
����������
�������

Citation: Sandakalum, T.; Ang, M.H.,

Jr. Motion Planning for Mobile

Manipulators—A Systematic Review.

Machines 2022, 10, 97. https://

doi.org/10.3390/machines10020097

Academic Editors: Antonio J.

Marques Cardoso, Giuseppe

Carbone, Birgit Vogel-Heuser and

Dan Zhang

Received: 29 December 2021

Accepted: 24 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Review

Motion Planning for Mobile Manipulators—A Systematic Review
Thushara Sandakalum * and Marcelo H. Ang, Jr.

Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore;
mpeangh@nus.edu.sg
* Correspondence: sandakalum@u.nus.edu

Abstract: One of the fundamental fields of research is motion planning. Mobile manipulators present
a unique set of challenges for the planning algorithms, as they are usually kinematically redundant
and dynamically complex owing to the different dynamic behavior of the mobile base and the
manipulator. The purpose of this article is to systematically review the different planning algorithms
specifically used for mobile manipulator motion planning. Depending on how the two subsystems
are treated during planning, sampling-based, optimization-based, search-based, and other planning
algorithms are grouped into two broad categories. Then, planning algorithms are dissected and
discussed based on common components. The problem of dealing with the kinematic redundancy in
calculating the goal configuration is also analyzed. While planning separately for the mobile base and
the manipulator provides convenience, the results are sub-optimal. Coordinating between the mobile
base and manipulator while utilizing their unique capabilities provides better solution paths. Based
on the analysis, challenges faced by the current planning algorithms and future research directions
are presented.

Keywords: mobile manipulator; path planning; motion planning; review

1. Introduction

Mobile manipulator (MM) is a system created by mounting a robot manipulator on a
mobile platform. Even though mobile manipulators are becoming popular only recently,
the two main components—the robot manipulator and the mobile platform—have been
popular for quite some time. From the first industrial robot Unimate #001 in 1959 [1], robot
manipulators have developed significantly and have a vast range of capabilities. Mobile
base robots have also come a long way since the first automated guided vehicle (AGV) in
the 1950s, by Barrett-Cravens of Northbrook, Illinois (currently Savant Automation Inc.,
Walker, MI, USA) [2].

Robot manipulators have a wide range of uses across various industries such as space,
health care, agriculture, military, and manufacturing. They have been used in factories
for repetitive, dangerous tasks like welding, heavy object manipulation replacing human
workers. These stationary robots were bulky and usually operated inside safety cells for
the purpose of safety. Robot manipulators such as PUMA 560 by Unimation or 1000 kg—
payload robots like KR 1000 titan by KUKA [3] have many Degrees of Freedom (DOF)
allowing the robot to move its links to carry out a task like moving an object from one table
to another (Pick-and-Place). Similarly, mobile base robots have also being used in various
industry sectors, particularly in manufacturing facilities for product transportation. AGVs
usually used lines marked on the ground for navigation. However, with the development
in autonomous technologies, companies are moving away from simple guided vehicles
towards autonomous mobile platforms which allow greater flexibility by using features
from the environment to localize and navigate. They are more intelligent and capable of
functioning within a more dynamic industrial environment comprising human workers.
Compared with fixed routes of AVGs, autonomous mobile platforms are able to plan

Machines 2022, 10, 97. https://doi.org/10.3390/machines10020097 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10020097
https://doi.org/10.3390/machines10020097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-2650-4130
https://orcid.org/0000-0001-8277-6408
https://doi.org/10.3390/machines10020097
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10020097?type=check_update&version=1

Machines 2022, 10, 97 2 of 37

and execute paths on its own while avoiding obstacles which is far more efficient and
time saving.

A robot arm has high manipulation capabilities but is limited in the workable area
due to the stationary base. A mobile platform lacks the manipulation capabilities but has
the ability to reach a wider work area. The mobile manipulator follows the ‘One Plus One
Equals Three’ concept by combining capabilities of both the robot manipulator and the mo-
bile platform while mitigating each component’s drawbacks. A mobile manipulator usually
has 9 DOFs or higher (3-DOF mobile platform and 6-DOF robot manipulator), making the
system kinematically redundant. These high capability robot systems have applications
in flexible production [4], service [5,6], rehabilitation [7] and medical industries [8], mili-
tary [9], as well as space exploration [10]. With an autonomous base, a mobile manipulator
complements or replaces the work carried out by human workers independently requiring
less human intervention. However, as these robot systems are now operating in complex,
less structured, and dynamic environments potentially in close proximity with humans,
unique challenges in system design, sensing, motion planning, and control emerge related
to mobile manipulators.

These challenges have driven researchers to pursue various avenues when planning
for mobile manipulators. The objective of this review is to discuss the motion planning
techniques used specifically for mobile manipulators, identify current research progress,
and formulate future research directions. Based on a systematic analysis, the advances made
in the research studies are summarized and analyzed while giving insights. Researchers
will be able to easily grasp the current research directions and state-of-the-art planning
algorithms related to mobile manipulator motion planning.

While this article gives an in-depth analysis on motion planning algorithm for mobile
manipulators, readers are referred to the work in [11] for an overview of challenges in
mobile manipulation and to the work in [12] for a step-by-step tutorial on simulating an
object fetch task using a mobile manipulator using Robot Operating System (ROS version 1).
A list of publications with open-source codes can be found in Appendix A and the source
codes are available on a GitHub repository (https://github.com/sandakalum/Mobile-
Manipulator-Planning (accessed on 21 January 2022))

Contribution

It must be stated that reviews on mobile manipulator motion planning exist in the
literature. Both [13,14] focus on benchmarking different motion planners using Moveit! [15].
A review on underwater manipulator motion planning was carried out in [13], while the
authors of [14] reviewed path planning for KUKA KMR iiwa mobile manipulator’s arm.
In both of these publications, the focus was mainly on comparing performance of few
state-of-the-art planners rather than exploring the recent research work. A list of motion
planners used for mobile manipulators was included in [16] but in-depth analysis was
not included.

In this work, the current research was systematically surveyed to specifically find
planning algorithms used for mobile manipulators. The special structure of the mobile
manipulator creates unique challenges and the efforts by various researchers to address
those challenges were summarized in this work. The planners were categorized into two
categories which were specific to mobile manipulators rather than following the common
categorization. The similarities and differences between different planners were also
summarized. Different methods adopted to calculate the goal configuration for a mobile
manipulator were extracted, which is one of the unique challenges for mobile manipulators.

The uniqueness of mobile manipulators and the impact on planning algorithms are
briefly discussed in Section 1. The terminologies and common definitions used in planning
algorithms are included in Section 2. Section 3 discusses the different planning algorithms
used for mobile manipulator motion planning under two categories. Different methods of
transforming a task space goal to a configuration space goal are evaluated in Section 4. An

https://github.com/sandakalum/Mobile-Manipulator-Planning
https://github.com/sandakalum/Mobile-Manipulator-Planning

Machines 2022, 10, 97 3 of 37

overall discussion on the planning algorithms is given in Section 5, and Section 6 concludes
the article by discussing the available future research opportunities.

2. Common Concepts

It is important to have a good understanding about the common terminologies used
in planning algorithms. The following section gives an introduction to the various terms
and definitions used by motion planners.

• Planning Space

– Configuration Space (CS): Configuration of a mechanical system (composed of
rigid bodies) uniquely specifies the position of every point in the system relative to
a fixed reference frame [17]. A configuration q can be specified using a list of real
values [18]. For a serial link manipulator arm, its configuration can be described
using the joint values (either prismatic or revolute), i.e., q = (θ1, θ2, . . . , θn), while
for a mobile robot operating on a flat horizontal plane, its configuration can
be described using two Cartesian coordinates specifying the position and one
variable specifying the orientation, i.e., q = (x, y, δ). If the parameters used to
define a configuration are independent, i.e., the minimum number of parameters
were used, those are called generalized coordinates of the system [19] and the
number of parameters is called the degrees of freedom (DOF) of the system.
If a configuration is considered as a point in some space, that space is called the
Configuration Space C [19]. The dimension of the configuration space (N) is the
number of parameters used to specify a configuration. For a mobile manipulator
whose configuration is specified as q = (x, y, δ, θ1, θ2, . . . , θn) (Mobile base config-
uration qb = (x, y, δ), Manipulator configuration qa = (θ1, θ2, . . . , θn)), the config-
uration space is <3+n with dimension (3 + n). The collection of configurations
which does not collide with obstacles is called the free configuration space C f ree
while the configurations which collide with obstacles are members of Cobstacle.
The configuration space is the union of these two subsets (C = C f ree ∪ Cobstacle)
and robot motions need to be in C f ree.
DOF of a robot refers to its control variables which helps to differentiate be-
tween DOF and configuration space dimension [20]. For example, a differentially
driven mobile robot has three CS parameters but has only two DOF (Two control-
lable wheels).
Joint space is interchangeably used to identify the configuration space.

– Task Space (TS): The space at which the end effector (EE) of a robot operates in
is referred to as the Task Space [21]. Cartesian Space, Operational Space, and End
Effector Space are common names referring to the task space. Generally, Cartesian
coordinates are used to specify the position of the end effector in <3 and the
rotation group SO(3) for the orientation resulting in the task space <3 × SO(3).
An element in the task space is a M-dimensional vector where M is the maximum
number of independent parameters required to specify the end effector pose
(position and orientation) in the real world. Consequently, M ≤ 6 and M ≤ N.
If M ≤ DOF of the system, such a system is called a kinematically redundant
system. For example, a 4-DOF planar manipulator is a redundant system as the
task space is <2 × SO(1) with M = 3 while DOF = 4.
The function f mapping a configuration q to a task space point X (Pose of the end
effector) is called the forward kinematics (FK) function X = f (q) which depends
on the kinematic structure of the robot. The calculation of a corresponding config-
uration for a TS point is called the inverse kinematics (IK) problem (q = f−1(X)).

– State Space: A state represents the status or condition of a robot. The State
Space contains all the possible states that the robot can be in which are usu-
ally infinite. For example, it is possible to define a state for a manipulator
by considering joint positions and joint velocities for which the state will be
s = (q, q̇) = (θ1, θ2, . . . , θn, θ̇1, θ̇2, . . . , θ̇n).

Machines 2022, 10, 97 4 of 37

Path planning vs. Motion planning vs. Trajectory planning—A Path is a purely
geometric function which specifies the change in robot’s state with reference to a
scalar parameter s, varying from 0 to 1 with no reference to time (C(s) or TS(s)) [22].
Therefore, path planning results in a pure geometric description of robot’s motion.
In motion planning, the change in robot’s state is expressed as a function of time t
usually considering system kinematics including velocities and/or accelerations (C(t)
or TS(t)) [22]. Trajectory planning and motion planning are used interchangeably but
usually during trajectory planning, the time evolution of velocity and acceleration are
also calculated.
The basic path planning problem is to find a path specifying continuous sequence
of robot’s states starting at the start/initial state and ending at goal/final state while
avoiding obstacles [18]. Satisfying different constraints imposed on the robot compli-
cates the planning problem. The goal state can be specified in CS or TS (TS is more
common for real world applications).

• Constraints There are various constraints that needs to be satisfied by the planning
algorithm depending on the nature of the task and the robot’s mechanical design.

– Collision: In the planning problem, collision avoidance is considered as a con-
straint as it limits the options for the robot. Robot colliding with environment
obstacles as well as self-collisions (e.g., Manipulator of a mobile manipulator
colliding with the mobile base or with the manipulator itself) must be avoided in
the motion plan.

– Physical constraints: These refer to the constraints applied due to the operational
limits of the robot and the environment. Joint limits of the robot, torque limits of
the actuators, and workspace area limits inside a room are considered under this
category. Like collisions, these constraints cannot be violated by the motion plan.

– Task constraints: These constraints are applied due to the nature of the task
that the robot has to perform. For example, when the robot needs to transport
an open liquid container, the container needs to be held upright to prevent
spillage (this applies a constraint on the orientation of the end effector). Another
example would be keeping the target object within the Field of view (FoV) of a
sensor (camera, LiDAR) mounted on the robot. If the camera is mounted on the
end effector (Eye-in-Hand), this constraint would limit both the position and
orientation of the end effector.

– Differential constraints: Kinematic constraints due to the robot structure (for
example, non-holonomic constraint of a differently driven robot), veloc-
ity/acceleration/jerk constraints arising from system dynamics and robot’s
stability constraints (tip-over stability of a mobile manipulator) are considered
as differential constraints.

These constrains can also be categorized as follows.

– Geometric: Collision avoidance, Joint limits, Floor area limits
– Kinematic: Non-holonomic constraints, Joint velocity limits, Joint acceleration limits
– Dynamic: Joint torque limits, Tip-over stability
– Kinodynamic: Both kinematic and dynamic constraints

• Computational cost: Usually this refers to the time taken by the algorithm to cal-
culate a valid solution to the planning problem. However, the memory require-
ment can also be considered as part of the computational cost especially for high-
dimensional problems.

• Completeness: A planning algorithm is said to be complete if it is able to find a
collision-free solution whenever one exists while returning failure otherwise in a finite
time [18]. These algorithms are mathematically more involved and usually build an
exact representation of the planning space without loss of information. Therefore,
these algorithms are usually difficult to implement. To solve this problem approximate
methods were developed with weaker notions of completeness. A resolution-complete

Machines 2022, 10, 97 5 of 37

algorithm would find a solution in finite time if the resolution used to discretize the
planning space is arbitrarily small to capture the relevant information. However,
if these is no solution, the algorithm may run indefinitely [18]. For a probabilistic-
complete algorithm, if a solution exists, the probability of finding a solution will tend
to 1 as more time is spent on the planning problem exploring the planning space [23].
These algorithms trade completeness with computational cost.

• Offline vs. Online If a planning algorithm is calculating the motion plan based on the
information available at that time and does not conduct any modifications even when
new information is available it is considered an offline motion planner. In contrast, if a
planning algorithm is able to generate a completely new plan or update a previously
available plan in real-time as new information is made available it is an online planner.

• Optimality: A planning algorithm can generate a feasible plan while optimizing
a defined criteria. This criteria can include a cost which needs to be minimized
referring to distance traveled (in CS or TS), energy usage, execution time, or a measure
which needs to be maximized such as distance to obstacles, path smoothness and
manipulability measure of a robot arm. It is also possible to calculate a weighted
average of all/several of these measures as the cost to be optimized.

• Robustness

– Dynamic environment: There are two instances of a dynamic environment:
(1) Environment changes with time—In this dynamic environment, there will be
multiple moving obstacles with known or unknown trajectories. (2) The robot
has limited (partial and/or uncertain) knowledge about the environment at the
beginning, and this knowledge will change introducing dynamism to the robot’s
planning environment. A planning algorithm is said to be robust against dynamic
environments when the planner can maintain the same performance level even
when the environment changes.

– Uncertainty: In the real world, there are various uncertainties introduced by
the imperfections and limitations of the sensing/actuating mechanisms. Sensor
noise, actuation errors, dynamic modeling errors, and approximation errors all
contribute to the uncertainties of a robot system [24]. Most planning algorithms
require a perfect knowledge about the environment and also assume that a robot
is able to perform an action with a deterministic outcome. However, this is
not a valid assumption when operating in the real world. For example, due
to the slipping between the wheel and the floor, a mobile robot may not move
as expected. To deal with the effect of these uncertainties, probabilistic robotics
explicitly model the uncertainties using calculus of probability theory [24] which
can be used in planning algorithms.

3. Motion Planning Algorithms for Mobile Manipulators

Mobile manipulators are high DOF systems with complex constrains and system
dynamics. In most scenarios, mobile manipulators become kinematically redundant due to
the high DOF. This redundancy allows the system to be flexible when operating in complex
environments but complicates the planning process as there are infinite solutions to the
inverse kinematics problem. Further, the mobile base and manipulator have significantly
different dynamic characteristics because the mobile base has a higher inertia than the ma-
nipulator. However, these two systems are strongly coupled resulting in complex dynamic
behaviors. Both of these characteristics compound the planning problem complexity.

There are various approaches taken to solve the motion planning problem of mobile
manipulators which are summarized below. The planning algorithms are divided into
two broader classes depending on the treatment of the whole system, i.e., whether the
planning algorithm consider the behavioral differences between the mobile base and the
robot manipulator or not.

Machines 2022, 10, 97 6 of 37

3.1. Two Subsystems—Separate Planning

Often, a complex task is divided into sequence of sub-tasks and planning is carried
out for each sub-task separately which essentially decouples the planning for the mobile
base and robot manipulator. Various planning algorithms are available in the literature for
mobile base [20,25–28] and manipulator [29] planning, but those were not specifically imple-
mented on mobile manipulators. When motion planning was carried out separately for the
mobile base and the manipulator, the prevailing algorithms for the mobile base [20,25–28]
and the manipulator [29] can be used after deciding on a goal configuration for the mobile
base and for the manipulator (Figure 1). This section analyzes planning algorithms where
the plans for the two subsystems were carried separately.

(a)

(b)

(c)

(d)

(e)

Figure 1. Separate planning for mobile base and manipulator. (a) Task space goal. (b) Goal for
mobile base. (c) Motion plan for the mobile base. (d) Motion plan for the manipulator. (e) Task space
goal reached.

Machines 2022, 10, 97 7 of 37

In [30], the authors proposed Receding Horizon Task and Motion Planning (RH-TAMP)
algorithm which used RRT-Connect for the manipulator planning, while the mobile base
planning was carried out using Djikstra’s algorithm. The task of transporting a colored
cylinder from one table to another was realized using a mobile manipulator where the goal
configurations were calculated using a geometric reasoning module. The geometric reason-
ing module calculated the mobile manipulator’s configuration using inverse kinematics
and verified the feasibility by carrying out collision checks.

