder joint defect detection task. However, as the first dataset of connector
solder joints was simulated by us for research purposes, we did not have as high soldering
skills as professional engineers, so the samples were relatively simple. For the latest dataset,
we invited a professional soldering engineer to complete the soldering of the connector
and the core wire. A total of eight types of solder joints were realized, and the solder joint
conditions were more in line with production reality. When experimenting with the latest
dataset, we found that all the metrics were significantly lower. The latest connector solder
joint samples were analyzed and it was found that in the new dataset there were more
connector pins, larger connector sizes, and correspondingly smaller solder joints in the
image in terms of proportion and number of pixels. In other words, in the latest connector
solder joints dataset, as the number of solder joints becomes larger but the scale becomes
smaller, the features of the solder joints become somewhat blurred. Our previous work only
used the feature maps that were down-sampled from the original image with a factor of 32
for the extraction and classification of the proposals, which is less effective for detecting
small-scale, blurred solder joints.

To solve the above problems, an effective multi-scale feature network is proposed
in this paper. The network uses the fusion of adjacent-stage feature maps to generate
feature pyramids and introduces a feature enhancement module to further enhance the
fused feature maps. Experimental results show that the network can effectively detect eight
types of connector solder joints with higher detection accuracy than other mainstream
target detection frameworks and has better detection for small-scale and blurred solder
joint defects.
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The sections in this paper are organized as follows: Section 2 details the overall struc-
ture of the proposed multi-scale feature network, the highlight design in the network, the
loss function used in the network, and the specifics of the dataset used in the experiments.
Section 3 shows the experimental results related to the ablation experiment and the com-
parison experiment and provides a detailed analysis of the experimental results. Section 4
discusses the experimental results from a macro perspective and points out the focus of
future work. Section 5 summarizes the research content of this paper.

The contributions of this paper are as follows:

1. There has been little research on the detection of defective solder joints in connectors.
In this paper, a network that can effectively detect defective solder joints in connectors
is proposed, which uses feature fusion and feature enhancement to extract multi-
scale feature maps and improve the detection accuracy of defective solder joints
in connectors.

2. In this paper, a higher-stage feature map up-sampling algorithm is presented, which
can be applied to deep neural networks that need to fuse feature maps of different
scales to improve the expressiveness of the fused feature maps. In addition, the feature
enhancement module used in this paper can further enhance the expressiveness of the
fused feature maps, thus improving the overall detection accuracy of the network.

3. This paper provides a detailed analysis of the causes, manifestations, and pitfalls of
different connector solder joint defects and provides a basis for analyzing the quality
of solder joints when welding connectors in industry.

4. There is no open source dataset for connector defective solder joints. The dataset used
in this paper will be made available to other scholars who are interested in connector
defective solder joint detection.

2. Materials and Methods
2.1. Network Architecture

In this paper, the details of feature pyramid network (FPN) [20] are improved by intro-
ducing a learnable feature map up-sampling algorithm as well as a feature enhancement
module to fuse multi-level feature maps to enrich and highlight features. The structure of
the proposed network is shown in Figure 1.

The multi-scale feature network proposed can be divided into four modules from
an overall perspective, namely the feature map sets generation module, the feature en-
hancement module, the region proposal generation module, and the classification and
regression module.

The feature map sets generation module is designed with three branches, in which the
bottom-to-up branch uses ResNet-101 to extract multi-scale feature maps [C1, C2, C3, C4, C5]
with scales corresponding to [1/2, 1/4, 1/8, 1/16, 1/32] compared to the original image.
In all laterally connected branches, except the top branch, 1 × 1 convolution is used to limit
the number of corresponding feature map channels to 256 in order to facilitate the fusion of
feature maps in adjacent stages. In the top branch, in addition to 1 × 1 convolution, the
highest stage feature map is further down-sampled using the maximum pooling operation
to obtain the virtual higher stage feature map P6. The two are superimposed and further
modified by 3 × 3 convolution to complete the fusion of adjacent order feature maps. In
this way, the feature map generation module finally generates a pyramid-like feature map
set [P2, P3, P4, P5, P6]. As P6 is simply designed for the fusion of P5 with a down-sampling
ratio of 1/64, which cannot characterize the target features well, we discard P6 and only
use [P2, P3, P4, P5] as the feature map set to participate in the subsequent process.
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Figure 1. The structure of network proposed in this paper, where the green dashed box represents
the bottom-up branch, the yellow dashed box represents the laterally connected branch, the blue
dashed box represents the top-down branch, and the red solid box represents the final generated
feature map set.

