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Abstract: The active suspension system of a vehicle manipulated using electro-hydraulic actuators is
a challenging nonlinear control problem. In this research work, a novel Linear Parameter Varying
(LPV) State-Space (SS) model with a fictional input is proposed to represent a nonlinear half-car active
suspension system. Four different scheduling parameters are used to embed the nonlinearities of both
the suspension and the electro hydraulic actuators to represent its nonlinear behavior. A recursive
least squares (RLS) algorithm is used to predict the future behavior of the scheduling parameters
along the prediction horizon. A Model Predictive Control-Linear Quadratic Regulator (MPC-LQR)
is implemented as the control strategy and, to ensure stability, Quadratic Stability conditions are
imposed as Linear Matrix Inequalities (LMI) constraints. Furthermore, the inclusion of attraction
sets to overcome the conservative performance imposed by the Quadratic Stability conditions is
included, as well as a terminal set were the switching between the MPC and the LQR controller is
made. Simulations results for the half-car active suspension model over a typical road disturbance
are tested to show the effectiveness of the proposed MPC-LQR-LPV controller with quadratic stability
conditions in terms of comfort and road-holding.

Keywords: half-car active suspension; hydraulic suspension; model predictive control; linear param-
eter varying; quadratic stability; electro-hydraulic actuator

1. Introduction

Security and comfort are two of the most relevant aspects when designing a car.
Vehicles should be able to attenuate road disturbances to ensure comfort for the passengers
while maintaining road-handling adequate in order to allow proper driving conditions.
Previously, suspensions have been designed by using passive elements such as springs and
dampers, selected depending on vehicle mass and geometry. However, when a vehicle
drives through a road with harsh disturbances, passive suspensions are not enough to
guarantee both comfort and road holding.

In order to overcome the limitations of passive suspensions in harsh road conditions,
active suspensions with electro-hydraulic actuators have been used to preserve comfort and
road-holding conditions, while using a low voltage control signal as input. Research works
on active suspensions using this kind of actuators have presented for quarter-car [1–4], half-
car [5–7] and full-car models [8–10]. While quarter-car models can be used to demonstrate
the effect of the active suspension in the improvement of comfort and road-holding, other
effects like pitch and jaw movements caused by a disturbance in one of the corners of a car
can only be modeled by half and full-car models.
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Several control strategies have been proposed in the literature for active suspension
control such as PID controllers [11–13], H2 and H∞ control [14–16], LQR and LQG con-
trollers [17–19] and fuzzy controllers [20,21]. All of these controllers for active suspensions
had better results when compared with passive suspension, however, there exists a trade-
off between comfort and road holding, and specific tuning conditions are determined to
preserve comfort or road holding depending on the desired performance of the control
strategy.

Another popular control strategy for active suspensions has been Model Predictive
Control (MPC). MPC is a control strategy that consists in the prediction of the future
behavior of the states of a system along a prediction horizon Np as a function of the future
inputs and/or disturbances. Then, the objective is to minimize a cost function, in which
the desired performance is defined, subject to constraints in the inputs, outputs, and states.
Then, the first optimal control input is introduced to the system as the control action, and
the optimization problem is solved again in the next sampling step.

Some MPC approaches for linear active suspensions have been proposed. In [22],
an MPC for an active suspension of a half-vehicle considering the effect of the braking
intensity in the car dynamics is presented. The modeling of the half-car suspension system
is linearized assuming a small pitch angle at every moment of the simulation and ideal
actuators capable of generating the desired force. The MPC is designed to minimize
the rolling dynamics of the half-car in order to improve comfort while ensuring stability
through Lyapunov stability conditions. The results showed improvement in comfort
when compared with a dual-loop controller. In [23], an MPC for a semi-active and active
suspension system with road preview is presented. In this approach, a full-car linearized
model is used to build a 14-states-space model. The optimization problem is performed with
nonlinear constraints in the control inputs and considering a variable damping coefficient in
both cases. The results showed better performance when compared to passive suspensions.
Other linear MPC approaches for active suspensions are presented in [24–26].