Saoji et al. [31] used RRT-Connect for motion planning of both the manipulator and the
mobile base but the planning was carried out separately. For the task of pick-and-place task,
the goal for the mobile base was pre-recorded while the manipulator goal configuration
was selected from pre-calculated two end-effector poses based on collision.

Dijkstra algorithm was used in [32] for the mobile base planning. The pick-and-place
task was realized by identifying the task space goals using a stereo camera. The manipulator
motion was planned through four key points (Observation point, Reach point, Grasp point,
and Unload point) which were selected from a database based on the object to be grasped.

Rastegarpanah et al. [33] used the A* algorithm for mobile base planning while RRT
was used for manipulator planning. The task of picking up objects from a table and
returning them to relevant bins was realized using a mobile manipulator. The mobile
base locations for object pickup and object unload were pre-recorded and the best pose
was selected based on the Euclidean distance from the current mobile base pose. The A*
algorithm used this as a goal configuration for the mobile base.

OMNIVIL—a mobile manipulator—was developed by Engemann et al. [34]. The mo-
bile base motion was planned using A* or Dijkstra algorithm while the manipulator motion
was planned using RRT-Connect.

In [35], the authors used the A* algorithm for mobile base planning while the manipu-
lator motion was planned by simple interpolation and curve fitting. The mobile base goal
was pre-calculated and the goal poses for the manipulator were selected from two pose
collections. The manipulator goal pose selection was done after identifying the goal regions
from the environment using a deep learning technique.

In [36], the authors used a Cubic Benzier spline to plan the mobile base path to
reach a task space goal. After mobile base goal configuration was calculated (considering
manipulator’s reachability), different paths were calculated considering obstacle avoidance,
velocity limit, and acceleration limit. The best path was selected based on the path length
and path curvature (Equation (1)). During the mobile base motion, the manipulator was
kept stationary. The sequential nature of the method allows the path to be updated in
real-time when more sensor data are available.

Path_cost = klength

∫ 1

0

√
x(s)2 + y(s)2ds + kcurvature

∫ 1

0

|ẋ(s)ÿ(s)− ẍ(s)ẏ(s)|
(ẋ(s)2 + ẏ(s)2)

3
2

ds (1)

where x(s) and y(s) are Cartesian coordinates of the mobile base path with ẋ(s), and ẍ(s)
represent the first and second derivatives with respect to the scalar parameter s. In [37],
the authors proposed three different local planners (an intuitive planner, a barycentric
planner, and a chained planner) for the mobile base path which were used depending on
the goal mobile base orientation and the distance from the start position to the goal position.
The manipulator configurations were simply calculated by iteratively adding a portion of
the difference between the start and goal configurations along the path.

Akli et al. [38] further improved the random profile approach (RPA) concept by
considering manipulability (using Inverse condition number [39] (Equation (2)) of the
manipulator as an additional constraint while specifying a goal position in the task space.

c(qa) =
1

cond(J(qa))
=

sn

s1
(2)

Machines 2022, 10, 97 8 of 37

where s1 and sn are the largest and smallest singular values of the Jacobian matrix. The algo-
rithm first calculated the mobile base motion for the goal Cartesian coordinates (randomly
sampled within a bounded region about the task space goal) and verified that the task
space goal was reachable. Then, the goal configuration was accepted only if the current
inverse condition number was greater than a threshold. Finally, the manipulator motion
was planned for the calculated goal configuration using a B-splines.

Iriondo et al. [40] used a deep reinforcement learning model to generate the mobile
base behavior. The RL model was able to drive the mobile base to a location such that
the manipulator can carry out the pick-up task. Even though the algorithm was able to
successfully execute tasks, these algorithms were not robust due to the unstable nature of
the algorithms.

For the task of picking up an object while the mobile base is moving, Shan et al. [41]
proposed to plan the mobile base path considering the manipulability index [42] distribu-
tion. The authors calculated the manipulability index distribution on two z-axis heights
(at object height and at object pick up pose height). The resulting distributions were again
filtered to have a minimum manipulability threshold and intersection was taken. A simple
straight-line path was drawn on the resulting distribution, which ensured that the manip-
ulator will have the capability (due to high manipulability) to account for the errors in
mobile base placement during task execution. The path of the manipulator was planned
using inverse kinematics.

Unlike in [36], the manipulator and the mobile base were moved simultaneously
in [37,41] but those two motions were completely decoupled. Even though this allowed the
use of available algorithms to be used for each subsystem, the capabilities of the mobile
manipulator were not fully utilized.

The above algorithms planned for a single goal, while planning to follow a given EE
(end effector) trajectory is summarized below. When it is required to calculate the CS path
for a given EE trajectory, usually the motion of the mobile base or the manipulator was
planned first, and then kinematic relations were used to calculate the path of the other.

In [43], the authors first decided the manipulator configurations. Zhao et al. [43]
used the Genetic Algorithm (GA) with the cost related to squared Euclidean distance in
mobile base configuration space to calculate the manipulator configurations for multiple
EE poses while considering joint limits, torque limits, EE pose error, and force applied at EE.
However, this method was not applicable on non-holonomic mobile bases. Jiang et al. [44]
used a Self-Adjust Genetic Algorithm to calculate the intermediate configurations for a
given EE trajectory. This method was implemented on a redundant manipulator arm
where one joint angle was calculated to minimize the joint movements while kinematics
relations were used to calculate the remaining configuration parameters. The Self-Adjust
Genetic Algorithm improved convergence speed and optimization accuracy over generic
Genetic Algorithm.

In [22,45–53], the mobile base motion was planned first. The path planning technique
proposed in [48] calculated the mobile base locations for a given EE path such that the
number of mobile base poses is minimum. The authors calculated the longest EE path
segment that the mobile manipulator can follow without moving the mobile base and
removed that segment from the EE path and start the same process again. For this, a cost
considering the reachability (Inverse kinematics solution is available) and directional
manipulability (Manipulability tangent to the EE path) was maximized.

The work in [37] was improved to follow a given EE trajectory in [22]. From the mobile
base start configuration, the incremental change needed in configuration space relating to
a change in EE path was calculated using Reduced Inverse Differential Kinematic Model
(RIDKM). The RIDKM model included only independent parameters after accounting for
the dependency due to the non-holonomic mobile base. The manipulator configurations
were simply calculated by iteratively adding a portion of the difference between the start
and goal configurations along the path.

Machines 2022, 10, 97 9 of 37

Aarno et al. [49] used attractive forces (dependent on the distance between the base
and the given EE) applied by the EE pose and repulsive forces (force on arm links due to
distance from obstacles were transformed to mobile base using kinematics) applied by the
obstacles to plan the mobile base path for a given EE path. The weights for each force were
chosen such that the EE pose was within reach of the manipulator. Inverse kinematics was
used to calculate the intermediate manipulator configurations.

Papadopoulos et al. extended their work presented in [54] (related to collision avoid-
ance) to consider the whole mobile manipulator for collision avoidance [55] and further
extended to consider polygonal obstacles and trajectory-known obstacles [50]. To make
sure that the mobile base was positioned such that the EE position is reachable, for each EE
position, the mobile base position bounds were assumed as a circle with radius defined by
manipulator link length. Then, these bounds were considered as a virtual inverse obstacle
and used in mobile base path planning to ensure each EE was reachable.

In [51], the mobile base poses were determined using the Genetic Algorithm. Few key
points were sampled from the discretized EE path for which the mobile base pose was calcu-
lated using GA to minimize the mobile base rotations, traveling distance, and manipulator
joint velocities (Equation (3)).

Cost = wb_rot

n

∑
t=1
|δ(ti+1)− δ(ti)|+ wb_dis

n

∑
t=1

√
(x(ti+1)− x(ti))2 + (y(ti+1)− y(ti))2 + warm‖

qa(ti+1)− qa(ti)

ti+1 − ti
‖ (3)

where wb_rot, wb_dis, and warm are weighing scalar parameters with ti is a time instance.
More weightage was given to joint velocities to obtain smooth motions. Linear interpolation
was used to plan the motion between calculated mobile base poses. Finally, inverse
kinematics was used to calculate the manipulator configurations (previous manipulator
configuration was given as a seed to the IK algorithm to generate solutions with small joint
angle changes).

Dong and Zhao [52] first planned the mobile base path (in Cartesian coordinates)
using the Genetic Algorithm where the cost function accounted for the distance traveled
and obstacle collision. The same optimization algorithm was used for calculating the
manipulator configurations and mobile base orientation while minimizing joint angle
change, orientation change and maximizing manipulability.

Both in [51,52] the smoothness of mobile base path was considered implicitly by min-
imizing the mobile base orientation change. However, in [53], the mobile base path was
represented using a Cubic Benzier spline and during optimization, maximum allowable
path curvature was explicitly considered. Hu et al. [53] used the Particle Swam Optimiza-
tion Algorithm (PSO) to calculate the mobile base path for a given EE path. The cost to be
optimized contained information related to the uncertainty of localization, maximum allow-
able path curvature, and minimum allowable manipulability index. The reachability of EE
during the path was guaranteed by maintaining a lower bound on the manipulability index.

Chitta et al. [56] proposed a method to plan the motion of a mobile base to open a
door. The goal configuration for the mobile base was not specified rather the constraint
that the EE should be able to stay on the door handle was specified. The mobile base
motion graph was created in a 4-dimensional state space (mobile base pose and binary
value encoding the state of the door) by using motion primitives to generate transitions
(lattice-based representation [57]). The state of the door was represented using a binary
variable [0, 1] which represented the motion range of the door while the goal state of the
door was easily represented using value 1. A path through the graph was found using
Anytime Repairing A* (ARA*) [58] algorithm with the cost accounting for the distance to
obstacles on a 2D projected costmap and manipulator comfort (distance between the door
handle and the shoulder of the manipulator). The heuristic cost to the goal was the amount
by which the door needs to be opened to be considered fully open. The manipulator path
was planned using sampling based planners introduced in [59].

Machines 2022, 10, 97 10 of 37

In [60], the authors developed a framework for pick-and-place tasks using mobile
manipulators and validated it using the PR2 mobile manipulator. The complete task was
divided into three sub-tasks—pick, transition, and place, while motion planning for the
mobile base and the robot manipulator was decoupled. During the pick phase and place
phase, robot arm motion was planned using sampling based motion planners. Planning
was carried out in the task space due to the ease of generating constraint motion (Gripper
orientation constraint if the object contains liquid). Further, post-smoothing processing
was done on the path using cubic splines to satisfy velocity and acceleration bounds.
The transition phase mobile base motion was planned using a method introduced in [61]
which used Anytime Repairing A* (ARA*) for path planning while collision checking was
done using a Multi-Layered 2D Obstacle Map. Motion planning for the mobile base did
not account for the manipulator movement while the base was in motion.

All the above planning algorithms did not consider the tip-over stability of the mobile
manipulator. Huang et al. [45,46] planned the mobile base trajectory by formulating
the problem as a nonlinear optimization problem considering the minimum mobile base
acceleration, ability to reach EE (Circular boundary about EE position) and system stability
(as a velocity limit on curved path segments) and solving it using a gradient projection
method. Then, manipulator configurations were calculated maximizing manipulability [42].
In [47], the authors followed the same procedure except the manipulator configuration were
calculated to make manipulator’s static potential energy low (elbow at its lowest point and
the wrist directly in front of the shoulder). Unlike previously stated planning algorithms
where the tip-over stability of the system was assumed to be satisfied during the whole EE
trajectory, in [45–47] the planned motion was modified (using Runge–Kutta method) based
on Zero Moment Point (ZMP) [62] trajectory which was a measure of tip-over stability.

Table 1 summarizes the different algorithms used when planning to follow a given
EE trajectory. Once a task is divided into sub-tasks, mobile base placement is especially
important as it affects the subsequent manipulation tasks. Poor base placement may even
render the final goal state unreachable. One main issue with this approach is the sub-
optimality of the generated solution paths. Even though it is possible to generate optimal
solutions for each sub-task, collection of those solution does not necessary results in a global
optimal solution. The goal state of the previous sub task will greatly affect the planning of
the next task and may even prevent from generating a feasible solution creating the need
to re-plan the previous task. Therefore, this approach will result in either locally optimal,
globally sub-optimal paths or high number of unsuccessful motion planning queries.

3.2. Combined System with High DOF

Manipulation planning for the entire task would alleviate the issues of global sub-
optimality, but this is highly computationally intensive. Motion coordination between
the mobile base and the manipulator, collision checking with the environment and self-
collision checking, motion constraints are some of the added complexities that are seen in
this approach.

3.2.1. General High DOF Planning

Planning algorithms that are capable of dealing with high dimensions were used for
mobile manipulators where the whole system was considered as a single system despite
the behavioral difference of the mobile base and the manipulator.

Brock and Kavraki [63] calculated the free space representation as a swept volume
(Tunnel) using wavefront expansion algorithm and used a local minima free potential
field function to find a path through the tunnel. This method sacrificed completeness for
real-time performance while guaranteeing a minimum safety distance to obstacles. This
algorithm was validated on a free-floating mobile manipulator which made it applicable
for holonomic wheeled mobile manipulators.

Su and Xie proposed the Representation Space (RS) in their work in [64] which is a
space spanned by the attributes of the robot system and the given task. CS and TS can

Machines 2022, 10, 97 11 of 37

be considered as subsets of RS where even a link length of a manipulator can be one of
the variables in RS. The authors explicitly calculated RS (Discretized each dimension and
checked for validity at each point then recorded whether the point is valid or not) and
carried out motion planning using A* algorithm. In [65], A* algorithm was used on RS
where the heuristic cost was calculated as the Euclidean distance from current node to goal.

Table 1. Summary of EE trajectory following planners.

Reference Technique Mobile Base
Planner

Manipulator
Planner Criteria Constraints

[43] Optimization Kinematics Genetic Algorithm Squared Euclidean distance
in mobile base CS

Joint limits, torque
limits, EE pose
error and force
applied at EE

[44] Optimization Kinematics Self-Adjust Genetic
Algorithm Joint angle change Joint limits

[48] Optimization - IK Reachability and Directional
manipulability -

[37] Other Jacobian based IK - -

[40] Other Reinforcement
Learning - - -

[22] Optimization Kinematics IK - -

[49] Potential field Attractive force,
Repulsive force IK - -

[50,55] Other Polynomials Polynomials - -

[51] Optimization Genetic Algorithm IK

Mobile base rotations,
travelling distance,

and manipulator joint
velocities

Collsion free,
Follow EE with
allowable error,

Joint limits

[52] Optimization Genetic Algorithm Genetic Algorithm

Base—Eucledian distance in
mobile base CS, Collision,
Arm—Manipulator joint

angle change, Mobile base
orientation change,

Manipulability

-

[53] Optimization
Particle Swam
Optimization

Algorithm
IK

Uncertainty of localization,
maximum allowable path
curvature and minimum
allowable manipulability

index

-

[56,60] Graph
Anytime Repairing

A* (ARA*)
algorithm

Sampling based Distance to obstacles,
Manipulator comfort -

[45–47] Optimization Gradient
Projection method

Runge-Kutta
method

Base—Cartesian
acceleration, Arm—Tip-over

stability (ZMP)

Base—Ability to
reach EE and

system, Joint limits,
Arm—Ability to

reach EE and
system, Joint limits

Both above algorithms calculated a representation of the free space which was compu-
tationally expensive and the representation needed to be updated if the environment was
dynamic. Rather than explicitly calculating the free space, it is possible to create a graph
which spans through the free space which is computationally efficient.

Gochev et al. [66] proposed a graph-creating algorithm which used Anytime Repairing
A* (ARA*) for state transition graph searching. Here, the idea was based on adaptive
dimensionality where a discretized finite state space graph Gad was built and queried for a
path. Gad had both low-dimensional (3D-TS) regions and high-dimensional (11D-CS) states
and transitions. Gad started as a low-dimensional graph and high-dimensional regions

Machines 2022, 10, 97 12 of 37

were added iteratively. When adding high-dimensional regions, the low-dimensional
states and transitions in the overlapping regions were replaced with their high-dimensional
counterparts. State transitions between low-dimensional states and high-dimensional states
were replaced as follows. If the state was already in Gad, then the other state was converted
to match the dimension and the edge between those two states was added to Gad. Then,
the graph was searched for a suitable path and if a path was found, all the states and
state transitions were converted to high-dimensional components while if a path was not
available, Gad was updated by adding another high-dimensional region. This approach
was slower than sampling based planners but bounds on sub-optimality and guarantees
on completeness were attractive characteristics.

Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE) [67] iteratively
constructed a tree in the state space of the robot. From the initial state, the transitions
were calculated using a physics simulation engine (increased accuracy, convenient model
construction outweighed the increase in computational cost). The tree expansion was
guided by the discretization (a grid) of a projection of the state space. The priority of
expansion was given to grid boundaries which were less explored. This algorithm was
implemented on a mobile manipulator in [68].

When motion planning is considered as a trajectory optimization problem, the goal is to
find a trajectory that minimizes a given cost function while satisfying the constraints (Note:
Even though some of these algorithms were not implemented on a mobile manipulator,
those were included for completeness.). Covariant Hamiltonian Optimization for Motion
Planning (CHOMP) [69] used covariant gradient descent (non-stochastic) to minimize a
cost function which encoded path smoothness (squared velocity) and obstacle collision
(calculated using a precomputed signed distance field) to transform a simple trajectory to a
collision-free executable trajectory. The joint limit constraint was satisfied by projecting the
joint values to an acceptable range when a violation was detected.