The feature enhancement module introduces learnable parameters from both spa-
tial and channel directions to enhance the feature sets [P2, P3, P4, P5] so that the noise
generated by different stages of feature fusion is weakened and the useful feature infor-
mation is emphasized, resulting in a feature map set [F2, F3, F4, F5] with stronger feature
representation capability.

The region proposal generation module uses the region proposal network (RPN) to
generate proposals. Nine anchors are generated for each pixel position of the feature
map at each stage of the feature map group [F2, F3, F4, F5], and the RPN corrects the
anchors and maps them to the input image according to the reduced ratio of the feature
map at each stage. The non-maximum suppression (NMS) algorithm is used to remove
redundant proposals from all generated original proposals, and the intersection of union
(IOU) between proposals and labeled boxes is used to determine whether the proposals
belong to the foreground or background. In other words, RPN generates proposals at each
stage of the feature map for the feature map group [F2, F3, F4, F5] and adds labels to them.

The classification and regression module uses two fully connected layer branches to cal-
culate the category scores and location regression parameters of the proposals, respectively.
As generated proposals are of variable size, the fully-connected layer requires the input to
be a vector of fixed size. Therefore, RoI Align is used to reset the size of the proposals to
7 × 7 and subsequently calculate the category score and location regression parameters.

The feature extraction module uses ResNet-101 as the base network. The bottom-up
branch generates multi-stage feature maps set [C1, C2, C3, C4, C5] from the input image,
the highest-stage feature map C5 generates P6 after the max-pooling layer, and then the
top-down branch fuses the current feature maps with the lower-stage feature maps in the
adjacent bottom-up branches to generate a new feature map. The lateral connection branch
serves to limit the number of feature map channels and allows for easy fusion of feature
maps at adjacent levels. The approach borrows from the generated way of FPN feature
map sets to obtain [P2, P3, P4, P5, P6]. For the purpose of highlighting the useful features,
a feature enhance module is introduced to further modify the generated feature map sets,
and finally the feature map sets [F2, F3, F4, F5] are yielded.
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The pseudo-code of the training process of the proposed multi-scale feature network
in this paper are shown in Algorithm 1.

Algorithm 1 Training process pseudo-code of multi-scale feature network.

# Label boxes: t(x, y, w, h)
# Label category: v
# Input: D(batch, channel, height, width)
# Max epochs: Epochs
Initialize network parameters and load ResNet-101 pre-trained model
For epoch in Epochs:

Extract multi-scale feature map set C = [C1, C2, C3, C4, C5]
P6 = Maxpool(Conv(C5))

For i in range (5, 1,−1): → Get feature map set F = [F2, F3, F4, F5]
P′i+1 = CAFUS(Pi+1)

C′i = Conv(Ci)
Pi = Conv(Concat(P′i+1, C′i ))
Fi = FEM(Pi)

Set anchors on F, get initial proposals p(x, y, w, h)
Mapping p to D, get p̂(x̂, ŷ, ŵ, ĥ)
p̂ = NMS( p̂)
overlap = Sort(IOU( p̂, t))

Select 128 foreground proposals and 128 background proposals p′

p′ = RoIAlign(p′)
cls_score = FCclassi f ication(p′)
box_reg = FCregression(p′)
Loss = CrossEntropy(cls_score, v) + SmoothL1(box_reg, t)