MPC approaches considering the nonlinearities of an electro-hydraulic actuator have
also been proposed. In [27], a Robust MPC for an active suspension system of a full-car
system is implemented. The suspension system is linearized, assuming a small pitch and
roll angle, while the actuator nonlinearities are considered. The MPC computes the desired
force for the actuators, while a PID on each of the actuators tracks the error between the
desired force and the actual force. The robustness of this MPC approach is ensured by
the minimization of error along a desired trajectory. The results showed improvement in
both comfort and road-holding when compared with passive suspensions and skyhook
control suspension. In [28], an MPC-LQR controller is presented for a nonlinear quarter-car
active suspension with an electro-hydraulic actuator is presented. The suspension sys-
tem is represented by a Linear Parameter Varying State-Space (LPV-SS) model to build
a predictive matrix for every state. Quadratic stability conditions are included as Linear
Matrix Inequalities (LMI) in order to preserve stability along the prediction horizon. Fur-
thermore, a terminal set is defined around the equilibrium of the system where an LQR
controller is implemented to reduce computational effort. The results showed improvement
in both comfort and road-holding when compared to passive suspensions and H2 controller.
However, execution times were long when compared with the sampling time.

Other MPC approaches for active suspensions using numerical methods solutions
have been proposed. In [29], an MPC for a half-car nonlinear system with electro-hydraulic
actuators is presented using a particle swarm optimization method to solve the MPC
optimization problem. In [30], an artificial neural network surrogate model is designed
to optimize the performance of an automotive semi-active suspension system using a
hydraulic actuator. Both approaches exhibit fast optimization times with optimal results
in the time domain. However, the main limitation of numerical solutions is that stability
and robustness conditions cannot be ensured in a deterministic way. Other numerical
algorithms that can be useful for solving complex nonlinear MPC problems are presented
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in [31–34] which have been used to solve complex nonlinear differential equations and
partial differential equations.

As shown in the previous works, several approaches for half-car and full-car assume
small pitch and roll angles to allow linearization of the system. However, these conditions
are not always possible and as the angle increases, the model differs more from reality.
In this approach, a novel LPV state-space model representation of a half-car model using
four different scheduling parameters and a fictional input will be used to embed the
nonlinearities of the two hydraulic actuators and the trigonometric relations of the pitch
angle while preserving the nonlinear behavior of the system. The half-car active suspension
system is represented as a compact parameter depending state-space in order to be used in
traditional MPC approaches using state-space matrices in the prediction horizon.

Therefore, the proposed control strategy consists of an extension for a half-car suspen-
sion system of the work presented in [28]. The model of the system is designed using four
scheduling variables that are assumed to be bounded by the physical constraints of the
electro-hydraulic actuators. A fictional control input is included in the LPV-SS model to
include scheduling parameter-dependent terms which are not a function of states or inputs.
Quadratic Stability conditions are considered for parametric-uncertain bounded systems
as presented in [35]. Furthermore, attraction sets and terminal sets are included in the
approach in order to switch the MPC controller to an LQR controller near the equilibrium
point. This allows the proposed control strategy to solve a nonlinear control problem by
LPV techniques while ensuring stability conditions and optimal performance. This reduces
the complexity of the MPC optimization problem while still considering the nonlinear
behavior of the system in both the modeling and the stability conditions.

The paper is organized by the following structure. Section 2 presents the half-car active
suspension model including the electro-hydraulic actuator dynamics. Section 3 presents a
novel LPV-SS representation for the Half-Car active suspension including a fictional input
as presented in [36]. Section 4 describes the LPV-MPC controller. Section 5 describes a
recursive least squares (RLS) algorithm for the prediction of the scheduling parameters
along the prediction horizon based on the work presented in [37]. Section 6 presents the
quadratic stability conditions for the LPV-MPC. Section 7 describes the attraction sets and
terminal sets for the LQR control switching. Section 8 presents results of the proposed
strategy compared to classical controllers and passive suspensions while Section 9 presents
the conclusions and future work.

2. Half-Car Active Suspension Model with Electro-Hydraulic Actuators

The active suspension system differs from the passive suspension system by the
addition of an actuator that produces a force that opposes the movement of the chassis.
Figure 1 shows a schematic model of a half-car active suspension system as shown in [14].
In this type of model, two electro-hydraulic actuators produce both forces u f 1 and u f 2 to
attenuate the effects of road disturbances on the chassis mass ms and the movements in
each suspension unit masses denoted by mu1 and mu2.