Stochastic trajectory optimization for motion planning (STOMP) [70] also used op-
timization to find suitable trajectories. This algorithm used a derivative-free stochastic
optimization technique to update a series of noisy initial trajectories. The cost function
contained information on obstacles (similar to CHOMP), EE position and/or orientation
constraints (cost for violating constraints), and joint torque constraints (Magnitude of
torque). The joint limit was considered when generating initial trajectories and due to the
convex nature and the smoothing, joint limits were not violated during optimization.

Both CHOMP and STOMP used large number of states to represent a trajectory so that
the optimizers were able to safely navigate obstacles while ensuring smoothness.

TrajOpt [68,71] tried to account for this problem by considering swept volumes for
collision checking which allowed to use sparsely sampled trajectory. The optimization
was done with numerical sequential convex optimization with cost being the Euclidean
distance in configuration space (encourage minimum-length paths). This algorithm was
capable of handling non-holonomic constraints as well.

Gaussian Process Motion Planner (GPMP) [72] considered the joint space trajectory
(position, velocity and acceleration) as a sample from a vector-valued Gaussian process (GP).
This allowed the smooth trajectories to be represented with few states while facilitating
the use of Gaussian process regression to calculate robot state for any time of interest.
The GP was generated by the linear time varying (LTV) stochastic differential equations
(SDEs). The gradient-based optimization was used to minimize the trajectory displacement
from the prior mean (keep the trajectory smooth) and obstacle cost (This definition was
similar to that of CHOMP [69] which promoted circumventing obstacles rather than passing
them quickly).

Gaussian Process Motion Planner 2 (GPMP2) [73] solved the trajectory planning prob-
lem using probabilistic inference. This formulation required the user to find a maximum a
posteriori (MAP) continuous-time trajectory given the prior distribution (The authors repre-
sented the continuous-time joint trajectories as samples from Gaussian Process (GP) [72].
A Gaussian RBF kernel was used to define prior distribution of trajectories.) and a likeli-

Machines 2022, 10, 97 13 of 37

hood function (encoded information about obstacles, start and goal). The MAP estimation
problem was then solved using nonlinear least square optimization algorithms (gradient-
based) such as Gauss–Newton or Levenberg–Marquardt. This algorithm was implemented
on a complete mobile manipulator in [74].

Simultaneous trajectory estimation and planning (STEAP) [74,75] was an improvement
from Gaussian Process Motion Planner 2 (GPMP2) [73] where the likelihood function not
only considered collisions, start and goal but also the sensor measurements. The authors
specifically defined the configuration space of a mobile manipulator by a Lie group product
x ∈ SE(2)×<n where SE(2) Lie groups defined the Cartesian coordinates and yaw angle
of the mobile base while n was the DOF of the arm. By incorporating the sensor measure-
ments, better state estimation was achieved which helped to generate better trajectories
over GPMP2.

Gupta and Lee [76,77] proposed a global path re-planner which used Sequential
Quadratic Programming for optimization. Straight line path through way points was
planned in the task space and a local planner generated the joint trajectories to follow the
EE trajectory. If the joint limits were violated during the trajectory generating process,
a small deviation at the point of failure was introduced to the task space trajectory. In calcu-
lating this deviation, the authors used Sequential Quadratic Programming to minimize the
deviation from the desired trajectory while satisfying joint limits.

Sampling-based planners (RRT [78], PRM [79,80], and EST [81]) and their variants
(RRT-Connect [68,82,83], RRT-GoalBias [78,84], Informed RRT, Bidirectional Informed RRT,
RRT* [85], Bidirectional RRT* [86], Informed RRT* [87], and Constrained Bidirectional
RRT (CBiRRT2) [88])) have been used for mobile manipulators where the whole system is
considered as one high DOF system during the planning process due to planer’s ability to
deal with high-dimensional spaces.

In [89], the RRT algorithm was used with a modification to the local planner where at
each iteration, the local planner varied the step length made towards the sample point from
the nearest neighbor based on the current lowest path cost and the approximate lowest
path cost.

Seyboldt et al. [90] used the RRT algorithm with the goal specified in the task space.
The distance between the task space goal and a node in the tree was calculated by trans-
forming the tree node into the task space using forward kinematics. This distance was
used as a heuristic to guide the exploration towards the goal pose. However, as it was
not guaranteed to reach the goal pose, tree nodes which were closer to the goal pose were
selected, and a direct connection between the tree node and goal pose was attempted using
the Jacobian matrix.

A novel sampling-based planning algorithm named XXL was proposed by
Luna et al. [91] where robot’s workspace information was used to guide the planner
through the high-dimensional planning space. Even though this method was not tested
on a mobile manipulator, the authors state that this algorithm was specially designed to
plan the motions of high-dimensional mobile manipulators and related platforms. Here,
the robot’s workspace was decomposed, and an informed sampling strategy was developed
such that it was possible to generate samples which explicitly projected onto a particular
workspace region. However, if the solution was a simple straight-line path, using XXL
would be a waste of resources, as XXL had high computational overhead owing to the
projection scheme and workspace decomposition.

Several authors have tried to mitigate the inherent issues of sampling based planners
using different techniques. In some applications, there were task constraints (e.g., follow
a given end effector trajectory) that needed to be satisfied. One approach to address this
constraint for sampling based planners was to project (using randomized gradient descent,
tangent space sampling or retraction [92] for articulated manipulators) the random samples
onto a sub-manifold which satisfied the task constraint with an acceptable error tolerance.

Another approach was to generate samples by first selecting a task space point from
the desired task path and calculating the configuration using inverse kinematics [93]. This

Machines 2022, 10, 97 14 of 37

method was further supplemented by using a Jacobian-based equation of motion with
motion primitives for motion generation from a selected node which ensured continuous
task constraint satisfaction. In [94], the authors further improved their method by consider-
ing dynamic obstacles with known trajectories in the environment. For this, the authors
proposed using the RRT algorithm in the task-constrained planning space augmented
with the time dimension. Cefalo et al. further improved their method in [95] where the
planner satisfied the task constraint exactly (hard constraint) whenever possible while being
capable of exploiting the available constraint tolerances (soft constraints) when needed.
In [95], the authors proposed a heuristic to identify the nodes at which the hard constraint
satisfaction was no longer feasible (number of vertices on the frontier leaf (indicate that
frontier leaf has been sufficiently explored) and number of failed expansions (indicate that
sufficient number of extensions have been attempted, i.e., kinematic redundancy has been
fully exploited)) and becomes feasible again (number of collision free configurations out
of randomly generated configurations on the next leaf). However, these methods only
considered the end effector position as a task constraint not the orientation.

Zhu et al. [96] proposed a method to generate paths online for a mobile manipulator.
A large database of paths was generated offline (using CBiRRT2 [88]) (Database included
start and goal configurations, generated paths, swept volume of the robot, and environ-
ments.) and during the online path generation phase, the start configuration and the goal
configuration were extracted from the database based on a nearest neighbor search. Then,
for those start and goal configurations, a path (or a combination of paths) was selected from
the database using A* algorithm. The path from the approximate goal to the actual goal
was separately planned (can be done in parallel once the approximate goal was decided
to speed up the algorithm). For fast collision checking, swept volume of the robot along
the planned path was used. Even though this method allowed for online path generation,
significant offline date generation was needed to build a sufficient database while the
generated path quality directly depended on the quality of the database.

Task Space RRT (TS-RRT) [97] was introduced by Shkolnik and Tedrake where the
nodes contained both the task space information and configuration while the sample
generation, nearest neighbor search and path extend were done in the task space. Heuristic
map-guided TS-RRT (HM-TS-RRT) [98] was an improvement of TS-RRT where a heuristic
map of the task space was used to guide the exploration (The nearest neighbor was
selected from a set of nodes whose heuristic value is low.) instead of just pure exploration.
The heuristic map represented the distance to the goal and distance from obstacles. The map
was calculated using a 3D-CNN architecture named Heuristic Map Networks (HMNet).

In [99], the authors used a modified version of RRT-Connect to plan mobile manipula-
tor motions. Along with the conventional approach to connecting the two trees, the authors
proposed to extend the two trees along a linking line between the two trees. This greatly
reduced the number of nodes.

Yang et al. [100] proposed a modified RRT-Connect planner which plans in the con-
figuration space augmented by time. This was a geometric planner whereby adding the
time dimension, the joint velocity was considered implicitly during the planning stage.
The planner was capable of generating motion plans for moving object grasping but the
object trajectory needed to be known in advance. The time dimension of a generated sample
was modified if there was no valid nearest neighbor that could be reached while satisfying
joint velocity limits.

These sampling-based planners are capable of finding solutions but the path quality
in terms of smoothness can be low resulting in jerky motion of the system. To deal with
this issue, various smoothing techniques have been proposed but this is less effective
in cluttered environments. Shao et al. [84] proposed a postprocessing technique for a
path generated by RRT-GoalBias [78] where motion between two non-adjacent nodes
was replaced with a linear motion discarding the intermediate nodes provided that the
linear motion was collision free. Further, sampling-based algorithms are only probabilistic
complete and may provide different solutions during different runs due to random nature.

Machines 2022, 10, 97 15 of 37

While the above algorithms were capable of generating a path, they did not consider
the dynamic limitations of the system. Both works in [101,102] considered the system
dynamics in order the limit the actuator torques.

Haddad et al. [101] adapted the Random Profile Approach (RPA) [103] which was
proposed for fixed base manipulators to mobile manipulators. This method was capable of
handling dynamic constrains (active joint torque bounds) along with collisions and other
physical constraints. This trajectory optimization method calculated time-scaled trajectory
profiles where the trajectory time was bounded by the kinodynamic constraints. To do this,
the problem was reduced to a single parameter profile optimization problem and solved
using simulated annealing method. This method required an initial trajectory to be planned
using another method, and the optimized trajectory belonged to that homotopy class.

Continuous Clonal Selection Algorithm based on wavelet mutation (CCSA-WM) was
used to minimize the joint torques in [102]. The joint torques were represented using
a 5th order polynomial which were mutated using a Artificial Immune System (AIS)
Algorithm. At each iteration, the system’s state was calculated by applying the joint torques
on the system’s dynamics equation. If the desired goal state was not reached, the authors
suggested to divide the final time segment into two (break point decided by AIS) and
calculated a separate polynomial from the break point to reach the exact goal state (This
was possible as the break point state values were not fixed.).

In [104], the trajectories were sampled from a Gaussian process (GP) but the opti-
mization cost only encoded information about collision avoidance. Authors stated that it
was possible to consider additional cost items such as task constraints, joint torques, and
manipulability. The cost was optimized using a derivative-free cross-entropy stochastic op-
timization algorithm which was less prone to local minima than gradient based algorithms.
This method allowed the algorithm to store a smaller number of states while facilitating
parallel processing for speed.

Evolutionary strategy rather than Genetic Algorithm was used in [105] to plan a
EE trajectory. The trajectory was modeled as a B-spline, and the data points for the B-
pline were calculated using Evolutionary strategy which considered motion smoothness
(squared integration of time derivative for each joint torque), joint limits, manipulator
singularity, and stability (zero-Moment Point (ZMP) [106]). This was implemented on a
non-redundant mobile manipulator, but the authors suggested that it can be extended to
redundant manipulators easily.

Abdessemed [107] formulated the forward kinematics equation of a mobile manipula-
tor as a pseudo neural network and used that to calculate the configurations for a given EE
trajectory. At each time, the previous time stamp’s configuration was used as input to the
network to calculate the EE position. Then, EE error (Euclidean distance by comparing with
the required EE position) was calculated and back propagation was done to update the
weights (using Levenberg–Marquardt algorithm). Then, the input vector was multiplied
with the updated weight vector to get the next time stamp’s configuration. This algorithm
was applied on a redundant robot but only EE position was considered.

Sequential Expanded Lagrangian Homotopy (SELH) approach proposed in [108]
sequentially calculated the configurations for a given EE path. The algorithm calculated
the configuration for each point in the discretized trajectory by optimizing manipulability
index [42] using SELH where the algorithm used the knowledge from the previously
calculated configuration in the next configuration calculation. This method was able to
easily integrate collision avoidance, soft task constraints, and dynamic obstacles (as the
problem is solved sequentially); however, the final solution quality significantly depended
on the start configuration (Calculated offline to get several good guesses).

In [109], performance of different metaheuristic algorithms was compared when gen-
erating the configurations for a given EE trajectory. The authors used a cost function which
accounted for the EE error, distance from the previous configuration, and a penalty term
for violating joint limits. Different algorithms (CS—Cuckoo Search, DE—Differential Evo-
lution, HBBO—Human behavior-based optimization, PSO—Particle Swarm Optimization,

Machines 2022, 10, 97 16 of 37

and TLBO—Teaching-Learning-Based Optimization) were implemented and simulated.
The authors concluded that DE algorithm outperforms others with respect to the cost and
computational time.

Costanzo et al. [110] used a mobile manipulator for the task of shelf replenishment.
A new grasp pivoting method was introduced which allowed the gripper to change the
grasp configuration without re-grasping the object. This effectively added another con-
strained DOF to the robot and required a planner capable of efficiently handling constraints.
Authors used the learned action generation models proposed in [111] to plan for the 10-DOF
system (Mobile base—3, Manipulator—6, Gripper virtual joint—1).

Reinforcement Learning (RL) techniques was used in [112] for mobile manipulator
pick-up tasks. The planning was carried out in the state space which encoded the position
of the gripper w.r.t the robot base frame, the position of object w.r.t the gripper frame,
the position of object w.r.t the robot base frame, the joint positions and velocities of the
arm, as well as the gripper state. The RL module was trained using Proximal Policy
Optimization (PPO) algorithm. The RL model was able to calculate the EE position actions,
mobile base pose actions, and gripper action which were required to pick-up an object from
a random pose.

Summary of motion planning algorithms discussed in this section is included in Table 2
(properties of these planners are summarized in Appendix B.1). Motion planning in the
high-dimensional space is not only computationally expensive, but also the generated paths
can be of low quality. Due to the randomness of the sampling based planners, there may
be unnecessary motions of the manipulator even after post smoothing processes. In most
cases, it is sufficient to move the mobile base only, the manipulator motion is required only
at certain base poses. These issues can be solved by coordinating the two subsystems.

Table 2. Summary of general high DOF planners.

Reference Type Category Planner Name Planning Space Remarks

[64,65] Path planning Grid based A* algorithm Representation Space Free space calculation in
Representation Space

[66] Path planning Grid based ARA*
EE pose, Other
configuration

variables
Adaptive dimensionality

[102] Motion Planning Optimization-based CCSA-WM Configuration Space Minimize required torque

[69] Motion Planning Optimization-based CHOMP Configuration Space Used covariant gradient
descent for optimization

[72] Motion Planning Optimization-based GPMP Configuration Space Trajectories are samples
from GP

[73] Motion Planning Optimization-based GPMP2 Configuration Space Use probabilistic inference
[108] Path planning Optimization-based SELH approach Configuration Space Sequential solving

[109] Path planning Optimization-based CS, DE, HBBO, PSO,
and TLBO Configuration Space Use metaheuristic algorithms

[74,75] Motion Planning Optimization-based STEAP Configuration Space Use probabilistic inference

[70] Motion Planning Optimization-based STOMP Configuration Space Used derivative-free
stochastic optimization

[68,71] Motion Planning Optimization-based TrajOpt Configuration Space Used numerical sequential
convex optimization

[76,77] Motion planning Optimization-based Configuration Space Path deviation when required

[101] Motion Planning Optimization-based Configuration Space Considered
kinodynamic constraints

[104] Motion Planning Optimization-based Configuration Space
Used derivative-free

cross-entropy stochastic
optimization method

[105] Path planning Optimization-based Task Space Evolutionary strategy to fit
the B-spline path

[107] Motion planning Other Configuration Space Use a neural network to
calculate configurations

[110] Motion planning Other Configuration Space Use a learned model to
calculate actions

[112] Path planning Other State Space Use a RL model to
calculate actions

Machines 2022, 10, 97 17 of 37

Table 2. Cont.

Reference Type Category Planner Name Planning Space Remarks

[63] Path planning Potential Fields Guide Reactive
Motion Control Joint Torque space Free space calculation

[113] Path planning Sampling-based BI2RRT Configuration Space Two trees with
informed sampling

[86] *, [113] Path planning Sampling-based BiRRT* Configuration Space Two trees with rewiring

[88] Path planning Sampling-based CBiRRT2 Configuration Space Sample projection for
task constraints

[93] Path planning Sampling-based CONTROL BASED
Planner Configuration Space Gurantees continuous task

constraint satisfaction
[81] * Path planning Sampling-based EST Configuration Space Guided exploration

[98] Path planning Sampling-based HM-TS-RRT Task Space,
Configuration

Use 3D-CNN generated
heuristic map for tree

expansion guide

[113] Path planning Sampling-based Informed RRT Configuration Space Used neighboring samples for
fine tuning

[87] *, [113] Path planning Sampling-based Informed RRT* Configuration Space Rewiring with
informed sampling

[67] *, [68] Motion Planning Sampling-based KPIECE
State Space

(Configuration,
Velocity)

Guided exploration

[79,80] Path planning Sampling-based PRM Configuration Space Free space roadmap

[78] *, [113] Path planning Sampling-based RRT Configuration Space Tree build with
random sampling

[89] Path planning Sampling-based RRT Configuration Space Variable step length in
local planner

[90] Path planning Sampling-based RRT Configuration Space Used task space goal
[85] *, [113] Path planning Sampling-based RRT* Configuration Space Rewire tree for better paths

[82] *,
[68,83,113] Path planning Sampling-based RRT-Connect Configuration Space Two trees from start and goal

[78] *, [84] Path planning Sampling-based RRT-GoalBias Configuration Space Samples biased to goal

[84] Path planning Sampling-based RRT-GoalBias Configuration Space Path smoothing for
RRT-GoalBias

[97] Path planning Sampling-based TS-RRT Task Space,
Configuration Build a tree in task space

[99] Path planning Sampling-based modified
RRT-Connect Configuration Space Extend trees along the

linking line
[91] Path planning Sampling-based XXL Configuration Space Workspace-guided sampling

[93,94] Motion Planning Sampling-based Configuration, Time Build a tree in
(configuration, time)

[100] Motion Planning Sampling-based Configuration, Time RRT-Connect in
(configuration, time)

[95] Path planning Sampling-based Configuration Space Violate task constraint to be
within bounds only if required

[96] Path planning Sampling-based Configuration Space Select plans from a database

* Algorithm’s original publication but no implementation on a mobile manipulator.