Update network parameters by backpropagation

2.2. Content-Aware Feature Up-Sampling (CAFUS)

Because neighboring feature maps have different scale levels and cannot be fused, the
introduction of up-sampling to amplify higher-level feature maps is a very important part
of the network. Feature map up-sampling is an essential image amplification technique,
and we aim to retain the maximum amount of semantic information contained in the
higher-level feature maps after up-sampling, without introducing too much noise and
computational effort. Image up-sampling techniques include interpolation [41] (nearest
neighbor interpolation, bilinear interpolation, bicubic interpolation), deconvolution [42],
and dynamic filters [26]. The interpolation method computes new pixels only by pixel
positions, which does not take advantage of the semantic information of the image, and
the perceptual field and computation cost cannot be balanced. For example, the nearest-
neighbor interpolation and bilinear interpolation methods are relatively small in compu-
tation, but the perceptual fields are only 1 × 1 and 2 × 2, whereas the perceptual field
of bicubic interpolation can reach 3 × 3, despite its large computation cost. In addition,
the up-sampled images obtained by the interpolation method usually have local distor-
tion, and the noise introduced affects the learning effect of the network for features. The
deconvolution method can improve the above problems to some extent by learning the
kernel parameters through convolutional networks without considering the pixel positions.
However, this method does not consider local semantics and uses the same convolutional
kernel for each local region, which still cannot effectively restore local feature information.
Moreover, when the convolution kernel is designed to be too large, the computational effort
grows exponentially. The dynamic filtering method designs a convolutional kernel for each
position of the image, and, as one can imagine, the number of parameters introduced by
this method is too large for practical applications.

Content-aware reassembly of features (CARAFE) [43] is a learnable image up-sampling
algorithm based on the input content, which divides the feature map up-sampling into
two parts, i.e., up-sampling kernel prediction and feature reassembly. Experiments show
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that CARAFE has a large perceptual field; the model is sufficiently light enough to retain
the feature information of the input better. More importantly, CARAFE will enhance the
feature semantics to some extent. The proposed feature map up-sampling method, named
content-aware feature up-sampling, improves the CARAFE algorithm, as shown in Figure 2.
CAFUS modifies the bilinear interpolated image by predicting the up-sampling kernel
parameters based on the input feature map, which makes up for the disadvantages of
the interpolation method without introducing too many parameters that would result in
excessive training cost.
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Figure 2. The structure of CAFUS can be seen above. We choose a prediction kernel size of 5 × 5
and an up-sampling ratio of 2, so the number of channels of the encoded feature map is 100, which
is 2× 2× 5× 5. As for the choice of the number of compressed channels, we found that increas-
ing the number of compressed channels had no significant improvement on the effectiveness of
the algorithm.

CAFUS up-samples the input feature map F(h, w, c) using bilinear interpolation to ob-
tain the up-sampled feature map F′(σh, σw, c), where σ denotes the up-sampling ratio and
(h, w, c) denotes the dimensionality of the input feature map. The n × n neighbourhood of
the feature map F at position l is defined as Nl

F(n) for easier understanding. Subsequently,
the up-sampling modification kernel prediction module predicts the up-sampling modifi-
cation kernel parameters based on the elements at each position l of the input feature map,
as shown in Equations (1)–(4). The whole process is mainly implemented by two convolu-
tional layers: the first convolution layer uses a 3 × 3 convolution kernel to compress the
number of channels in the feature map to 64, and the second convolution layer uses a 3 × 3
convolution kernel to expand the number of channels in the feature map to (σ× σ× n× n),
where n represents the scale of the neighborhoods involved in the calculation when the
features are modified, and get Wencode. The dimension of Wencode to (σ× h, σ× w, n× n) is
resized, and the elements at each position l′ is normalized, with the resulted W ′ containing
all the up-sampling modification kernels. Finally, the elements at each position in W ′ are
convolved with the n× n neighborhoods at the corresponding position in F′ to finalise the
modification of the upsampled image after bilinear interpolation, as shown in Equation (5).