Using the Newton law of equilibrium of forces, the following differential equations
model the dynamics of the system:

ms z̈c + cs1(żs1 − żu1) + cs2(żs2 − żu2) + ks1(zs1 − zu1) + ks2(zs2 − zu2) = u f 1 + u f 2 (1)

Iφφ̈− l1cs1(żs1 − żu1) + l2cs2(żs2 − żu2)− l1ks1(zs1 − zu1) + l2ks2(zs2 − zu2) = −l1u f 1 + l2u f 2 (2)

mu1z̈u1 − cs1(żs1 − żu1)− ks1(zs1 − zu1) + ku1(zu1 − zo1) = −u f 1 (3)

mu2z̈u2 − cs2(żs2 − żu2)− ks2(zs2 − zu2) + ku2(zu2 − zo2) = −u f 2 (4)

with
zs1 = zc + l1 sin φ (5)

żs1 = żc + l1φ̇ cos φ (6)
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zs2 = zc − l2 sin φ (7)

żs2 = żc − l2φ̇ cos φ (8)

with ksi being the constant of the springs between the unsprung masses and the chassis, csi
being the damping coefficient of the dampers, kui being the tire elastic constant of each tire.
zc represents the vertical movement of the chassis mass at its center of gravity (COG), zsi
represent the vertical displacement of the chassis mass at the point of connection with the
suspension unit, li is the distance between the COG of the chassis to the point of connection
to each suspension unit, zui is the vertical displacement of the suspension masses while zoi
is the road disturbance in each of the modeled chassis corners ∀i ∈ [1, 2]. φ represents the
pitch angle. Both control forces u f 1 and u f 2 are generated by an electro-hydraulic actuator
with a servo spool valve. Figure 2 presents a schematic of the electro-hydraulic actuator.

Figure 1. Half-Car Active Suspension System.

Figure 2. Electro-Hydraulic Actuator with Servo Spool Valve.

This kind of actuator produces a force by redirecting the flow of pressure through the
upper or lower chamber of the piston. Therefore, the force introduced to the suspension
system is denoted as the following:

u f i = APli (9)

The pressure dynamics are also modeled by the following differential equations

Vt

4βe
Ṗli = Qi − CtpPli − A(żsi − żui) (10)
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With

Qi = sgn[Ps − sgn(zvi)Pli]Cdwzvi

√
1
ρ
|Ps − sgn(zvi)Pli| (11)

∀i ∈ [1, 2]

where Vt is the total volume of the actuator, Qi is the load flow of each actuator, βe is the
effective bulk modulus, Ctp the piston leakage coefficient, w the spool valve gradient, Cd
the discharge coefficient, Ps the pressure supply and ρ the hydraulic fluid density. It is
assumed that both actuators are identical and independent. The displacement of each spool
valve zvi is proportional to each control action ui(k) which are voltage signals. The spool
valve behavior is defined by the following equation:

żvi =
1
τ
(−zvi + kvui(k)) (12)

where kv is the valve gain and τ is a scaling factor.

3. LPV-SS Representation of the Half-Car Active Suspension Model with Fictional
Input

In order to build a prediction model for the MPC paradigm, Equations (1)–(12) will
be used to build a LPV-SS model with four different scheduling parameters and the use
of a fictional input u f ict. The proposed space state is of the following form, which is a
traditional SS form, with matrices A and B being parameter dependent.

ẋ(t) = A
(
ρ1(t), ρ3(t), ρ4(t)

)
x(t) + B

(
ρ2(t)

)
ũ(t) (13)

where ẋ(t) = [zc żc φ φ̇ zu1 żu1 zu2 żu2 Pl1 zv1 Pl2 zv2]
T and ũ(t) = [u f ict u1 u2 zo1 zo2]

T .
The state matrices A and B are defined as the following:

A =



0 1 0 0 0 0 0 0 0 0 0 0
−( ks1+ks2

ms
) −( cs1+cs2

ms
) 0 −ρ1(

cs1l1−cs2l2
ms

) ks1
ms

cs1
ms

ks2
ms

cs2
ms

A
ms

0 A
ms

0
0 0 0 1 0 0 0 0 0 0 0 0

( l1ks1−l2ks2
Iφ

) ( l1cs1−l2cs2
Iφ

) 0 ρ1(
l2
1 cs1+l2

2 cs2
Iφ

) − l1ks1
Iφ

− l1cs1
Iφ

l2ks2
Iφ

l2cs2
Iφ

− l1 A
Iφ

0 l2 A
Iφ

0
0 0 0 0 0 1 0 0 0 0 0 0

ks1
mu1

cs1
mu1

0 cs1l1ρ1
mu1

−( ks1+ku1
mu1

) − cs1
mu1

0 0 − A
mu1

0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

ks2
mu2

cs2
mu2

0 cs2l2ρ1
mu2

0 0 −( ks2+ku2
mu2

) − cs2
mu2

0 0 − A
mu2

0
−αA 0 0 0 αA 0 0 0 β γρ3 0 0

0 0 0 0 0 0 0 0 0 − 1
τ 0 0

−αA 0 0 0 0 0 αA 0 0 0 β γρ4
0 0 0 0 0 0 0 0 0 0 0 − 1

τ



(14)

B =



0 0 0 0 0
ρ2(

ks1l1−ks2l2
ms

) 0 0 0 0
0 0 0 0 0

ρ2(
l2
1 ks1+l2

2 ks2
Iφ

) 0 0 0 0
0 0 0 0 0

ks1l1ρ2
mu1

0 0 ku1
mu1

0
0 0 0 0 0

ks2l2ρ2
mu2

0 0 0 ku2
mu2

αAl1ρ2 0 0 0 0
0 kvi

τ 0 0 0
αAl2ρ2 0 0 0 0

0 0 kvi
τ 0 0



(15)
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where ρ1 = cos φ, ρ2 = sin φ, ρ3 = sgn[Ps− sgn(zv1)Pl1]
√
|Ps − sgn(zv1)Pl1, ρ4 = sgn[Ps−

sgn(zv2)Pl2]
√
|Ps − sgn(zv2)Pl2, α = 4βe

Vt
, β = αCtp and γ = αCdω

√
1
ρ . The inclusion of the

scheduling variables allows the nonlinear differential equations presented in the half-car
active suspension system to be expressed in a compact state-space form which allows
the computation of the future values of the states in the MPC paradigm in a compact
formulation. The fictional input u f ict is set to a value of 1 at every sampling instant in
order to insert non-state dependent values which are scheduling parameter dependent,
while the disturbances zo1 and zo2 are considered as constants along the prediction horizon
and measurable at every sampling instant k in order to predict the future states in the
MPC strategy.

In Equations (13)–(15), the nonlinear half-car active suspension model with electro-
hydraulic actuators can be represented by an LPV-SS model with matrices A and B being
parameter-dependent matrices assumed to be linear at each sampling instant k. This allows
the prediction of the future states to be performed in a compact matrix form, having the
future states stored in a vector as is shown in the next section.

4. LPV-MPC Controller

In order to build an MPC with an LPV model, a prediction of the future states along the
prediction horizon Np is formulated considering the variation of the parameter dependent
matrices at every sampling step. The i-steps ahead prediction of the states of the half-car
active suspension model is the following.

x(k + i|k) = ∏i−1
j=0 Ad

(
ρi(k + j)

)
x(k) +

(
∑i−1

s=1

(
∏i−1

l=s Ad
(
ρi(k + l)

))
Bd
(
ρi(k + s− 1)

)
ũ(k + s− 1)

)
+ Bd

(
ρi(k + i− 1)

)
ũ(k + i− 1) (16)

where Ad(ρi) and Bd(ρi) are the discretization of the continuous matrices A and B pre-
sented in Equations (14) and (15) by means of a zero-order hold (ZOH) as functions of the
scheduling parameters ρi. Prediction of the future states need to be done throughout the
prediction horizon Np, thus Equation (16) can be expressed in a compact matrix equation
of the following form.

X = Φ ∗ x(k) + Ψ ∗U (17)

where

X =


x(k + 1|k)
x(k + 2|k)

:
.

x(k + Np|k)

 (18)

Φ(k) =


Ad(ρi(k))

∏1
j=0

(
Ad
(
ρi(k + j)

))
...

∏
Np−1
j=0

(
Ad
(
ρi(k + j)

))

 (19)

Ψ(k) =


Bd(ρi(k)) 0nx·nu . . . 0nx·nu

Ad(ρi(k + 1))Bd(ρi(k)) Bd(ρi(k + 1)) . . . 0nx·nu

Ad(ρi(k + 2))Ad(ρi(k + 1))Bd(ρi(k)) Ad(ρi(k + 2))Bd(ρi(k + 1)) . . . 0nx·nu
...