3.2.2. Two Subsystems—Different Capabilities

The information about the different characteristics of the two subsystems can be used
for making planning decisions.

Perrier et al. [114,115] proposed to use dual quaternions to represent a robot’s state
where the non-holonomic motion of the mobile base was represented as a constrained
displacement in the quaternion space. The motion planning problem was reduced to just
iteratively moving the mobile manipulator towards the goal in planar quaternion space.
Even though this approach was associated with simple matrix arithmetic, the planned path
needed to be transformed from the quaternion space to configuration space. One of the
main advantages of using dual quaternions was the insensitivity to measurement units as
opposed to using homogeneous matrices.

A motion graph was built in [116] by sequentially applying motion primitives on
the system (similar to the work in [117]). From the start configuration, forward motion
of the mobile manipulator was obtained by applying several control inputs to the system.
Then, a node was selected based on a metric and motion primitives were applied again.
The number of acceptable control inputs was termed as Feasible Acceleration Count (FAC)

Machines 2022, 10, 97 18 of 37

where those control inputs were calculated such that the mobile base was always in contact
with the ground and the friction cone constraint was satisfied for the wheel–ground contact
(tip-over stability). The next node to be extended was selected based on the FAC and the
geodesic distance to the goal. This algorithm was applied on a system navigating on an
uneven terrain which showed the planner’s ability to keep the mobile manipulator stable
without tipping over.

In [118], the authors used the FAC in conjunction with a RRT-like algorithm. The con-
trol inputs available for the local planner to extend from a particular node were selected for
the collection of Feasible Accelerations. In selecting a node to be extended from, rather than
using the closest node to the random configuration, a node with the highest ratio of FAC to
geodesic distance to the goal was selected. Because of this, stability and maneuverability of
the robot was promoted in an uneven terrain.

Lamiraux et al. [119] proposed an extension of RRT algorithm to be used for mobile
manipulation where the planning problem was represented through a constraint graph.
This allowed the planning algorithm to handle implicit and explicit constraints. In [120],
the authors extended their work by decomposing the planned path into different segments
based on the constraint graph and generating a suitable controller for each segment based
on the planned path and available visual information.

Oriolo and Mongillo [121] proposed a variant of RRT for following a given EE path.
The main contribution was related to the sample generation algorithm specifically dealing
with kinematic redundancies. The configuration space was divided into two partitions: base
variables and redundant variables. The authors selected the configuration variables of the
mobile base as redundant variables. For each point in the trajectory, redundant variables
were sampled randomly and then the configuration of the manipulator was calculated
using inverse kinematics. If the inverse kinematic solution was available, the combined con-
figuration was used by the planner. The redundant variables were sampled from a coarse
estimation (circle with radius equal to sum of link lengths) of the mobile base locations
such that the end effector pose was reachable. If a biasing configuration parameter (e.g., the
goal configuration) was given to the sample generation algorithm, the redundant variables
were generated by first selecting a pseudovelocity which optimized some criteria (weighted
Euclidean distance between configurations or Task compatibility of the manipulator) and
then moving the system according to the selected pseudovelocity by using the system’s
equation of motion.

Hierarchical and adaptive mobile manipulator planner (HAMP) [122] proposed by
Pilania and Gupta was another method that planned with adaptive dimensionality. HAMP
first planed the mobile base path using PRM considering a fixed manipulator configuration.
Then, for each edge along the path (found using a variant of Dijkstra’s algorithm with
Euclidean distance as the cost), collision between the manipulator and the environment
was checked and if there was collision, the manipulator was moved to a new configuration
by building a manipulator PRM such that collision was avoided along the mobile base
edge. In [123], the authors further improved the algorithm to HAMP-U which considered
the mobile base pose uncertainty during the planning process.

Optimized Hierarchical Mobile Manipulator Planner (OHMP) [124] was proposed by
Li et al. to deal with the narrow passage exploration problem in PRM by using a hybrid
sampling strategy (Hybrid Randomized Bridge Builder (HRBB) [125]. The authors defined a
narrow passage as a space where the width was less than the diameter of the manipulator’s
reachable workspace. First, a path was planned for the mobile base using PRM and at each
mobile base node, if the manipulator was in collision, the manipulator was moved to a
safe configuration. This was another planner with adaptive planning dimension where the
planning dimension was increased only when required. However, various parameters were
required to be tuned in order to achieve superior performance while collision checking
for the manipulator was carried out using a 2D projection onto the floor. To get smooth
trajectories for the manipulator, the authors used cubic polynomials.

Machines 2022, 10, 97 19 of 37

Bidirectional Informed RRT* (BI2RRT*) was proposed in [113] (Extension of Informed
RRT* [87]) which quickly generated an initial path and improved the path if more planning
time was available. Once an initial path was found, informed sampling was carried out
from two hyperellipsoids (One for revolute components of the mobile manipulator and
one for prismatic components) which were centered around current nodes. To satisfy task
constraints, a first-order retraction method [92] was used for sample projections.

In [126,127], the authors used CBiRRT2 [88] for motion planning. The tasks were
categorized into two types: move the EE accurately to the goal, and exert a large force
by EE. To move accurately to a goal pose, the manipulator motion needed to be given
prominence and it was easier to exert forces using the mobile base. These two types of
motions were prioritized by using proper weighing matrix in calculating the distance
between two configurations.

Kang et al. [128] proposed a new sampling approach for LazyPRM* [129] to be used
for motion planning of mobile manipulators. Their sampling method named Harmonious
sampling was used for optimal motion planning which helped to efficiently explore the high-
dimensional configuration space of both the mobile base and the robot manipulator. This
sampling method adjusted the planning space dimension in such a way that in complex
regions both the base and the manipulator were moved simultaneously while in other
regions only the mobile base was moved. The authors defined two complex regions: near
the end effector goal pose and near obstacles creating narrow passages. This was also
another planner with adaptive dimensionality.

Time-optimal local planners for a differentially driven robot were introduced in [130].
In [131], the authors further introduced two concepts named detachability and time dominance
which expanded the suggested local planners when planning for mobile manipulators.
Detachability was related to the cost function where if satisfied, it allowed to join new local
planners to the previously available ones. When planning for a mobile manipulators, this
property allowed the use of local planners developed for mobile bases coupled with local
planners for manipulators rather than developing new local planners for the whole system
from scratch. The algorithms were tested on a mobile manipulator performing a task
of moving between two configurations while maintaining an object within manipulator-
mounted camera’s FoV.

Hybrid Sampling-based Bi-directional RRT (HS-Bi-RRT) [132] used a hybrid sampling
strategy with BiRRT in configuration space for path planning (Alternate Task space and
Configuration Space Exploration (ATACE)). The free space (the authors named this as
focus region) for the mobile base was represented as a collection of overlapping disks and
for the manipulator’s end effector, free space was represented using overlapping spheres.
The trees were grown in the configuration space, but each node included information about
the EE pose as well. The hybrid sampling was done on the configuration space (mobile
base position inside a disk while mobile base orientation and manipulator configuration
were random) or on the task space (Homogeneous matrix such the EE position was within
a focus sphere). As the mobile base was non-holonomic, in finding the nearest neighbor,
first, few neighbors were found considering only the mobile base position and then one
was selected based on the closeness in manipulator’s configuration space.

RRT*-Constrained Riemannian Mapping Manipulability (RRT*-CRMM) was intro-
duced in [133]. The samples were obtained from the point cloud which represented the
object to be manipulated and the configuration was obtained using constrained Jacobian ma-
trix. The cost between two configurations accounted for EE displacement, manipulability,
and movement of the mobile base.

Lee et al. [134] used the Genetic algorithm in calculating commutation configurations
(Intermediate configurations for several sequential EE poses) while the cost to be optimized
was a weighted average between the cost of the current EE pose (Encode information
about obstacle avoidance, joint limits, joint torque limits) and the cost of the path to
the next EE. Once the commutation configurations were decided, the trajectory between

Machines 2022, 10, 97 20 of 37

two configurations was planned using Lagrangian formulation while the path cost included
costs related to obstacle avoidance, joint torques and manipulability.

In [135], the authors addressed the problem of mobile base placement for several
sequential EE poses. The optimum configurations for each EE pose were calculated using
the Genetic Algorithm which minimized the number of mobile base movements and change
in manipulator configuration subject to joint angle limits and collision avoidance. The path
between these optimum configurations was planned using RRT-Connect algorithm.

Mobile manipulator path for a given EE trajectory was calculated using Full Space
Parameterization (FSP) with Lagrangian optimization [136]. The inverse kinematics prob-
lem for each EE pose was solved using Lagrangian optimization where the non-holonomic
constraint was linearized about the current operating point and was included in the opti-
mization process.

The Augmented Lagrangian Method was used for optimization in [137] to calculate
the mobile manipulator configurations for a given EE trajectory. The cost to be minimized
was the Euclidean distance in configuration space (Mobile base movements were penalized
more) while reaching the desired EE position and maintaining a desired manipulability.
Furthermore, the authors suggested to have a upper bound on yaw angle of the mobile
base to ensure acceptable path curvature.

Real-Time Adaptive Motion Planning (RAMP) [138] was similar to the Evolutionary
algorithms in path planning with few with differences (used random selections and random
modification operations, drastic changes rather than small changes (mutations), and less
tuning parameters (just population size)). The planner modified the paths to account for the
motion of the obstacles at each planning cycle. The path feasibility was checked considering
execution time, energy consumption and manipulability index. Manipulator trajectory was
represented using cubic splines while the mobile base trajectory was a linear trajectory with
parabolic bends where both trajectories were loosely coupled by having few connected
configurations (Knot points).

In [139], the authors collected path data from a demonstration by a human. Then,
during the path planning process, each configuration in the path was modified to account
for the mobile base pose error and the distance to obstacles to get a better path. The authors
used their previous knowledge [140] to quantify the effect of base pose error on the EE
pose error.

Welschehold et al. [141] also learned the motions by human demonstration. The task of
moving through a doorway was executed using the paths generated by the learned model.
The demonstrations were linked to the robot motions by formulating a graph and carrying
out optimization to satisfy the robot’s kinematic constraints. One of the main benefit in this
approach was that the demonstrations did not needed to be tailored to robot learning.

In [142], the authors proposed HRL4IN, a novel hierarchical RL architecture for inter-
active navigation tasks. The RL model was trained to efficiently use mobile base navigation,
manipulator motion, and their combination in different phases of the task. The model was
able to generate velocity commands to drive the robot towards the goal.

Raja et al. [143] used modified Kohonen Self-Organizing Map (KSOM) to calculate
the mobile manipulator configurations for a given EE trajectory. A mapping between the
task space and configuration space was learned while maximizing manipulability and
minimizing the end effector error. More weightage was given to the mobile base movement
in the cost function to restrict the heavier mobile base movement.

In [144], Zhang et al. proposed to use the Capability map and the Inverse Capability map
for motion planning. The motion planning task was to define a path for a given end-effector
trajectory such the manipulator maintains high manipulability by coordinating between the
mobile base and the manipulator. First, for each of the discretized points in the end effector
trajectory, a set of suitable mobile base configurations were calculated using the capability
map of the manipulator. Then, an initial path for the mobile base through these point sets
were calculated by starting from the initial pose and iteratively selecting the nearest pose
from the next pose set. This initial path was then optimized to yield the shortest path by

Machines 2022, 10, 97 21 of 37

using hyper-ellipsoids where configurations were sampled from the hyperellipsoid and
if the path through the new configuration was shorter, the path was updated. Once the
base poses were finalized, the manipulator configurations were calculated using inverse
kinematics. One of the main contributions in this work was on fast algorithm for generating
a set of suitable mobile base poses for a given end effector pose. As the mobile base needed
to be upright i.e., roll and pitch angles needed to be zero, the capability map was filtered to
remove points that violated those conditions which significantly reduced the number of
points in the capability map. Then, the feasible mobile base configurations were calculated
and further filtered to remove points with low manipulability.

Welschehold et al. [145] used the obstacle avoidance principle introduced by [146] to
calculate the mobile base poses such that the given EE poses were reachable. The suitable
base pose bounds were modeled as ellipses where the inner bound was treated as an
obstacle (to keep the mobile base away from that region) while the outer bound was treated
as an inverse obstacle to keep the mobile base within the outer bounds. However, only the
mobile base position was handled by the above method where the acceptable orientation
ranges were obtained from a lookup table based on the EE pose and mobile base pose.

Summary of motion planning algorithms discussed in this section is included in
Table 3 (properties of these planners are summarized in Appendix B.2).

Table 3. Summary of planners with collaboration between mobile base and manipulator.

Reference Type Category Planner Name Planning Space Remarks

[116] Motion planning Grid-based Control Space
(Motor inputs)

Use Feasible Acceleration Count
(FAC)

[145] Motion planning Grid-based State Space
(Configuration, Velocity)

Consider manipulator’s
reachability limit

[138] Motion planning Optimization-based RAMP Configuration, Time Similar to Evolutionary algorithms
with differences

[134] Path planning Optimization-based Configuration Space Used Genetic Algorithm

[115] Motion Planning Optimization-based Modified Configuration
Space

Use dual quaternions for
state representation

[136] Motion planning Optimization-based Configuration Space Use Lagrangian optimization

[137] Motion planning Optimization-based Configuration Space Used Augmented
Lagrangian optimization

[135] Path planning Optimization-based Configuration Space Used Genetic Algorithm

[114] Motion planning Other Modified Configuration
Space

Use dual quaternions for
state representation

[139] Path planning Other Configuration Space Modify demonstrated paths
[141] Path planning Other State Space Learn from demonstrated paths
[142] Motion planning Other State Space Use Reinforced Learning model

[144] Path planning Other Configuration Space Use Capability map and Inverse
Capability map

[143] Path planning Other Configuration Space Use modified Kohonen
Self-Organizing Map

[118] Motion planning Sampling based RRT like Configuration Space Use Feasible Accelerations
[119] Motion planning Sampling based RRT extension Configuration Space Use a constraint graph
[113] Path planning Sampling based BI2RRT* Configuration Space Informed sampling

[126,127] Path planning Sampling based CBiRRT2 Configuration Space Weighted distance matric

[122] Path planning Sampling based HAMP Configuration Space Update manipulator configuration
only when required

[123] Path planning Sampling based HAMP-U Configuration Space Consider base pose uncertainty
[132] Path planning Sampling based HS-Bi-RRT Configuration Space Hybrid guided sampling
[133] Motion planning Sampling based RRT*-CRMM Configuration Space Using constrained Jacobian

[128] Path planning Sampling based LazyPRM* Configuration Space Sampling with
adaptive dimensionality

[124] Path planning Sampling based OHMP Configuration Space Narrow passage

[121] Path planning Sampling based Variations on
RRT Configuration Space Mobile base sample satisfying

non-holonomy

[131] Motion planning Sampling based RR* Configuration Space Local planners for
non-holonomic base

Machines 2022, 10, 97 22 of 37

4. Calculate Goal Configuration

In almost all the real-world applications, the goal state of the mobile manipulator is
specified in the task space whether it is grasping a cup on a table or picking up a box from a
shelf. The start configuration is usually available for the planner to use as the planner starts
from the current state of the robot. If the planner is operating in the configuration space
(e.g., using RRT algorithm in configuration space), the goal state also needs to be stated in
the configuration space. Due to the usual kinematic redundancy of the mobile manipulator,
transforming this task space goal state to a goal configuration using inverse kinematics will
result in infinite solutions (Figure 2). However, all of these solutions would not be feasible
due to the constraints applied on the problem. Therefore, deciding the goal configuration
for a mobile manipulator is not a question with one definite answer. Summary of different
techniques used for this calculation is included in Table 4.

Figure 2. Different goal configurations.

As the manipulator has a limited reachable workspace, the minimum requirement for
selecting the mobile base goal configuration is that the task space goal should be within
the reachable workspace of the manipulator. In [36,121], the authors simply considered
a circular region about the task space goal as the boundary to place the mobile base.
The radius of the circle (the authors referred it to as Grasp circle) (Figure 3a) was selected
as the average of maximum radius (Manipulator was fully extended, i.e., kinematic limit)
and minimum radius (Limited by collision with the mobile base) of all possible grasp
circles. Welschehold et al. [145] modeled the boundary of this region about the task
space goal as a ellipsoid with a elliptical hole in the middle for PR2 robot. In [147],
the manipulator’s reachable workspace boundary was calculated using joint sweeps and
the mobile base configuration was selected such that the EE goal was within the reachable
workspace boundary. Akli et al. [38] considered the base placement region as a square
around the task space goal steaming from the joint limits and manipulator geometry.
The Cartesian coordinates of the mobile base was randomly sampled from this squared
region and the mobile base motion was planned which defined the final orientation of the
non-holonomic base.