Wcompress = Conv3×3

(
N(x,y)

F (n), kernel3×3

)
, x ∈ [1, h], y ∈ [1, w], (1)
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Wencode = Conv3×3

(
N(x,y)

Wcompress
(n), kernel3×3

)
, x ∈ [1, h], y ∈ [1, w], (2)

W = resize(Wencode), (3)

W ′(x,y) = normalize
(

W(x,y)

)
, x ∈ [1, σ× h], y ∈ [1, σ× w], (4)

Fup = N(x,y)
F′ (n)×W ′(x,y), x ∈ [1, σ× h], y ∈ [1, σ× w], (5)

In this paper, σ = 2, n = 5.

2.3. Feature Enhancement Module (FEM)

During the generation of the feature map, as the number of convolution layers in-
creases, the content of the extracted feature expressions deepens layer by layer. In other
words, shallow convolution extracts low-level feature representations, such as points, lines,
and curves, whereas deep convolution extracts high-level feature representations, such as
contours, textures, and chromatic differences. Although the feature extraction module used
in this paper uses a 3× 3 convolution to correct the fused feature maps when fusing the
feature maps of adjacent stages, conflicting representations are inevitable due to the large
span of feature levels represented by the five stage feature maps extracted by ResNet-101. In
this case, the fused feature maps do not fully contain both low-stage semantic information
and high-stage semantic information, but instead lead to weakened feature representation.
In order to solve this problem, this paper proposes a feature weighting algorithm to further
enhance the feature information, i.e., the feature enhance module. The algorithm principle
of the feature enhance module is shown in Figure 3. The feature enhancement module
assigns weights to the feature maps from two directions, thus enhancing the useful features.

Machines 2022, 10, 94 9 of 18 
 

 

Finally, the features modified in both directions are fused together, as shown in Equa-
tion (11), and the fused feature map will contain stronger feature information. 𝑃ிாெ = 𝐶𝑜𝑛𝑣ଷ×ଷ(𝑃ிௌா + 𝑃ிா), (11)

 
Figure 3. Details of the feature enhance module. Feature spatial enhance (FSE) fuses multi-channel 
information using a 1 × 1 convolution kernel and normalizes it using a sigmoid function to obtain 
two-dimensional spatial weights. Feature channel enhance (FCE) obtains a 1 × 256 vector using 
global average pooling. The vector is then calculated by two fully connected layers and normalized 
using the sigmoid function to obtain the one-dimensional channel weights. Enhanced features from 
the two approaches are superimposed together, followed by further fusion of local feature infor-
mation using 3 × 3 convolution. 

2.4. Loss Function 
The training of a deep neural network refers to the iterative optimization of the net-

work parameters, where the key lies in the design of a reasonable function to calculate the 
network prediction error, i.e., the loss function. In the process of supervised learning, sam-
ples and labels are passed into the network at the same time, and the network predicts the 
results and participates in the calculation of the loss together with the input labels, subse-
quently updating the parameters layer by layer according to the magnitude of the loss in 
reverse, and finally obtaining a refined model. Image target detection requires not only 
determining the category of the target, but also finding the location of the target, so the 
total loss is mainly composed of two parts: category loss and location loss. The proposed 
network uses both cross-entropy and smooth-L1 to calculate the loss. Cross-entropy can 
accurately calculate the category loss of multi-category targets while adaptively control-
ling the update of parameters during back-propagation according to the loss size to avoid 
over-fitting of network parameters. The smooth-L1 curve is smooth, the derivatives do 
not change abruptly, and it has good robustness to outliers. The network proposed in this 
paper is two-stage, and the losses of the main network and the region proposed network 
need to be calculated separately, as shown in Equations (12)–(16). 