...
. . .

...
...

(∏
Np−1
i=1 Ad(ρi(k + 1)))Bd(ρi(k)) (∏

Np−1
i=1 Ad(ρi(k + 2)))Bd(ρi(k + 1)) . . . Bd(ρi(k + Np − 1))

 (20)
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U =


ũ(k)

ũ(k + 1)
:
.

ũ(k + Np − 1)

 (21)

where X ∈ RNp ·nx , Φ ∈ RNp×nx ·nx , Ψ ∈ RNp ·nx×Np ·nu and U ∈ RNp ·nx , where nx represents
the number of states in the half-car active suspension model and nu the number of inputs,
including disturbances and fictional inputs. With the state prediction equation in matrix
form, a cost function to minimize the deviation from the equilibrium of the states of the
system and the energy consumption generated by the actuators can be defined as the
following:

J = XTQcX + UTRcU (22)

where Qc and Rc are weight matrix of appropriate dimensions. The objective of the MPC
paradigm is to minimize (22) as a function of both inputs u1 and u2 along the prediction
horizon Np subject to constraints in both inputs (23) and states (24).

umin ≤



u1(k)
u2(k)

u1(k + 1)
u2(k + 1)

...
u1(k + Np)
u2(k + Np)


≤ umax (23)

xmin ≤ X ≤ xmax (24)

where umin and umax ∈ RNp×2 and xmin and xmax ∈ RNp ·nx . Then, classical MPC strategy
is based on solving the optimization problem (22) at every sampling step. However, the
cost function proposed in (22) is scheduling parameter dependent and while the value
of the four scheduling parameters are considered measurable, its future values along the
prediction horizon Np are unknown and must be estimated. To obtain an estimation of the
four scheduling parameters ρ1, ρ2, ρ3 and ρ4 a recursive least squares (RLS) approach is
used to estimate its future values based on its previous behavior and the system response
for the previous inputs.

5. Scheduling Parameters Prediction Using RLS

To obtain an estimation of the four scheduling parameters along the prediction horizon,
an RLS approach is used as presented by Sename, Morato and Normey-Rico in [37]. All of
the four scheduling parameters are considered to be measurable at every sampling instant
k and all the previous values of the scheduling parameters, the states, and the inputs of
the system are stored and available. The future scheduling parameters will be estimated
based on these previous measurements to consider the behavior of the system as well as
the behavior of the parameter itself.

The behavior of each scheduling parameter can be approximated by a linear autore-
gressive with exogenous inputs (ARX) model, which is a function of the previous parameter
values, the previous inputs to the system and the previous behavior of the states. This ARX
model can be generally represented as:

ρi(k + Np) = a0ρi(k) + . . . + aNp ρi(k− Np) + bT
0 u(k− 1) + . . .

. . . + bT
Np

u(k− Np − 1) + cT
0 x̃(k) + . . . + cT

Np
x̃(k− Np) (25)
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where u = [u1 u2]
T are the controllable inputs and x̃ are the selected states for each

scheduling parameter in order to predict the behavior through the RLS algorithm as shown
in Equation (33). Therefore, (25) can be expressed in a matrix form and be dependent only
on known variables in order to be suitable for the MPC paradigm. To find a solution for
the RLS algorithm, parameters a0 to cNp need to be calculated. These parameters will be
grouped in a vector as the following:

Θ(k) = [a0 . . . aNp , bT
0 . . . bT

Np
, cT

0 . . . cT
Np
]T (26)

resulting in:
ρi(k) = λ(k)TΘ(k) (27)

with:

λ(k)T =
[
ρi(k− Np), . . . , ρi(k− 2Np), uT(k− Np − 1), uT(k− 2Np − 1), x̃T(k− Np), . . . , x̃T(k− 2Np)

]
(28)

with (27) and (28) a direct solution for each scheduling parameter can be built and used to
find ρi in an online RLS algorithm as presented in [38]:

Θ(k) = Θ(k− 1) + σ(k)
(

ρi(k)− λ(k− 1)TΘ(k− 1)
)

(29)

Q̂(k) =
(

I − σ(k)λ(k)T
) Q̂(k− 1)