Merely considering a boundary for the mobile base placement does not guarantee that
the EE goal is reachable due to the kinematics behavior of the manipulator. Even if the IK
solution for the manipulator is available, it may be a singular configuration. Therefore,
in [38], the ability of the manipulator to reach the task space goal was verified by ensuring
that the manipulator’s inverse condition number [39] was greater than a threshold.

In [140,148], the mobile base location was selected from a 2D grid surrounding the
task space goal based on some measure and inverse kinematics was used to calculate the
manipulator configuration.

Machines 2022, 10, 97 23 of 37

(a) (b)

Figure 3. Mobile base placement techniques. (a) Boundaries for mobile base placement. (b) Inverse
reachability map.

The reachability index distribution of a manipulator was calculated (Figure 4). Then,
this was converted to the Inverse Reachability Map which was the collection of possible
base configurations based on kinematic reachability of the manipulator [148] (Figure 3b)
and was filtered using the task space goal and the fact that most mobile manipulators
operated on a flat surface. This had more information relating to the possible mobile base
configurations rather than just the boundary. The mobile base configuration was selected
based on the reachability score which maximized the manipulator’s ability to reach the
EE before fixing the manipulator configuration. Once the mobile base configuration was
decided, the manipulator configuration was calculated using inverse kinematics algorithm.

Figure 4. Reachability index distribution of Fetch robot (image created using this software package
(https://github.com/jontromanab/reuleaux_moveit(accessed on 19 January 2022)))

Xu et al. [149,150] used the reachability database to find the joint configurations for
a given EE pose rather than using an IK solver. Even though this method did not result
in exact solutions, larger number of approximate configurations were obtained which
increased the probability of finding a collision-free configuration. It was proven that

https://github.com/jontromanab/reuleaux_moveit

Machines 2022, 10, 97 24 of 37

this method was resolution complete. For each of the EE pose, the possible mobile base
configurations were calculated and intersection was taken to arrive at the final mobile base
pose distribution. The centers of these disjoint distributions were taken as the mobile base
poses as those were considered to be robust against mobile base pose uncertainty.

In [151], the authors used the reachability map (Figure 4) to calculate the potential
mobile base locations. For a EE pose, the mobile base locations were filtered based on
collision using a physical engine. As the robot moves on a flat surface, the mobile base
poses without upright orientations were also filtered and the feasibility of the available
poses were further validated by calculating a mobile base path using A* algorithm. Then,
the filtered poses were clustered into uniform cells. For each of the EE goal, the collection
of mobile base poses were calculated and the suitable poses and the sequence was selected
by formulating the problem as a Traveling Salesman Problem with Pickup and Delivery
(TSPPD) problem.

In [152], the inverse reachability map was extended to a surface map which showed the
reachability distribution about a flat polygon shape (like a desk). The mobile base poses
were sampled from this distribution and verified for EE pose reachability before using for
planning queries. This helped to improve the planning queries success rate. However,
the surface map needed to be calculated offline and could only be used for that particular
robot and polygon.

The authors of [153] first created a distribution of valid mobile base poses and selected
the pose with the highest quality measure. Suitable area around the EE pose was sampled
and for each of the mobile base sample, the manipulator joint configurations were calculated
using IK and the extended manipulability measure (considering manipulability index, joint
limits and self collision) was calculated. The mobile base pose with the highest extended
manipulability measure was selected.

In all the above methods, the goal was to ensure that the EE pose was reachable by
the manipulator. While the infinite solution space for inverse kinematics allows for opti-
mization where it is possible to select one solution based on some cost criterion. Different
researchers have used different cost criterion and optimization techniques to calculate the
goal configuration [37,83,89,113,140,154–157]. In [154,155], the authors used the same cost
criterion (they considered absolute joint torque values, joint torque distribution among
joints, distance to obstacles, and a Jacobian-based manipulability measure (Equation 4)),
while the authors of [154] used Lagrangian formulation with Newton and Tunneling-type
algorithms for optimization whereas [155] used the Genetic Algorithm.

Cost(q) = atorque_norm‖τ2
q ‖+ atorque_distributionmaxi|Biτqi |+ amanipulability

1
det(J JT)

+ aobstacle
λ

‖x− xobs‖2 (4)

τq = [τb, ατa] with scalar parameter α decides the relative importance between mobile
base and manipulator torques. Bi is a weighing factor representing the inverse of the
individual joint torque limits. J is the Jacobian matrix of the manipulator. λ is a scalar
parameter with x and xobs is a Cartesian point on the mobile manipulator and on an
obstacle, respectively. atorque_norm, atorque_distribution, amanipulability, and aobstacle are scalar
parameters deciding the relative importance between each cost item. For Berenso et al.,
in [83], the cost included grasp quality, manipulability, and distance to obstacles which
was optimized using co-evolutionary algorithm. However, this required the grasps to be
parameterized in order to be used in optimization.

One of the practical limitations of mobile base motions is the uncertainty in localization
(i.e., calculating the exact mobile base pose). Yamazaki et al. [140] selected the mobile base
location such that the expected manipulator recovery motion was minimum (which was
required to correct the task space error created by the uncertainty of the non-holonomic
mobile base placement). The recovery motion was handled by the manipulator as pose
correction of non-holonomic mobile base was difficult. In [140,158], the authors improved
their algorithm to consider multiple task space goals (same position but different orienta-
tions to grasp an object) and select the best goal configuration. However, this method was
only applied on planar mobile manipulators and as a result, no explicit collision detection

Machines 2022, 10, 97 25 of 37

was carried out. Further, the method used to find the best mobile base location (similar to
Gradient descent algorithm on a grid) suffered from a local minima problem, to which the
authors suggested using multiple initial seeds.

Table 4. Summary of goal configuration calculation methods.

Reference Criteria Calculation method

[36,121] EE pose reachability Random sample inside circle & IK
[145] EE pose reachability Random sample inside ellipse & IK
[147] EE pose reachability EE inside the boundary
[38] EE pose reachability Random sample inside square & IK
[148] Reachability score Grid search

[154] Absolute joint torque values, Joint torque distribution among joints,
Distance to obstacles and Manipulability measure Lagrangian formulation

[155] Absolute joint torque values, Joint torque distribution among joints,
Distance to obstacles and Manipulability measure Genetic Algorithm

[83] Grasp quality, manipulability and distance to obstacles Co-evolutionary Algorithm
[140] Expected recovery joint motion Grid search

[149,150] EE pose reachability Center of distribution
[151] Reachability score TSPPD problem solving
[152] Reachability score Random sample within and verify
[153] Extended manipulability measure Grid search

[156] Euclidean distance from the start configuration Deoxyribonucleic acid Algorithm
[113] Same connected space as the start configuration Damped least-square IK algorithm
[157] Euclidean distance from the start configuration and EE error Particle swarm optimization (PSO)

[99] EE error, manipulability, joint displacement and EE displacement
w.r.t. mobile base Improved MaxiMin NSGA-II Algorithm

[109] EE error, joint displacement, Joint limit violation penalty Metaheuristic algorithms
[89] Motion plan cost Sequential planning
[37] Mobile base velocity Lagrangian formulation

Huang et al. [156] calculated the goal configuration by minimized the Euclidean dis-
tance from the start configuration using Deoxyribonucleic acid algorithm (DNA), while
higher weights were given for mobile base movements as those required more time to exe-
cute. Burget et al. [113] also tried make the goal configuration closer to start configuration
while ensuring that both configurations does not lie in disjoint regions of the configura-
tion space. To achieve this, the damped least-square inverse kinematics algorithm [159]
was used with seeds generated by Gaussian sampling around the start configuration.
Ram et al. [157] used Particle swarm optimization (PSO) to calculate the goal configuration
with a fitness function accounting for the total joint movement from the start configuration
and the end effector error.

In [99], the authors used the improved MaxiMin NSGA-II Algorithm to calculate the
goal configuration while optimizing the EE position and orientation error, manipulabil-
ity, joint displacement relative to joint limits, and EE displacement with respect to the
mobile base.

In [109], different metaheuristic algorithms (CS, DE, HBBO, PSO, and TLBO) were
used to calculate the mobile manipulator configurations. The cost function to be optimized
considered the EE error, joint movement, and a penalty term for violating the joint limits.

The motivation in [113,156] was to make the motion plan cost (estimated as the
distance between the start and goal configurations) lower by reducing the joint movements.
However, the actual motion plan cost was not explicitly calculated. In [89], the authors
considered multiple goal configurations arranged in the ascending order of Manhattan
distance [160] from the start configuration and sequentially calculated the motion plans
for each goal configuration in the list. Then, the best goal configuration was selected
if the actual cost of the motion plan was less than the Manhattan distance cost of the
next goal configuration in the list. This method ensured that the total cost of the motion

Machines 2022, 10, 97 26 of 37

plan was optimized rather than the goal configuration cost. However, this came with
a significant increase in computational load due to the motion plan calculation for each
goal configuration.

Foulon et al. [37] suggested that, depending on the mobile manipulator structure,
the manipulability index can be maximized for an infinite set of configurations. Therefore,
the author proposed to find the mobile base location by minimizing the mobile base velocity
along the path. Optimization was done using Lagrangian multipliers subject to EE goal
reachability (circle centered on the EE position). The motivation for this suggestion was
that the manipulator was easier to move compared with the non-holonomic mobile base.
The authors also proposed another method where the position of the mobile base was first
calculated minimizing the square of y-axis coordinate and then the mobile base orientation
was calculated by minimizing the velocity along the path.

5. Discussion

In planning motions for mobile manipulators, separate planning for the two subsys-
tems was the simpler approach. This allowed to use the available planning algorithms
proven on each subsystem but the method did not utilize the mobile manipulator to the
fullest. In planning to follow a EE trajectory, either the mobile base or manipulator path
was planned first and the other’s path was derived using kinematic relations. Optimization
algorithms coupled with kinematics relationships were used for this but these methods
were prone to local minima, required computationally expensive cost function evaluations
at each iteration and rarely considered system dynamics during planning. Tip-over stability
was considered in [45–47] but this was also regarding static tip-over stability while the
planned paths were modified to a safety margin over the tip-over condition.

When the mobile manipulator was considered as a single high DOF system, the sys-
tem’s kinematic redundancy was utilized to plan complex motions. Calculating a free
space representation and finding a path was a computationally expensive approach which
required the representation to be updated if there were dynamic obstacles. Building a
graph in the free space was less computationally expensive and several researchers utilized
this idea while using prevailing graph search algorithms to find feasible paths. When opti-
mization algorithms were used to plan trajectories, it was possible to evaluate complex cost
function which was an advantage. However, these algorithms usually required high mem-
ory usage for path storage while evaluating complex cost functions was computationally
expensive. Further, the inherent mathematical complexity of these optimization algorithms
adversely impacted their implementation on real world applications. General sampling
based planners were able to generate a path in a reasonable time but these path usually
were of low quality in terms of smoothness and path cost. Low-cost paths were obtained
using asymptotically optimal sampling based planers while the smoothness problem was
alleviated using post processing techniques. To guide the tree in the high-dimensional
space, some researchers proposed to use the task space information but calculating this
information was computationally expensive. To satisfy task space constraints, rather than
doing the computationally expensive sample projections, task space points were sampled
and IK was used to calculate configuration space samples. Even though this method was
further extended to consider task constraints within a range, it was not able to constrain EE
orientations. Some optimization algorithms under this category were able to account for
system dynamics and prevent tip-over and joint torque limit violations. However, these al-
gorithms required high computational power while being prone to local minima. Machine
learning techniques were used to supplement the motion planning algorithms which can
be explored further.

To utilize the mobile manipulator to the fullest, the different capabilities of the mobile
base and the manipulator were identified and exploited by several researchers. Building
a motion graph in the free space and searching for a path could result in optimal plans
but path quality highly depended on the number of motion primitives and the resolution
used. Deciding the suitable motion primitives such that the system was stable required

Machines 2022, 10, 97 27 of 37

complex system analysis. In most instances, it was sufficient to either move the mobile base
or the manipulator. This fact was incorporated into sampling based planners where the
planners planned with adaptive dimensionality. Researchers used different techniques to
identify when to change the planning dimension. Manipulator collision, narrow passages,
and proximity to goal state were some of the cases where planning in a high dimension was
required. While this approach helped to efficiently explore the planning space, determining
when to change the planning space dimension was a challenge. Some optimization-based
planners penalized mobile base movements more, as it was difficult to move the mobile
base compared with manipulator motion. Several researchers used the manipulator’s
ability to reach an EE pose to guide the mobile base motion. This method required a map
of manipulator’s capabilities to be calculated. Even though this map generation required
computation resources, this was outweighted by the reduced planning time and quality
increment of the generated paths.

In transforming a task space goal to a configuration space goal, the mobile base config-
uration was chosen to ensure EE pose was reachable by the manipulator which was the
minimum requirement. This was simply satisfied by selecting the mobile base configura-
tion within a boundary. Even though this approach was simpler, this does not guarantee
that the manipulator was able to comfortably reach the EE pose. Due to the kinematic
structure, there might be singular configurations. Using reachability score greatly reduced
the probability of having a singular configuration but this came with an increase in compu-
tational cost. Different cost functions, while satisfying reachability, were optimized using
different techniques to calculate the goal configuration. These optimization algorithms
were prone to local minima or had several parameters that needed to be tuned if good
performance was needed. Some algorithms needed parameterized variables for optimiza-
tion which could be difficult to formulate. Some researchers tried to account for practical
limitations such as mobile base localization error in calculating the goal configuration but
the proposed method was prone to local minima and was only implemented on a 2D planar
robot. Considering only the conditions at the goal configuration may not be the optimal
solution when considering the whole motion. Therefore, an argument was made to select
the goal configuration such that the motion plan cost was minimum. In the simplest form,
the goal configuration was selected to be closer to the start configuration but this was a
very crude approximation of motion plan cost. Calculating motion plans for different goal
configurations and selecting the best one was was conceptually superior, it came with a
significant increase in computational cost.

In optimization problems, it was difficult for model-based optimization algorithms to
calculate a solution due to the complex constraints of the mobile manipulator system. This
required significant computational resources. Therefore, learning-based algorithms such
as Genetic Algorithm and Evolutionary Algorithm were popular choices for optimization
problems. The characteristics of the mobile manipulator made the planning space topology
complex. Therefore, model-based algorithms were at a disadvantage. Even with high
computational capabilities, it may not be possible to calculate an exact representation of the
planning space. Even if it was possible, a change in the environment made the representa-
tion obsolete. This made it difficult for sampling-based algorithms to find a solution quickly
by guiding the space exploration. As a remedy, learning-based algorithms were used to
generate an approximate representation of the free space and guide the exploration. These
learning-based methods, specially machine learning techniques increased in popularity in
recent years and have helped to improve the performance of conventional algorithms by
generating relevant heuristics.

6. Conclusions

Unique kinematic and dynamic behaviors of mobile manipulators pose unique chal-
lenges for motion planning algorithms. Even though separately planning for a mobile
base and an manipulator is convenient, sub-optimal plans will be generated. When using
sampling-based, optimization-based, grid-based, or other planning algorithms, the mobile

Machines 2022, 10, 97 28 of 37

manipulator can simply be considered as a high DOF system. This allows for optimal
plans to be generated based on the used criteria, but the computational cost may be higher.
To alleviate this problem, knowledge about the manipulator’s capabilities and system’s
behavior can be utilized during the planning process.

Coordination between the mobile base and manipulator during the planning phase
was not fully explored in the literature along with utilizing the mobile manipulator’s
unique capabilities. This is a significant research opportunity, specially calculating the
mobile manipulator’s capabilities using machine learning techniques and using the derived
knowledge in planning algorithms. This will help to coordinate motion between the mobile
base and the manipulator. Most of the planning algorithms were focused on geometric
path planning rather than motion planning, while system dynamics was not extensively
used during the motion planning phase. A geometric plan may not be executable due to
the dynamic limitations of the system which promotes studies on kinodynamic planning
algorithms. In practical applications, it is common for the mobile base and the manipulator
to have two separate controllers with different control loop rates. For superior performance,
these two controllers need to be properly coordinated. This creates the interesting research
question pertaining to the controller coordination as well. The planned paths are given
to the controller to be executed. Taking this controller coordination into consideration
during the motion planning stage is an interesting research direction. Even though few
works considered the uncertainty of operating in the real world, this is a open research field
which helps to produce robust planning algorithms. With the development of human–robot
collaborations, planning with dynamic environments and human-aware planning are also
few research areas with significant potential.

Author Contributions: Conceptualization, T.S. and M.H.A.J.; methodology, T.S.; software, T.S.;
validation, T.S. and M.H.A.J.; formal analysis, T.S.; investigation, T.S.; resources, T.S.; data curation,
T.S.; writing—original draft preparation, T.S.; writing—review and editing, M.H.A.J.; visualization,
T.S.; supervision, M.H.A.J.; project administration, M.H.A.J.; funding acquisition, M.H.A.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National University of Singapore—NUS Research Scholarship
grant number GOSU00000042 PVO ARS-FOE 101 IS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MM Mobile Manipulator
DOF Degrees of Freedom
CS Configuration Space
TS Task Space
FK Forward Kinematics
IK Inverse Kinematics
RRT Rapidly-exploring Random Trees
PRM Probabilistic Road Maps
EST Expansive space trees
EE End Effector

Machines 2022, 10, 97 29 of 37

Appendix A

Table A1. Source codes and additional resources.