𝐿ோே_௦ = 1𝑁௧ℎ  𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜(𝑝, 𝑝∗)ே್ೌ
ୀଵ , (12)

Figure 3. Details of the feature enhance module. Feature spatial enhance (FSE) fuses multi-channel
information using a 1× 1 convolution kernel and normalizes it using a sigmoid function to obtain
two-dimensional spatial weights. Feature channel enhance (FCE) obtains a 1× 256 vector using global
average pooling. The vector is then calculated by two fully connected layers and normalized using
the sigmoid function to obtain the one-dimensional channel weights. Enhanced features from the
two approaches are superimposed together, followed by further fusion of local feature information
using 3× 3 convolution.
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In the spatial direction, the fused feature map contains both target features and
background information. The feature map is modified along the two-dimensional spatial
direction to enhance the target features. The specific weight parameters are calculated as
shown in Equations (6) and (7). In Equation (7), ~ represents the multiplication of elements
in the corresponding position.

Ẑ(x,y) = σ

(
C

∑
i=1

Pi
(x,y)·kernel1×1

(x,y)

)
, x ∈ [1, h], y ∈ [1, w], (6)

Pc
FSE = Pc ~ Ẑ, c ∈ [1, C], (7)

In the channel direction, as each level of the feature map group contains 256 channels,
not every channel of the two-dimensional feature map can contain the target feature
information well. Therefore, feature map channel weights are introduced to assign a
coefficient to each channel, so that the feature maps containing the target features in the
feature map sets can be used to greater effect. The feature map channel weight parameters
are calculated as shown in Equations (8)–(10). In Equation (4), σ represents a sigmoid
function and δ represents an ReLU activation function.

Zc =
1

h× w

h

∑
x=1

w

∑
y=1

P(x,y), c ∈ [1, C], (8)

Ẑ = σ(δ(W2 × δ(W1 × Z))), (9)

Pc
FCE = Ẑc × Pc, c ∈ [1, C], (10)

Finally, the features modified in both directions are fused together, as shown in
Equation (11), and the fused feature map will contain stronger feature information.

PFEM = Conv3×3(PFSE + PFCE), (11)

2.4. Loss Function

The training of a deep neural network refers to the iterative optimization of the
network parameters, where the key lies in the design of a reasonable function to calculate
the network prediction error, i.e., the loss function. In the process of supervised learning,
samples and labels are passed into the network at the same time, and the network predicts
the results and participates in the calculation of the loss together with the input labels,
subsequently updating the parameters layer by layer according to the magnitude of the
loss in reverse, and finally obtaining a refined model. Image target detection requires not
only determining the category of the target, but also finding the location of the target, so the
total loss is mainly composed of two parts: category loss and location loss. The proposed
network uses both cross-entropy and smooth-L1 to calculate the loss. Cross-entropy can
accurately calculate the category loss of multi-category targets while adaptively controlling
the update of parameters during back-propagation according to the loss size to avoid
over-fitting of network parameters. The smooth-L1 curve is smooth, the derivatives do
not change abruptly, and it has good robustness to outliers. The network proposed in this
paper is two-stage, and the losses of the main network and the region proposed network
need to be calculated separately, as shown in Equations (12)–(16).

LRPN_cls =
1

Nbatch

Nbatch

∑
i=1

cross_entro(pi, p∗i ), (12)

LRPN_bbox =
λ

Nboxes

Nboxes

∑
i=1

p∗i × smooth_L1(ti, t∗i ), (13)
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where Nbatch represents the number of images in one mini-batch at training, Nboxes repre-
sents the number of anchors generated in each image, and λ represents the balance factor.
The value pi refers to the category score vector of the proposal box, p∗i represents the label of
the proposal box, ti represents the position parameter of the proposal box, and t∗i represents
the position parameter of the ground truth box.

LRCNN_cls = cross_entro(p, u), (14)

LRCNN_bbox = smooth_L1(tu, v), (15)

where p represents the category score predicted by the network, u represents the score
of the ground truth, tu represents the coordinate of the ground truth, and v represents
coordinate of the predicted box.

Loss = LRPN_cls + LRPN_bbox + LRCNN_cls + LRCNN_bbox, (16)

2.5. Description of Connector Solder Joint Dataset

Connector solder joints have many types of defects, and defective joints will affect
the accuracy, safety, and stability of the connector during use. We use multi-level feature
fusion and feature enhancement to complete the task of detecting qualified solder joints
and seven types of defective solder joints; the details of the solder joints to be detected can
be seen in Table 1 and Figure 4.

Table 1. Detailed description of solder joints to be detected.

Type Description Negative

Qualified solder
The surface of the solder joint is polished and
smooth, with the solder filling the entire solder
cup and no obvious overflow.

Multi-solder Solder overflows the solder cup and the overflow
exceeds the pin spacing by more than 50%.

The risk of connector short-circuiting is
increased and therefore the connector has
insufficient safety.

Less-solder Solder fails to fill more than 75% of the solder cup.
The solder joints are not strong enough for
the connection and are prone to open
circuit, thus indicating insufficient stability.

Connected-solder Solder spills out of the solder cup and touches the
adjacent pin.

The connector is short-circuited and
becomes out of function.

Tip-solder Obvious tip pulling can be observed on the
surface of the solder joints.

Solder peels off easily, which can cause
short circuits in the connector and affects
the stability of use.

Rough-solder Uneven heating of the solder and rough surface of
the solder joints.

Insufficient local strength of the solder joint
connection, which affects the stability of
the connector.

Bare wire The core wire outside the solder cup is not
protected by an insulated rubber bushing.

The exposed core wire is easily corroded or
broken, thus resulting in short-circuiting or
open circuit, and therefore making the
connector less stable.

Skewed wire The core wire does not fit perfectly into the solder
cup and there is a large angular deviation.

The core wire peels off easily, causing the
connector to disconnect and affecting the
stability of use.
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3. Results

Currently, there is very little research on connector solder joint defect detection. There-
fore, a common deep convolutional neural network-based image target detection network
was chosen to compare with the multi-scale feature network proposed in this paper. Addi-
tionally, in order to verify the effectiveness of the feature map up-sampling algorithm CA-
FUS and the feature enhancement module FEM, corresponding ablation experiments were
conducted. In terms of hardware, all experiments in this paper use NVidia GTX1050Ti 8G
GPU and Inter Core I7-8750h CPU. In terms of software, due to the different libraries used
by the open source framework, Faster-RCNN [21], SSD [25], and our previous work [19]
were implemented using Tensorflow, whereas YOLO [22], FPN [20], and the proposed
multi-scale feature network were implemented using Pytorch. In all experiments, simple
names were used to indicate the types of connector solder joint. Where “hg” denotes quali-
fied solder joints, “dx” represents multi-solder joints, “sx” denotes less-solder joints, “xj”
denotes tip-solder joints, “lh” refers to connected-solder joints, “cc” denotes rough-solder
joints, “lx” denotes bare wire joints, and “wx” denotes skewed wire joints.

Figure 5 shows the variation of the total loss of the network during the training process
of multi-scale feature network. The number of iterations was set as 60,000 and the total loss
of the network was recorded every 100 iterations, and the recorded results were plotted as
curves. It is not difficult to find that at the beginning of the network training, the losses are
larger and the magnitude of the loss oscillation is obvious. As the network parameters are
progressively optimized, the training loss decreases. After 10,000 steps of training, the loss
decreases less and after 40,000 steps of training, the loss stabilizes at around 0.05. It can be
seen that the multi-scale feature network optimizes the network parameters well during
the training process, the final total loss is very low, and the network accuracy is high.