Publication Reference Link

Prehensile Manipulation Planning: Modeling, Algorithms and Implementation [119] Code
Receding Horizon Task and Motion Planning in Changing Environments [30] Code

Flexibly configuring task and motion planning problems for mobile manipulators [31] Code
HRL4IN: Hierarchical Reinforcement Learning for Interactive Navigation with Mobile Manipulators [142] Code

Reuleaux: Robot Base Placement by Reachability Analysis [148] Code
Motion planning with sequential convex optimization and convex collision checking [68] Code

Semi-Autonomous Behaviour Tree-Based Framework for Sorting Electric Vehicle Batteries Components [33] Code
Service robot system with an informationally structured environment [161] Code

Real-Time Adaptive Motion Planning (RAMP) of Mobile Manipulators in Dynamic Environments With
Unforeseen Changes [138] Code*

Mobile Manipulation Tutorial [12] Code

Accelerating Bi-Directional Sampling-Based Search for Motion Planning of Non-Holonomic
Mobile Manipulators [132] Material

A hierarchical and adaptive mobile manipulator planner [122] Material
A novel coordinated motion planner based on capability map for autonomous mobile manipulator [144] Material

Manipulation Planning and Control for Shelf Replenishment [110] Material
Planning in Time-Configuration Space for Efficient Pick-and-Place in Non-Static Environments with

Temporal Constraints [100] Material

Real-Time Adaptive Motion Planning (RAMP) of Mobile Manipulators in Dynamic Environments With
Unforeseen Changes [138] Material

* Not implemented by the authors.

Appendix B

Appendix B.1

Table A2. Properties of general high DOF planners.

Reference Completeness Optimality Offline vs.
Online

Non-Holonomic
Compatibility

Task Constraint
Compatibility Environment

[64,65] Complete Yes Online No Yes Dynamic

[66] Complete Bounded
suboptimality Offline No No Static

[102] Converges to Optimal Offline Yes No Static
[69] Converges to Optimal Offline No No Static
[72] Converges to Optimal Offline No Yes Static
[73] Converges to Optimal Offline No Yes Static
[108] Converges to Optimal Online No Yes Dynamic
[109] Converges to Optimal Offline No Yes Static

[74,75] Converges to Optimal Online No No Static
[70] Converges to Optimal Offline No Yes Static

[68,71] Converges to Optimal Offline No Yes Static
[76,77] Converges to Optimal Offline Yes No Static
[101] Converges to Optimal Offline Yes No Static
[104] Converges to Optimal Offline No Yes Static
[105] Converges to Optimal Offline No No Static
[107] No Online Yes Yes Static
[110] No Offline No Yes Static
[112] No Offline No No Static
[63] Not complete No Online No No Dynamic
[113] Probabilistic Complete No Offline No No Static

[86] *, [113] Probabilistic Complete Converges to Optimal Offline No No Static
[88] Probabilistic Complete No Offline No Yes Static
[93] Probabilistic Complete No Offline Yes Yes Static

[81] * Probabilistic Complete No Offline No No Static

https://humanoid-path-planner.github.io/hpp-doc/
https://github.com/nicolacastaman/rh-tamp
https://gitioc.upc.edu/rostutorials/ktmpb/tree/python-branch
https://github.com/ChengshuLi/HRL4IN
https://github.com/ros-industrial-consortium/reuleaux
https://rll.berkeley.edu/trajopt/doc/sphinx_build/html/
https://figshare.com/s/ddb832077aff5ccda96e
https://github.com/irvs/ros_tms
https://github.com/sterlingm/ramp
https://momantu.github.io/
https://www.youtube.com/watch?v=UfxfBq3bjHw
https://pilaniav.github.io/research.html
https://doi.org/10.1016/j.robot.2020.103554
https://doi.org/10.1109/LRA.2020.2969179
https://www.youtube.com/watch?v=jhht2H8Dgqk
https://doi.org/10.1109/TRO.2008.2003277

Machines 2022, 10, 97 30 of 37

Table A2. Cont.

Reference Completeness Optimality Offline vs.
Online

Non-Holonomic
Compatibility

Task Constraint
Compatibility Environment

[98] Probabilistic Complete No Offline Yes No Static
[113] Probabilistic Complete No Offline No No Static

[87] *, [113] Probabilistic Complete Converges to Optimal Offline No No Static
[67] *, [68] Probabilistic Complete No Offline Yes No Static

[79,80] Probabilistic Complete No Offline No No Static
[78] *, [113] Probabilistic Complete No Offline No No Static

[89] Probabilistic Complete No Offline No No Static
[90] Probabilistic Complete No Offline No Yes Static

[85] *, [113] Probabilistic Complete Converges to Optimal Offline No No Static
[82] *, [68,83,113] Probabilistic Complete No Offline No No Static

[78] *, [84] Probabilistic Complete No Offline No No Static
[84] Probabilistic Complete No Offline No No Static
[97] Probabilistic Complete No Online Yes Yes Static
[99] Probabilistic Complete No Offline No No Static
[91] Probabilistic Complete No Offline No No Static
[95] Probabilistic Complete No Offline No Yes Static

[93,94] Probabilistic Complete No Offline Yes Yes Dynamic
[100] Probabilistic Complete No Offline No No Dynamic
[96] Not complete No Online No Yes Static

* Algorithm’s original publication but no implementation on a mobile manipulator.

Appendix B.2

Table A3. Properties of planners with collaboration between mobile base and manipulator.

Reference Completeness Optimality Offline vs.
Online

Non-Holonomic
Compatibility

Task Constraint
Compatibility Environment

[116] No Offline Yes No Static
[118] No Offline Yes No Static
[145] No Online No No Static
[138] Not complete Converges to Optimal Online Yes Yes Dynamic
[134] Converges to Optimal Offline No Yes Static
[115] Converges to Optimal Offline Yes No Static
[136] Converges to Optimal Offline Yes Yes Static
[137] Converges to Optimal Offline Yes Yes Static
[135] Converges to Optimal Offline No Yes Static
[114] No Offline Yes No Static
[139] No Offline Yes No Static
[141] No Offline No No Static
[142] No Offline No No Static
[144] Not specified No Offline No Yes Static
[143] No Offline Yes No Static
[119] Probabilistic Complete No Offline No Yes Static
[113] Probabilistic Complete Yes Offline No Yes Static

[126,127] Probabilistic Complete No Offline No Yes Static
[123] Probabilistic Complete No Offline No No Static
[122] Probabilistic Complete No Offline No No Static
[132] Probabilistic Complete No Offline Yes No Static
[133] Probabilistic Complete No Offline Yes No Static
[128] Probabilistic Complete Converges to Optimal Offline No No Static
[124] Probabilistic Complete No Offline No No Static
[121] Probabilistic Complete No Offline Yes Yes Static
[131] Probabilistic Complete Yes Offline Yes No Static

References
1. Malone, B. George Devol: A Life Devoted to Invention, and Robots—IEEE Spectrum; IEEE: Piscataway, NJ, USA, 2011.
2. Ullrich, G. (Ed.) The History of Automated Guided Vehicle Systems. In Automated Guided Vehicle Systems: A Primer with Practical

Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–14. [CrossRef]
3. Available online: https://www.kuka.com/en-sg/products/robotics-systems/industrial-robots/kr-1000-titan (accessed on 14

October 2021).
4. Outón, J.L.; Villaverde, I.; Herrero, H.; Esnaola, U.; Sierra, B. Innovative Mobile Manipulator Solution for Modern Flexible

Manufacturing Processes. Sensors 2019, 19, 5414. [CrossRef] [PubMed]

http://doi.org/10.1007/978-3-662-44814-4_1
https://www.kuka.com/en-sg/products/robotics-systems/industrial-robots/kr-1000-titan
http://dx.doi.org/10.3390/s19245414
http://www.ncbi.nlm.nih.gov/pubmed/31835307

Machines 2022, 10, 97 31 of 37

5. King, C.H.; Chen, T.L.; Fan, Z.; Glass, J.D.; Kemp, C.C. Dusty: An assistive mobile manipulator that retrieves dropped objects for
people with motor impairments. Disabil. Rehabil. Assist. Technol. 2012, 7, 168–179. [CrossRef] [PubMed]

6. Caselli, S.; Fantini, E.; Monica, F.; Occhi, P.; Reggiani, M. Toward a Mobile Manipulator Service Robot for Human Assistance.
In Proceedings of the 1st Robocare Workshop, ISTC-CNR, Roma, Italy, 30 October 2003.

7. Seo, K.H.; Lee, J.J. The Development of Two Mobile Gait Rehabilitation Systems. IEEE Trans. Neural Syst. Rehabil. Eng. 2009,
17, 156–166. [CrossRef] [PubMed]

8. Li, Z.; Moran, P.; Dong, Q.; Shaw, R.J.; Hauser, K. Development of a tele-nursing mobile manipulator for remote care-giving in
quarantine areas. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 3581–3586. [CrossRef]

9. Kang, S.; Cho, C.; Lee, J.; Ryu, D.; Park, C.; Shin, K.C.; Kim, M. ROBHAZ-DT2: Design and integration of passive double tracked
mobile manipulator system for explosive ordnance disposal. In Proceedings of the 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NA, USA, 27–31 October 2003; Volume 3,
pp. 2624–2629. [CrossRef]

10. Zereik, E.; Sorbara, A.; Casalino, G.; Didot, F. Autonomous dual-arm mobile manipulator crew assistant for surface operations:
Force/vision-guided grasping. In Proceedings of the 2009 4th International Conference on Recent Advances in Space Technologies,
Istanbul, Turkey, 11–13 June 2009; pp. 710–715. [CrossRef]

11. Sereinig, M.; Werth, W.; Faller, L.M. A review of the challenges in mobile manipulation: Systems design and RoboCup challenges.
E I Elektrotech. Inform. 2020, 137, 297–308. [CrossRef]

12. Hou, J.; Zhang, Y.; Rosendo, A.; Schwertfeger, S. Mobile Manipulation Tutorial. Available online: https://robotics.shanghaitech.
edu.cn/static/robotics2020/MoManTu_Intro.pdf (accessed on 14 January 2022).

13. Youakim, D.; Ridao, P. Motion planning survey for autonomous mobile manipulators underwater manipulator case study. Robot.
Auton. Syst. 2018, 107, 20–44. [CrossRef]

14. Tudico, A.; Lau, N.; Pedrosa, E.; Amaral, F.; Mazzotti, C.; Carricato, M. Improving and Benchmarking Motion Planning for a
Mobile Manipulator Operating in Unstructured Environments. In Progress in Artificial Intelligence; Lecture Notes in Computer
Science; Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017;
pp. 498–509. [CrossRef]

15. Ioan A. Sucan and Sachin Chitta, MoveIt. Available online: moveit.ros.org. (accessed on 2 September 2021)
16. Hu, F.; Bao, Y. Progress and Challenges of Hand-eye-foot Coordination for Mobile Manipulator. In Proceedings of the 2019 WRC

Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, 21–22 August 2019; pp. 360–366. [CrossRef]
17. Arnold, V.I. (Ed.) Rigid bodies. In Mathematical Methods of Classical Mechanics; Graduate Texts in Mathematics; Springer: New York,

NY, USA, 1978; pp. 123–159. [CrossRef]
18. Latombe, J.C. (Ed.) Introduction and Overview. In Robot Motion Planning; The Springer International Series in Engineering and

Computer Science; Springer: Boston, MA, USA, 1991; pp. 1–57. [CrossRef]
19. Neimark, J.I.; Fufaev, N.A. Dynamics of Nonholonomic Systems; American Mathematical Society: Providence, RI, USA, 2004.
20. Tzafestas, S.G. Mobile Robot Path, Motion, and Task Planning. In Introduction to Mobile Robot Control; Elsevier: Amsterdam,

The Netherlands, 2014; pp. 429–478. [CrossRef]
21. Yu, W. (Ed.) Chapter 1—Preliminaries. In PID Control with Intelligent Compensation for Exoskeleton Robots; Academic Press:

Cambridge, MA, USA, 2018; pp. 1–12. [CrossRef]
22. Foulon, G.; Fourquet, J.Y.; Renaud, M. Coordinating mobility and manipulation using nonholonomic mobile manipulators.

Control Eng. Pract. 1999, 7, 391–399. [CrossRef]
23. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
24. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; Intelligent Robotics and Autonomous Agents Series; MIT Press: Cambridge,

MA, USA, 2005.
25. Zhang, H.Y.; Lin, W.M.; Chen, A.X. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [CrossRef]
26. Sánchez-Ibáñez, J.R.; Pérez-del Pulgar, C.J.; García-Cerezo, A. Path Planning for Autonomous Mobile Robots: A Review. Sensors

2021, 21, 7898. [CrossRef]
27. Zafar, M.N.; Mohanta, J.C. Methodology for Path Planning and Optimization of Mobile Robots: A Review. Procedia Comput. Sci.

2018, 133, 141–152. [CrossRef]
28. Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A Consolidated Review of Path Planning and Optimization Techniques:

Technical Perspectives and Future Directions. Electronics 2021, 10, 2250. [CrossRef]
29. Ata, A.A. Optimal trajectory planning of manipulators: A review. J. Eng. Sci. Technol. 2007, 2, 23.
30. Castaman, N.; Pagello, E.; Menegatti, E.; Pretto, A. Receding Horizon Task and Motion Planning in Changing Environments.

Robot. Auton. Syst. 2021, 145, 103863. [CrossRef]
31. Saoji, S.; Rosell, J. Flexibly configuring task and motion planning problems for mobile manipulators. In Proceedings of the 2020

25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September
2020; Volume 1, pp. 1285–1288. ISSN 1946-0759. [CrossRef]

32. You, Y.; Fan, Z.; Chen, W.; Zhu, G.; Qiu, B.; Xin, J.; Chen, J.; Deng, F.; Hou, Y.; Liang, W.; et al. Design and Implementation of
Mobile Manipulator System. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in
Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019; pp. 113–118.

http://dx.doi.org/10.3109/17483107.2011.615374
http://www.ncbi.nlm.nih.gov/pubmed/22013888
http://dx.doi.org/10.1109/TNSRE.2009.2015179
http://www.ncbi.nlm.nih.gov/pubmed/19228564
http://dx.doi.org/10.1109/ICRA.2017.7989411
http://dx.doi.org/10.1109/IROS.2003.1249266
http://dx.doi.org/10.1109/RAST.2009.5158284
http://dx.doi.org/10.1007/s00502-020-00823-8
https://robotics.shanghaitech.edu.cn/static/robotics2020/MoManTu_Intro.pdf
https://robotics.shanghaitech.edu.cn/static/robotics2020/MoManTu_Intro.pdf
http://dx.doi.org/10.1016/j.robot.2018.05.006
http://dx.doi.org/10.1007/978-3-319-65340-2_41
moveit.ros.org.
http://dx.doi.org/10.1109/WRC-SARA.2019.8931956
http://dx.doi.org/10.1007/978-1-4757-1693-1_6
http://dx.doi.org/10.1007/978-1-4615-4022-9_1
http://dx.doi.org/10.1016/B978-0-12-417049-0.00011-0
http://dx.doi.org/10.1016/B978-0-12-813380-4.00001-3
http://dx.doi.org/10.1016/S0967-0661(98)00158-0
http://dx.doi.org/10.3390/sym10100450
http://dx.doi.org/10.3390/s21237898
http://dx.doi.org/10.1016/j.procs.2018.07.018
http://dx.doi.org/10.3390/electronics10182250
http://dx.doi.org/10.1016/j.robot.2021.103863
http://dx.doi.org/10.1109/ETFA46521.2020.9212086

Machines 2022, 10, 97 32 of 37

33. Rastegarpanah, A.; Gonzalez, H.C.; Stolkin, R. Semi-Autonomous Behaviour Tree-Based Framework for Sorting Electric Vehicle
Batteries Components. Robotics 2021, 10, 82. [CrossRef]

34. Engemann, H.; Du, S.; Kallweit, S.; Cönen, P.; Dawar, H. OMNIVIL—An Autonomous Mobile Manipulator for Flexible Production.
Sensors 2020, 20, 7249. [CrossRef]

35. Hu, D.; Zhong, H.; Li, S.; Tan, J.; He, Q. Segmenting areas of potential contamination for adaptive robotic disinfection in built
environments. Build. Environ. 2020, 184, 107226. [CrossRef]

36. Jiao, J.; Cao, Z.; Zhao, P.; Liu, X.; Tan, M. Bezier curve based path planning for a mobile manipulator in unknown environments. In
Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December
2013; pp. 1864–1868. [CrossRef]

37. Foulon, G.; Fourquet, J.; Renaud, M. Planning point to point paths for nonholonomic mobile manipulators. In Proceedings of the
1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications
(Cat. No. 98CH36190), Victoria, BC, Canada, 17 October 1998; Volume 1, pp. 374–379. [CrossRef]

38. Akli, I.; Bouzouia, B.; Achour, N. Motion analysis of a mobile manipulator executing pick-up tasks. Comput. Electr. Eng. 2015,
43, 257–269. [CrossRef]

39. Togai, M. An application of the singular value decomposition to manipulability and sensitivity of industrial robots. SIAM J.
Algebr. Discret. Methods 1986, 7, 315–320. [CrossRef]

40. Iriondo, A.; Lazkano, E.; Susperregi, L.; Urain, J.; Fernandez, A.; Molina, J. Pick and Place Operations in Logistics Using a Mobile
Manipulator Controlled with Deep Reinforcement Learning. Appl. Sci. 2019, 9, 348. [CrossRef]

41. Shan, W.; Nagatani, K.; Tanaka, Y. Motion planning for Mobile Manipulator to Pick up an Object while Base Robot’s Moving.
In Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 22–26 August 2004;
pp. 350–355. [CrossRef]

42. Yoshikawa, T. Manipulability of Robotic Mechanisms. Int. J. Robot. Res. 1985, 4, 3–9. [CrossRef]
43. Zhao, M.; Ansari, N.; Hou, E.S.H. Mobile manipulator path planning by a genetic algorithm. J. Robot. Syst. 1994, 11, 143–153.