In a multi-classification target detection task, each category can be plotted on a curve,
known as a P-R curve, based on recall and accuracy. The average precision (AP) is the
area under that curve, and the mean average precision (mAP) is the average value of the
APs for each category. The mAP is one of the important indicators of how good a deep
learning model is, and its value ranges between 0 and 1: the higher the value, the better
the model. To verify the effectiveness of CAFUS and FEM in improving the detection
capability of the network, corresponding ablation experiments were conducted to train
FPN, FPN with CAFUS, FPN with FEM, and the proposed multi-scale feature network. The
experimental results are presented in Figure 6 and Table 2. Comparing the experimental
results, it was found that a 5.4% increase in the mAP of the network from 0.817 to 0.871
could be achieved using CAFUS, compared to the FPN using bilinear interpolation for
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feature map up-sampling. Correspondingly, the introduction of FEM increases the mAP of
the network by 0.862. A mAP of 0.929 was achieved when using both CAFUS and FEM for
the multi-scale feature network, an increase of 11.2% compared to FPN. This shows that
the use of CAFUS can guarantee the up-sampling quality of the high-level feature maps
during the multi-scale feature map fusion. Additionally, FEM has a better enhancement
effect on the feature representation ability of the feature map.
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Table 2. APs and mAPs of different methods in the ablation experiment.

FPN FPN with CAFUS FPN with FEM MFN 1

hg 0.851 0.866 0.861 0.908
dx 0.787 0.864 0.858 0.931
sx 0.822 0.855 0.876 0.909
lh 0.938 0.888 0.875 0.968
xj 0.725 0.816 0.801 0.900
cc 0.651 0.801 0.763 0.856
lx 0.909 0.981 0.969 0.998

wx 0.855 0.898 0.890 0.961
Mean AP 0.817 0.871 0.862 0.929

1 Multi-scale feature network.

In order to better demonstrate the advantages of the multi-scale feature network
in the detection task of connector solder joint defect, several commonly used detection
frameworks that are well recognized in the field of image target detection, namely Faster-
RCNN, YOLO, SSD, and FPN, were chosen for comparison of detection results. In our
previous work, an improved Faster-RCNN was also added to the comparison experiments.
Figure 7 shows the P-R curves of the different frameworks. The APs for each connector
solder joint and mAPs of the different frameworks are recorded in Table 3, and the top-
1 detection accuracy of the connector solder joints in 92 test images for the different
frameworks are recorded in Table 4. The experimental results show that the multi-scale
feature network significantly outperforms other frameworks in a number of metrics, with
the network achieving a mAP of 0.929, which is improved by 20.3%, 23.1%, 18.7%, 14.3%,
and 11.2%, respectively, compared to the other networks. Also, in terms of actual detection
accuracy, the multi-scale feature network is able to detect connector solder joint defects
better than other frameworks, with a higher top-1 detection accuracy of 92% on average
than the other frameworks.

Table 5 lists the test time per image for the target detection frameworks involved
in the experiments. Being a two-stage framework, its detection time consumption is
higher compared to the one-stage framework, but the introduction of CAFUS and FEM
does not make the network more complex compared to FPN, and the detection times are
almost identical.

Some results of the connector solder joint detection framework proposed in this paper
are shown in Figure 8.

Table 3. APs and mAPs of different methods in the ablation experiment.

Faster-RCNN YOLO SSD Improved Faster-RCNN FPN MFN 1

hg 0.740 0.682 0.729 0.847 0.851 0.908
dx 0.643 0.613 0.658 0.780 0.787 0.931
sx 0.714 0.745 0.698 0.805 0.822 0.909
lh 0.886 0.861 0.937 0.902 0.938 0.968
xj 0.659 0.624 0.652 0.685 0.725 0.900
cc 0.532 0.429 0.573 0.479 0.651 0.856
lx 0.903 0.902 0.899 0.909 0.909 0.998

wx 0.733 0.725 0.791 0.880 0.855 0.961
Mean AP 0.726 0.698 0.742 0.786 0.817 0.929

1 Multi-scale feature network.
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Table 4. Top-1 accuracy for each type of solder joint in different frameworks.

Faster-RCNN YOLO SSD Improved Faster-RCNN FPN MFN 1

hg 78% 75% 81% 87% 88% 94%
dx 69% 66% 74% 77% 83% 91%
sx 68% 63% 74% 79% 84% 95%
lh 86% 84% 89% 95% 92% 97%
xj 72% 66% 80% 86% 92% 96%
cc 60% 50% 65% 65% 75% 80%
lx 89% 89% 93% 89% 89% 96%

wx 68% 58% 68% 74% 79% 89%
Mean Top-1 74% 69% 78% 82% 85% 92%

1 Multi-scale feature network.
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Table 5. Average testing time per image in different frameworks.

Faster-RCNN YOLO SSD Improved Faster-RCNN FPN MFN 1

Average testing time 0.28 0.22 0.26 0.31 0.45 0.47
1 Multi-scale feature network.
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4. Discussion

In this paper, the FPN was optimized and a more efficient multi-level feature fusion
and feature enhancement network was proposed to solve the connector solder joint defect
detection problem. In our latest dataset, many types of solder joints contain a small
number of pixels and the detection of solder joints is converted to a small target detection
problem. Additionally, as most connectors are soldered manually, multiple uncertainties
lead to insignificant inter-class differences in connector solder joints, making the detection
of connector solder joints difficult. The experimental results in Table 4 show that the
proposed framework using top-level feature maps for extraction and classification is grossly
inadequate for detecting a variety of small-scale solder joint defects, such as multi-solder,
less-solder, tip-solder, rough-solder, and skewed wire, whereas it is better for detecting
other large-scale solder joint defects. The main reason for this phenomenon is that the
down-sampling ratio of highest-level feature map is too large compared to the input image,
so the feature representation capability of the highest-level feature map is weak and the
network cannot optimize the parameters based on the existing feature information. Multi-
scale feature fusion can fuse high-level features and low-level features, which reduces the
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difficulty of self-learning of the detection network, and therefore greatly improves the
detection capability of small-scale targets while ensuring that the accuracy of detection of
large-scale targets is not degraded.

The multi-level feature fusion and feature enhancement network proposed in this
paper uses content-aware feature up-sampling instead of bilinear interpolation to complete
the up-sampling of the high-level feature maps, and it introduces the feature enhancement
module to further highlight the useful features. To verify the effectiveness of CAFUS and
FEM, relevant ablation experiments were performed, and the experimental results are
presented in Table 2. The experimental results show that the accuracy of the network is
greatly improved by using both CAFUS and FEM. It can be demonstrated that CAFUS can
retain the feature information of the high-level feature maps after sampling to a greater
extent, and the enhancement effect of FEM on the feature information is also obvious.

As shown in Table 5, the detection time of the multi-level feature fusion and feature
enhancement network proposed in this paper is 0.47 s, which means that two images can
be detected per second. This result indicates that although the framework proposed in this
paper has advantages in detection capability, it cannot meet the requirement of real-time
detection. The main reason for this result is that the structure of the network proposed in
this paper is relatively complex, so simplifying the network will be the focus of our work
in the future.

5. Conclusions

In this paper, a multi-level feature fusion and feature enhancement network is pro-
posed to solve the connector solder joint detection problem, which achieves the detection
and localization of eight solder joint types, resulting in a large improvement in model accu-
racy and detection accuracy compared to other mainstream frameworks and our previous
work. In addition, content-aware feature up-sampling was employed in the network to
up-sample the high-level feature maps, and a feature enhancement module was used to
further enhance the feature representation of the fused feature maps. Experiments show
that CAFUS and FEM improve the effect of the network significantly.

Nevertheless, there is still much room for improvement regarding the research in this
paper. First, the network proposed in this paper only achieves high accuracy detection in
eight types of common connector solder joints, and the detection effect for other defects
still needs to be studied. Second, the network in this paper is relatively complex, which
greatly increases the detection time of the network for each image and cannot meet the
requirements of real-time detection. Therefore, in future work, the detection of connector
solder joints will be further improved by analyzing more types of connector solder joint
defects and using more novel algorithms. At the same time, we will introduce ideas such
as federated learning to improve network training methods and enhance the effectiveness
of the network. Finally, we will also focus more on the complexity of the network to make
it meet the requirements of real-time detection.
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