[CrossRef]
44. Jiang, L.; Liu, B.; Zeng, L.; Chen, X.; Zhao, J.; Yan, J. Research on the omni-directional mobile manipulator motion planning

based on improved genetic algorithm. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics,
Shenyang, China, 5–7 August 2009; pp. 1921–1926. [CrossRef]

45. Huang, Q.; Sugano, S. Motion planning of stabilization and cooperation of a mobile manipulator-vehicle motion planning of a
mobile manipulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan,
4–8 November 1996; Volume 2, pp. 568–575. [CrossRef]

46. Huang, Q.; Sugano, S.; Tanie, K. Motion planning for a mobile manipulator considering stability and task constraints. In
Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), Leuven, Belgium,
20–20 May 1998; Volume 3, pp. 2192–2198. [CrossRef]

47. Huang, Q.; Tanie, K.; Sugano, S. Stability compensation of a mobile manipulator by manipulatorPaper motion: Feasibility and
planning. Adv. Robot. 1998, 13, 25–40. [CrossRef]

48. Shin, D.H.; Hamner, B.; Singh, S.; Hwangbo, M. Motion planning for a mobile manipulator with imprecise locomotion. In
Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453),
Las Vegas, NV, USA, 27–31 October 2003; Volume 1, pp. 847–853. [CrossRef]

49. Aarno, D.; Lingelbach, F.; Kragic, D. Constrained path planning and task-consistent path adaptation for mobile manipulators. In
Proceedings of the ICAR ’05, 12th International Conference on Advanced Robotics, Seatle, WA, USA, 18–20 July 2005; pp. 268–273.
[CrossRef]

50. Papadopoulos, E.; Papadimitriou, I.; Poulakakis, I. Polynomial-based obstacle avoidance techniques for nonholonomic mobile
manipulator systems. Robot. Auton. Syst. 2005, 51, 229–247. [CrossRef]

51. Vazquez-Santiago, K.; Goh, C.F.; Shimada, K. Motion Planning for Kinematically Redundant Mobile Manipulators with Genetic
Algorithm, Pose Interpolation, and Inverse Kinematics. In Proceedings of the 2021 IEEE 17th International Conference on
Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021; pp. 1167–1174.

52. Dong, P.; Zhao, X. Static path planning of tracked mobile manipulator and simulation. In Proceedings of the 2011 International
Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, China, 19–22 August 2011; pp. 2266–2269.
[CrossRef]

53. Hu, C.; Chen, W.; Wang, J.; Wang, H. Optimal path planning for mobile manipulator based on manipulability and localizability.
In Proceedings of the 2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Angkor Wat, Cambodia,
6–10 June 2016; pp. 638–643. [CrossRef]

54. Papadopoulos, E.; Poulakakis, I. Planning and obstacle avoidance for mobile robots. In Proceedings of the 2001 ICRA.
IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, Korea, 21–26 May 2001; Volume 4,
pp. 3967–3972. [CrossRef]

55. Papadopoulos, E.; Poulakakis, I.; Papadimitriou, I. On Path Planning and Obstacle Avoidance for Nonholonomic Platforms with
Manipulators: A Polynomial Approach. Int. J. Robot. Res. 2002, 21, 367–383. [CrossRef]

56. Chitta, S.; Cohen, B.; Likhachev, M. Planning for autonomous door opening with a mobile manipulator. In Proceedings of the
2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 1799–1806. [CrossRef]

http://dx.doi.org/10.3390/robotics10020082
http://dx.doi.org/10.3390/s20247249
http://dx.doi.org/10.1016/j.buildenv.2020.107226
http://dx.doi.org/10.1109/ROBIO.2013.6739739
http://dx.doi.org/10.1109/IROS.1998.724648
http://dx.doi.org/10.1016/j.compeleceng.2015.02.001
http://dx.doi.org/10.1137/0607034
http://dx.doi.org/10.3390/app9020348
http://dx.doi.org/10.1109/ROBIO.2004.1521803
http://dx.doi.org/10.1177/027836498500400201
http://dx.doi.org/10.1002/rob.4620110302
http://dx.doi.org/10.1109/ICAL.2009.5262620
http://dx.doi.org/10.1109/IROS.1996.570852
http://dx.doi.org/10.1109/ROBOT.1998.680649
http://dx.doi.org/10.1163/156855399X00892
http://dx.doi.org/10.1109/IROS.2003.1250735
http://dx.doi.org/10.1109/ICAR.2005.1507423
http://dx.doi.org/10.1016/j.robot.2005.03.006
http://dx.doi.org/10.1109/MEC.2011.6025944
http://dx.doi.org/10.1109/RCAR.2016.7784104
http://dx.doi.org/10.1109/ROBOT.2001.933236
http://dx.doi.org/10.1177/027836402320556377
http://dx.doi.org/10.1109/ROBOT.2010.5509475

Machines 2022, 10, 97 33 of 37

57. Pivtoraiko, M.; Kelly, A. Generating near minimal spanning control sets for constrained motion planning in discrete state spaces.
In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6
August 2005; pp. 3231–3237. [CrossRef]

58. Likhachev, M.; Gordon, G.; Thrun, S. ARA*: Anytime A* with Provable Bounds on Sub-Optimality. Adv. Neural Inf. Process. Syst.
2003, 16, 767–774.

59. Şucan, I.A.; Kalakrishnan, M.; Chitta, S. Combining planning techniques for manipulation using realtime perception. In
Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010;
pp. 2895–2901. [CrossRef]

60. Chitta, S.; Jones, E.G.; Ciocarlie, M.; Hsiao, K. Mobile Manipulation in Unstructured Environments: Perception, Planning, and
Execution. IEEE Robot. Autom. Mag. 2012, 19, 58–71. [CrossRef]

61. Hornung, A.; Phillips, M.; Gil Jones, E.; Bennewitz, M.; Likhachev, M.; Chitta, S. Navigation in three-dimensional cluttered
environments for mobile manipulation. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
St. Paul, MI, USA, 14–18 May 2012; pp. 423–429. [CrossRef]

62. Vukobratovic, M.; Juricic, D. Contribution to the Synthesis of Biped Gait. IEEE Trans. Biomed. Eng. 1969, BME-16, 1–6. [CrossRef]
63. Brock, O.; Kavraki, L. Decomposition-based motion planning: A framework for real-time motion planning in high-dimensional

configuration spaces. In Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.
01CH37164), Seoul, Korea, 21–26 May 2001; Volume 2, pp. 1469–1474. [CrossRef]

64. Su, J.; Xie, W. Motion Planning and Coordination for Robot Systems Based on Representation Space. IEEE Trans. Syst. Man,
Cybern. Part B 2011, 41, 248–259. [CrossRef]

65. Liu, K.; Sui, J.; Yue, N.; Liu, S. Path planning method of mobile manipulator based on the representation space. In Proceedings of
the 2016 IEEE International Conference on Mechatronics and Automation, Heilongjiang, China, 7–10 August 2016; pp. 322–326.
[CrossRef]

66. Gochev, K.; Safonova, A.; Likhachev, M. Planning with adaptive dimensionality for mobile manipulation. In Proceedings of
the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MI, USA, 14–18 May 2012; pp. 2944–2951.
[CrossRef]

67. Şucan, I.A.; Kavraki, L.E. Kinodynamic Motion Planning by Interior-Exterior Cell Exploration. In Algorithmic Foundation of Robotics
VIII; Siciliano, B., Khatib, O., Groen, F., Chirikjian, G.S., Choset, H., Morales, M., Murphey, T., Eds.; Springer: Berlin/Heidelberg,
Germany, 2009; Volume 57, pp. 449–464. [CrossRef]

68. Schulman, J.; Duan, Y.; Ho, J.; Lee, A.; Awwal, I.; Bradlow, H.; Pan, J.; Patil, S.; Goldberg, K.; Abbeel, P. Motion planning with
sequential convex optimization and convex collision checking. Int. J. Robot. Res. 2014, 33, 1251–1270. [CrossRef]

69. Ratliff, N.; Zucker, M.; Bagnell, J.A.; Srinivasa, S. CHOMP: Gradient optimization techniques for efficient motion planning. In
Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 489–494.
[CrossRef]

70. Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 4569–4574. [CrossRef]

71. Schulman, J.; Ho, J.; Lee, A.; Awwal, I.; Bradlow, H.; Abbeel, P. Finding Locally Optimal, Collision-Free Trajectories with
Sequential Convex Optimization. Robot. Sci. Syst. 2013, 9, 1–10.

72. Mukadam, M.; Yan, X.; Boots, B. Gaussian Process Motion planning. In Proceedings of the 2016 IEEE International Conference on
Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 9–15. [CrossRef]

73. Dong, J.; Mukadam, M.; Dellaert, F.; Boots, B. Motion Planning as Probabilistic Inference using Gaussian Processes and Factor
Graphs. Robot. Sci. Syst. 2016, 12, 9.

74. Mukadam, M.; Dong, J.; Dellaert, F.; Boots, B. Simultaneous Trajectory Estimation and Planning via Probabilistic Inference.
In Robotics: Science and Systems XIII; Robotics: Science and Systems Foundation: New York, MY, USA, 2017. [CrossRef]

75. Mukadam, M.; Dong, J.; Dellaert, F.; Boots, B. STEAP: Simultaneous trajectory estimation and planning. Auton. Robot. 2019,
43, 415–434. [CrossRef]

76. Gupta, G.; Lee, S. The global path re-planner for a mobile manipulator. In Proceedings of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27–31 October 2003;
Volume 2, pp. 1431–1436. [CrossRef]

77. Lee, S.-Y. Sequential Quadratic Programming based Global Path Re-Planner for a Mobile Manipulator. Int. J. Control Autom. Syst.
2006, 4, 318–324.

78. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. 1998. Available online: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf (accessed on 5 October 2020)

79. Kavraki, L.E.; Svestka, P.; Latombe, J.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configura-
tion spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

80. Mbede, J.B.; Ele, P.; Mveh-Abia, C.M.; Toure, Y.; Graefe, V.; Ma, S. Intelligent mobile manipulator navigation using adaptive
neuro-fuzzy systems. Inf. Sci. 2005, 171, 447–474. [CrossRef]

81. Hsu, D.; Latombe, J.; Motwani, R. Path planning in expansive configuration spaces. In Proceedings of the International
Conference on Robotics and Automation, Albuquerque, NM, USA, 21–27 April 1997; Volume 3, pp. 2719–2726. [CrossRef]

http://dx.doi.org/10.1109/IROS.2005.1545046
http://dx.doi.org/10.1109/ROBOT.2010.5509702
http://dx.doi.org/10.1109/MRA.2012.2191995
http://dx.doi.org/10.1109/ICRA.2012.6225029
http://dx.doi.org/10.1109/TBME.1969.4502596
http://dx.doi.org/10.1109/ROBOT.2001.932817
http://dx.doi.org/10.1109/TSMCB.2010.2051025
http://dx.doi.org/10.1109/ICMA.2016.7558582
http://dx.doi.org/10.1109/ICRA.2012.6225228
http://dx.doi.org/10.1007/978-3-642-00312-7_28
http://dx.doi.org/10.1177/0278364914528132
http://dx.doi.org/10.1109/ROBOT.2009.5152817
http://dx.doi.org/10.1109/ICRA.2011.5980280
http://dx.doi.org/10.1109/ICRA.2016.7487091
http://dx.doi.org/10.15607/RSS.2017.XIII.025
http://dx.doi.org/10.1007/s10514-018-9770-1
http://dx.doi.org/10.1109/IROS.2003.1248845
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1016/j.ins.2004.09.014
http://dx.doi.org/10.1109/ROBOT.1997.619371

Machines 2022, 10, 97 34 of 37

82. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000
ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 995–1001. [CrossRef]

83. Berenson, D.; Kuffner, J.; Choset, H. An optimization approach to planning for mobile manipulation. In Proceedings of the 2008
IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 1187–1192. [CrossRef]

84. Shao, J.; Xiong, H.; Liao, J.; Song, W.; Chen, Z.; Gu, J.; Zhu, S. RRT-GoalBias and Path Smoothing Based Motion Planning of Mobile
Manipulators with Obstacle Avoidance. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and
Robotics (RCAR), Guiyang, China, 15–19 July 2021; pp. 217–222. [CrossRef]

85. Karaman, S.; Frazzoli, E. Sampling-based Algorithms for Optimal Motion Planning. arXiv 2011, arXiv:1105.1186.
86. Jordan, M.; Perez, A. Optimal Bidirectional Rapidly-Exploring Random Trees, 2013. Available online: https://dspace.mit.edu/

handle/1721.1/79884 (accessed on 16 December 2021).
87. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling

of an Admissible Ellipsoidal Heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004. [CrossRef]

88. Berenson, D.; Srinivasa, S.; Kuffner, J. Task Space Regions: A framework for pose-constrained manipulation planning. Int. J.
Robot. Res. 2011, 30, 1435–1460. [CrossRef]

89. Ward, J.; Katupitiya, J. Mobile Manipulator Motion Planning Towards Multiple Goal Configurations. In Proceedings of the
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 2283–2288.
[CrossRef]

90. Seyboldt, R.; Frese, C.; Zube, A. Sampling-based Path Planning to Cartesian Goal Positions for a Mobile Manipulator Exploiting
Kinematic Redundancy. In Proceedings of the ISR 2016: 47st International Symposium on Robotics, Munich, Germany, 21–22
June 2016; pp. 1–9.

91. Luna, R.; Moll, M.; Badger, J.; Kavraki, L.E. A scalable motion planner for high-dimensional kinematic systems. Int. J. Robot. Res.
2020, 39, 361–388. [CrossRef]

92. Stilman, M. Global Manipulation Planning in Robot Joint Space With Task Constraints. IEEE Trans. Robot. 2010, 26, 576–584.
[CrossRef]

93. Oriolo, G.; Vendittelli, M. A control-based approach to task-constrained motion planning. In Proceedings of the 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 297–302.

94. Cefalo, M.; Oriolo, G.; Vendittelli, M. Task-constrained motion planning with moving obstacles. In Proceedings of the 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 5758–5763.
[CrossRef]

95. Cefalo, M.; Ferrari, P.; Oriolo, G. An Opportunistic Strategy for Motion Planning in the Presence of Soft Task Constraints. IEEE
Robot. Autom. Lett. 2020, 5, 6294–6301. [CrossRef]

96. Zhu, R.; Nagahama, K.; Takeshita, K.; Yamazaki, K. Online motion generation using accumulated swept volumes. Adv. Robot.
2021, 35, 368–380. [CrossRef]

97. Shkolnik, A.; Tedrake, R. Path planning in 1000+ dimensions using a task-space Voronoi bias. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2061–2067.

98. Terasawa, R.; Ariki, Y.; Narihira, T.; Tsuboi, T.; Nagasaka, K. 3D-CNN Based Heuristic Guided Task-Space Planner for Faster
Motion Planning. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France,
31 May–31 August 2020; pp. 9548–9554. [CrossRef]

99. Wei, Y.; Jiang, W.; Rahmani, A.; Zhan, Q. Motion Planning for a Humanoid Mobile Manipulator System. Int. J. Humanoid Robot.
2019, 16, 1950006. [CrossRef]

100. Yang, Y.; Merkt, W.; Ivan, V.; Vijayakumar, S. Planning in Time-Configuration Space for Efficient Pick-and-Place in Non-Static
Environments with Temporal Constraints. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid
Robots (Humanoids), Beijing, China, 6–9 November 2018; pp. 1–9. [CrossRef]

101. Haddad, M.; Chettibi, T.; Hanchi, S.; Lehtihet, H. Optimal motion planner of mobile manipulators in generalized point-to-point
task. In Proceedings of the 9th IEEE International Workshop on Advanced Motion Control, Istanbul, Turkey, 27–29 March 2006;
pp. 300–306. [CrossRef]

102. Asadi, S.; Azimirad, V.; Eslami, A.; Eghbal, S.K. Immune–wavelet optimization for path planning of large-scale robots. Robotica
2014, 32, 77–95. [CrossRef]

103. Chettibi, T.; Lehtihet, H. A new approach for point to point optimal motion planning problems of robotic manipulators. In
Proceedings of the 6th Biennial Conference on Engineering Systems Design and Analysis, Istanbul, Turkey, 8–11 July 2002.

104. Petrović, L.; Peršić, J.; Seder, M.; Marković, I. Cross-entropy based stochastic optimization of robot trajectories using heteroscedas-
tic continuous-time Gaussian processes. Robot. Auton. Syst. 2020, 133, 103618. [CrossRef]

105. Watanabe, K.; Kiguchi, K.; Izumi, K.; Kunitake, Y. Path planning for an omnidirectional mobile manipulator by evolutionary
computation. In Proceedings of the 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering
Systems. Proceedings (Cat. No. 99TH8410), Adelaide, SA, Australia, 31 August–1 September 1999; pp. 135–140. [CrossRef]

106. Huang, Q.; Sugano, S.; Kato, I. Stability Control for a Vehicle-Mounted Manipulator. Trans. Soc. Instrum. Control Eng. 1995,
31, 861–870. [CrossRef]

http://dx.doi.org/10.1109/ROBOT.2000.844730
http://dx.doi.org/10.1109/ROBOT.2008.4543365
http://dx.doi.org/10.1109/RCAR52367.2021.9517335
https://dspace.mit.edu/handle/1721.1/79884
https://dspace.mit.edu/handle/1721.1/79884
http://dx.doi.org/10.1109/IROS.2014.6942976
http://dx.doi.org/10.1177/0278364910396389
http://dx.doi.org/10.1109/IROS.2006.282633
http://dx.doi.org/10.1177/0278364919890408
http://dx.doi.org/10.1109/TRO.2010.2044949
http://dx.doi.org/10.1109/IROS.2013.6697190
http://dx.doi.org/10.1109/LRA.2020.3013893
http://dx.doi.org/10.1080/01691864.2020.1863260
http://dx.doi.org/10.1109/ICRA40945.2020.9196883
http://dx.doi.org/10.1142/S0219843619500063
http://dx.doi.org/10.1109/HUMANOIDS.2018.8624989
http://dx.doi.org/10.1109/AMC.2006.1631675
http://dx.doi.org/10.1017/S0263574713000635
http://dx.doi.org/10.1016/j.robot.2020.103618
http://dx.doi.org/10.1109/KES.1999.820138
http://dx.doi.org/10.9746/sicetr1965.31.861

Machines 2022, 10, 97 35 of 37

107. Abdessemed, F. Trajectory generation for mobile manipulators using a learning method. In Proceedings of the 2007 Mediterranean
Conference on Control Automation, Athens, Greece, 27–29 June 2007; pp. 1–6. [CrossRef]

108. Dharmawan, A.G.; Foong, S.; Soh, G.S. Task-Constrained Optimal Motion Planning of Redundant Robots Via Sequential
Expanded Lagrangian Homotopy. J. Mech. Robot. 2018, 10, 031010. [CrossRef]

109. López-Franco, C.; Hernández-Barragán, J.; Alanis, A.Y.; Arana-Daniel, N.; López-Franco, M. Inverse kinematics of mobile
manipulators based on differential evolution. Int. J. Adv. Robot. Syst. 2018, 15, 1729881417752738. [CrossRef]

110. Costanzo, M.; Stelter, S.; Natale, C.; Pirozzi, S.; Bartels, G.; Maldonado, A.; Beetz, M. Manipulation Planning and Control for Shelf
Replenishment. IEEE Robot. Autom. Lett. 2020, 5, 1595–1601. [CrossRef]

111. Fang, Z.; Bartels, G.; Beetz, M. Learning models for constraint-based motion parameterization from interactive physics-based
simulation. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon,
Korea, 9–14 October 2016; pp. 4005–4012. [CrossRef]

112. Wang, C.; Zhang, Q.; Tian, Q.; Li, S.; Wang, X.; Lane, D.; Petillot, Y.; Wang, S. Learning Mobile Manipulation through Deep
Reinforcement Learning. Sensors 2020, 20, 939. [CrossRef]

113. Burget, F.; Bennewitz, M.; Burgard, W. BI2RRT*: An efficient sampling-based path planning framework for task-constrained
mobile manipulation. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea, 9–14 October 2016; pp. 3714–3721. [CrossRef]

114. Perrier, C.; Dauchez, P.; Pierrot, F. Towards the use of dual quaternions for motion generation of nonholonomic mobile
manipulators. In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative
Robotics for Real-World Applications. IROS ’97, Grenoble, France, 11 September 1997; Volume 3, pp. 1293–1298.

115. Perrier, C.; Dauchez, P.; Pierrot, F. A global approach for motion generation of non-holonomic mobile manipulators. In Proceedings
of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), Leuven, Belgium, 20 May 1998;
Volume 4, pp. 2971–2976. [CrossRef]

116. Singh, A.K.; Krishna, K.M. Coordinating mobile manipulator’s motion to produce stable trajectories on uneven terrain based on
feasible acceleration count. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Tokyo, Japan, 3–7 November 2013; pp. 5009–5014. [CrossRef]

117. Cohen, B.J.; Chitta, S.; Likhachev, M. Search-based planning for manipulation with motion primitives. In Proceedings of the 2010
IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 2902–2908. [CrossRef]

118. Singh, A.K.; Krishna, K.M. Feasible acceleration count: A novel dynamic stability metric and its use in incremental motion
planning on uneven terrain. Robot. Auton. Syst. 2016, 79, 156–171. [CrossRef]

119. Lamiraux, F.; Mirabel, J. Prehensile Manipulation Planning: Modeling, Algorithms and Implementation. IEEE Trans. Robot. 2021.
[CrossRef]

120. Mirabel, J.; Lamiraux, F.; Ha, T.L.; Nicolin, A.; Stasse, O.; Boria, S. Performing manufacturing tasks with a mobile manipulator:
From motion planning to sensor based motion control. In Proceedings of the 2021 IEEE 17th International Conference on
Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021; pp. 159–164.

121. Oriolo, G.; Mongillo, C. Motion Planning for Mobile Manipulators along Given End-effector Paths. In Proceedings of the 2005
IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 2154–2160.

122. Pilania, V.; Gupta, K. A hierarchical and adaptive mobile manipulator planner. In Proceedings of the 2014 IEEE-RAS International
Conference on Humanoid Robots, Madrid, Spain, 18–20 November 2014; pp. 45–51.

123. Pilania, V.; Gupta, K. A hierarchical and adaptive mobile manipulator planner with base pose uncertainty. Auton. Robot. 2015,
39, 65–85. [CrossRef]

124. Li, Q.; Mu, Y.; You, Y.; Zhang, Z.; Feng, C. A Hierarchical Motion Planning for Mobile Manipulator. IEEJ Trans. Electr. Electron.
Eng. 2020, 15, 1390–1399. [CrossRef]

125. Sun, Z.; Hsu, D.; Jiang, T.; Kurniawati, H.; Reif, J. Narrow passage sampling for probabilistic roadmap planning. IEEE Trans.
Robot. 2005, 21, 1105–1115. [CrossRef]

126. Yamamoto, T.; Terada, K.; Ochiai, A.; Saito, F.; Asahara, Y.; Murase, K. Development of the Research Platform of a Domestic
Mobile Manipulator Utilized for International Competition and Field Test. In Proceedings of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7675–7682.

127. Yamamoto, T.; Terada, K.; Ochiai, A.; Saito, F.; Asahara, Y.; Murase, K. Development of Human Support Robot as the research
platform of a domestic mobile manipulator. Robomech J. 2019, 6, 4. [CrossRef]

128. Kang, M.; Kim, D.; Yoon, S.E. Harmonious Sampling for Mobile Manipulation Planning. In Proceedings of the 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 3185–3192.

129. Hauser, K. Lazy collision checking in asymptotically-optimal motion planning. In Proceedings of the 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2951–2957.

130. Becerra, I.; Yervilla-Herrera, H.; Murrieta-Cid, R. An Experimental Analysis on the Necessary and Sufficient Conditions for the
RRT* Applied to Dynamical Systems. In Algorithmic Foundations of Robotics XIII; Springer Proceedings in Advanced Robotics;
Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020;
pp. 835–851. [CrossRef]

131. Becerra, I.; Yervilla-Herrera, H.; Antonio, E.; Murrieta-Cid, R. On the Local Planners in the RRT* for Dynamical Systems and
Their Reusability for Compound Cost Functionals. IEEE Trans. Robot. 2021, 1–38. [CrossRef]

http://dx.doi.org/10.1109/MED.2007.4433659
http://dx.doi.org/10.1115/1.4039395
http://dx.doi.org/10.1177/1729881417752738
http://dx.doi.org/10.1109/LRA.2020.2969179
http://dx.doi.org/10.1109/IROS.2016.7759590
http://dx.doi.org/10.3390/s20030939
http://dx.doi.org/10.1109/IROS.2016.7759547
http://dx.doi.org/10.1109/ROBOT.1998.680881
http://dx.doi.org/10.1109/IROS.2013.6697080
http://dx.doi.org/10.1109/ROBOT.2010.5509685
http://dx.doi.org/10.1016/j.robot.2015.11.007
http://dx.doi.org/10.1109/TRO.2021.3130433
http://dx.doi.org/10.1007/s10514-015-9427-2
http://dx.doi.org/10.1002/tee.23206
http://dx.doi.org/10.1109/TRO.2005.853485
http://dx.doi.org/10.1186/s40648-019-0132-3
http://dx.doi.org/10.1007/978-3-030-44051-0_48
http://dx.doi.org/10.1109/TRO.2021.3098244

Machines 2022, 10, 97 36 of 37

132. Thakar, S.; Rajendran, P.; Kim, H.; Kabir, A.M.; Gupta, S.K. Accelerating Bi-Directional Sampling-Based Search for Motion
Planning of Non-Holonomic Mobile Manipulators. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 6711–6717. [CrossRef]

133. Pardi, T.; Maddali, V.; Ortenzi, V.; Stolkin, R.; Marturi, N. Path planning for mobile manipulator robots under non-holonomic and
task constraints. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las
Vegas, NV, USA, 24 October–24 January 2020; pp. 6749–6756. [CrossRef]

134. Lee, J.K.; Kim, S.H.; Cho, H.S. Motion planning for a mobile manipulator to execute a multiple point-to-point task. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS ’96, Osaka, Japan, 4–8 November 1996;
Volume 2, pp. 737–742. [CrossRef]

135. Vafadar, S.; Olabi, A.; Panahi, M.S. Optimal motion planning of mobile manipulators with minimum number of platform
movements. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22
February 2018; pp. 262–267. [CrossRef]

136. Pin, F.; Hacker, C.; Gower, K.; Morgansen, K. Including a non-holonomic constraint in the FSP (full space parameterization)
method for mobile manipulators’ motion planning. In Proceedings of the International Conference on Robotics and Automation,
Albuquerque, NM, USA, 25 April 1997; Volume 4, pp. 2914–2919. [CrossRef]

137. Raja, R.; Dasgupta, B.; Dutta, A. Cooperative motion planning of redundant rover manipulators on uneven terrains. In Proceed-
ings of the 2017 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, 10–12 July 2017; pp. 99–105.

138. Vannoy, J.; Xiao, J. Real-Time Adaptive Motion Planning (RAMP) of Mobile Manipulators in Dynamic Environments With
Unforeseen Changes. IEEE Trans. Robot. 2008, 24, 1199–1212. [CrossRef]

139. Yamazaki, K.; Tsubouchi, T.; Tomono, M. Modeling and motion planning for handling furniture by a mobile manipulator.
In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–
2 November 2007; pp. 1926–1931. [CrossRef]

140. Yamazaki, K.; Tomono, M.; Tsubouchi, K.; Yuta, S. Motion Planning for a Mobile Manipultor Based on Joint Motions for Error
Recovery. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kunming, China,
17–20 December 2006; pp. 7–12. [CrossRef]

141. Welschehold, T.; Dornhege, C.; Burgard, W. Learning mobile manipulation actions from human demonstrations. In Proceedings of
the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September
2017; pp. 3196–3201. [CrossRef]

142. Li, C.; Xia, F.; Martin-Martin, R.; Savarese, S. HRL4IN: Hierarchical Reinforcement Learning for Interactive Navigation with
Mobile Manipulators. arXiv 2019, arXiv:1910.11432.

143. Raja, R.; Dutta, A.; Dasgupta, B. Learning framework for inverse kinematics of a highly redundant mobile manipulator. Robot.
Auton. Syst. 2019, 120, 103245. [CrossRef]

144. Zhang, H.; Sheng, Q.; Sun, Y.; Sheng, X.; Xiong, Z.; Zhu, X. A novel coordinated motion planner based on capability map for
autonomous mobile manipulator. Robot. Auton. Syst. 2020, 129, 103554. [CrossRef]

145. Welschehold, T.; Dornhege, C.; Paus, F.; Asfour, T.; Burgard, W. Coupling Mobile Base and End-Effector Motion in Task Space.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 1–9. [CrossRef]

146. Khansari-Zadeh, S.M.; Billard, A. A dynamical system approach to realtime obstacle avoidance. Auton. Robot. 2012, 32, 433–454.
[CrossRef]

147. Qizhi, W.; De, X. On the kinematics analysis and motion planning of the manipulator of a mobile robot. In Proceedings of the
2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, 23–25 May 2011; pp. 4033–4037. [CrossRef]

148. Makhal, A.; Goins, A.K. Reuleaux: Robot Base Placement by Reachability Analysis. In Proceedings of the 2018 Second IEEE
International Conference on Robotic Computing (IRC), Laguna Hills, CA, USA, 31 January–2 February 2018; pp. 137–142.
[CrossRef]

149. Xu, J.; Harada, K.; Wan, W.; Ueshiba, T.; Domae, Y. Planning an Efficient and Robust Base Sequence for a Mobile Manipulator
Performing Multiple Pick-and-place Tasks. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation
(ICRA), Paris, France, 31 May–31 August 2020; pp. 11018–11024. [CrossRef]

150. Xu, J.; Domae, Y.; Ueshiba, T.; Wan, W.; Harada, K. Planning a Minimum Sequence of Positions for Picking Parts From Multiple
Trays Using a Mobile Manipulator. IEEE Access 2021, 9, 165526–165541. [CrossRef]

151. Wang, F.; Olvera, J.R.G.; Cheng, G. Optimal Order Pick-and-Place of Objects in Cluttered Scene by a Mobile Manipulator. IEEE
Robot. Autom. Lett. 2021, 6, 6402–6409. [CrossRef]

152. Hertle, A.; Nebel, B. Identifying good poses when doing your household chores: Creation and exploitation of inverse surface
reachability maps. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 6053–6058. [CrossRef]

153. Chen, F.; Selvaggio, M.; Caldwell, D.G. Dexterous Grasping by Manipulability Selection for Mobile Manipulator With Visual
Guidance. IEEE Trans. Ind. Inform. 2019, 15, 1202–1210. [CrossRef]

154. Pin, F.G.; Culioli, J.C. Optimal positioning of combined mobile platform-manipulator systems for material handling tasks. J. Intell.
Robot. Syst. 1992, 6, 165–182. [CrossRef]

http://dx.doi.org/10.1109/IROS45743.2020.9340782
http://dx.doi.org/10.1109/IROS45743.2020.9340760
http://dx.doi.org/10.1109/IROS.1996.571044
http://dx.doi.org/10.1109/ICIT.2018.8352187
http://dx.doi.org/10.1109/ROBOT.1997.606729
http://dx.doi.org/10.1109/TRO.2008.2003277
http://dx.doi.org/10.1109/IROS.2007.4399399
http://dx.doi.org/10.1109/IROS.2006.281857
http://dx.doi.org/10.1109/IROS.2017.8206152
http://dx.doi.org/10.1016/j.robot.2019.07.015
http://dx.doi.org/10.1016/j.robot.2020.103554
http://dx.doi.org/10.1109/IROS.2018.8593534
http://dx.doi.org/10.1007/s10514-012-9287-y
http://dx.doi.org/10.1109/CCDC.2011.5968929
http://dx.doi.org/10.1109/IRC.2018.00028
http://dx.doi.org/10.1109/ICRA40945.2020.9196999
http://dx.doi.org/10.1109/ACCESS.2021.3135374
http://dx.doi.org/10.1109/LRA.2021.3093021
http://dx.doi.org/10.1109/IROS.2017.8206504
http://dx.doi.org/10.1109/TII.2018.2879426
http://dx.doi.org/10.1007/BF00248014

Machines 2022, 10, 97 37 of 37

155. Chen, M.W.; Zalzala, A.M.S. Optimal Positioning for Mobile Platform/Manipulator Systems using Genetic Algorithms. IFAC
Proc. Vol. 1997, 30, 197–202. [CrossRef]

156. Huang, H.C.; Tsai, C.C.; Wang, T.S. Kinematics Motion Planning of an Omnidirectional Mobile Manipulator Using DNA
Algorithm. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei,
Taiwan, 5–8 November 2007; pp. 2706–2711. [CrossRef]

157. Ram, R.V.; Pathak, P.M.; Junco, S.J. Inverse kinematics of mobile manipulator using bidirectional particle swarm optimization by
manipulator decoupling. Mech. Mach. Theory 2019, 131, 385–405. [CrossRef]

158. Yamazaki, K.; Tomono, M.; Tsubouchi, T. Pose Planning for a Mobile Manipulator Based on Joint Motions for Posture Adjustment
to End-Effector Error. Adv. Robot. 2008, 22, 411–431. [CrossRef]

159. Chiaverini, S.; Siciliano, B.; Egeland, O. Review of the damped least-squares inverse kinematics with experiments on an industrial
robot manipulator. IEEE Trans. Control Syst. Technol. 1994, 2, 123–134. [CrossRef]

160. Krause, E.F. Taxicab Geometry: An Adventure in Non-Euclidean Geometry; Courier Corporation: Chelmsford, MA, USA, 1986.
161. Pyo, Y.; Nakashima, K.; Kuwahata, S.; Kurazume, R.; Tsuji, T.; Morooka, K.; Hasegawa, T. Service robot system with an

informationally structured environment. Robot. Auton. Syst. 2015, 74, 148–165. [CrossRef]

http://dx.doi.org/10.1016/S1474-6670(17)44490-9
http://dx.doi.org/10.1109/IECON.2007.4460075
http://dx.doi.org/10.1016/j.mechmachtheory.2018.09.022
http://dx.doi.org/10.1163/156855308X294662
http://dx.doi.org/10.1109/87.294335
http://dx.doi.org/10.1016/j.robot.2015.07.010

	Introduction
	Common Concepts
	Motion Planning Algorithms for Mobile Manipulators
	Two Subsystems—Separate Planning
	Combined System with High DOF
	General High DOF Planning
	Two Subsystems—Different Capabilities

	Calculate Goal Configuration
	Discussion
	Conclusions
	Appendix A
	Appendix B
	Appendix B.1
	Appendix B.2

	References