µ
(30)

with µ ∈ [0, 1] being a forgetting factor that gives exponentially less weight to older
error samples of the RLS algorithm, I being the identity matrix, and σ(k) being a vector
defined as:

σ(k) =
1

µĉ(k)
Q̂(k− 1)λ(k) (31)

and ĉ(k) is a scalar defined by:

ĉ(k) = 1 + γ(k)T Q̂(k− 1)
µ

λ(k) (32)

In order to have a more accurate estimation of the scheduling parameters, Equation (25)
will be adapted considering only the states that affect each scheduling parameter. Therefore,
the state vector x̃ will be defined depending on the scheduling parameter like the following.

x̃ =


[x1, x2, . . . , x8]

T ρ1, ρ2

[x9, x10]
T ρ3

[x11, x12]
T ρ4

(33)

The proposed RLS algorithm for estimating the future values of the four scheduling
parameters of the LPV model of the half-car active suspension is shown as Algorithm 1:



Machines 2022, 10, 137 9 of 18

Algorithm 1 Recursive Least Squares Algorithm for scheduling parameter prediction
Offline
Step 1—Initialize Θ(0) and Q̂(0)
Online
Step 2—Obtain ρi(k), x̃(k) and u(k)
Step 3—Construct λT(k) vector
Step 4—Calculate scalar ĉ
Step 5—Obtain vector σ(k)
Step 6—Obtain Θ(k)
Step 7—Obtain Q̂(k)
Step 8—Calculate ρi(k)
Step 9—Set k = k + 1, If k > Np go to Step 10, else, go back to step 3

Step 10—Construct P̂i(k) =
[
ρi(k), ρi(k + 1), . . . , ρi(k + Np)

]
Algorithm 1 needs to be performed for every scheduling parameter ρi. After solving

the RLS for the Np future scheduling parameters every ρi is considered known along the
prediction horizon, and a vector containing every value of each scheduling parameter can

be defined as: P̂i(k) =
[
ρi(k), . . . , ρi(k + Np)

]T
. Therefore (17) is no longer an equation

with unknown terms, and it can be solved through LMI optimization at every sampling
instant k.

6. Quadratic Stability in the LPV-MPC Approach

With the estimation of the future scheduling parameters along the prediction horizon,
the LPV-MPC strategy can be executed. To ensure quadratic stability of the LPV-MPC
algorithm, the half-car active suspension model presented in (13) can be considered to be
a parametric uncertain system with four different uncertain parameters being ρ1, ρ2, ρ3
and ρ4. All four scheduling parameters will be considered to be variable and bounded
around a certain range ρi min ≤ ρi ≤ ρi max determined by the precision of the prediction of
the RLS algorithm along the prediction horizon. This allows the MPC algorithm to have a
solution space closer to the actual value of the scheduling parameter, rather than solving
for every admissible value or possible value of the scheduling parameters, which results
in a less restrictive optimization problem in terms of stability conditions when compared
with the LPV approaches that consider that their scheduling parameters are not bounded
or bounded by a rate of change. To ensure quadratic stability in a parametric uncertain
system, the following linear matrix inequality (LMI) needs to be met as presented in [39].(

Ad(ρi) + Bd(ρi)K
)T

P
(

Ad(ρi) + Bd(ρi)K
)
− P < 0 (34)

which is the Riccati Equation for parametric uncertain systems where P > 0 is a positive def-
inite matrix of approapiate dimensions and K is a static feedback gain matrix. Afterwards,
(34) can be pre- and post-multiplied by a matrix Q = P−1 and KQ = R to obtain:(

QAT
d (ρi) + RTBT

d (ρi)
)

Q−1
(

Ad(ρi)Q + Bd(ρi)R
)
−Q < 0 (35)

To represent (35) as a compact LMI to cope with the MPC paradigm, the Schur
complement can be applied to obtain the following compact LMI:[

Q QAT
d (ρi) + RBd(ρi)

Ad(ρi)Q + Bd(ρi)R Q

]
> 0 (36)

the previous condition must be met for every point in the parameter space of the four
scheduling parameters ∀ρi ∈ $i with $i being the allowable parameter space of each
scheduling parameter. This led to an infinite number of LMI to be solved. Therefore, as
the half-car active suspension model is considered to be a parametric uncertain system,
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the previous equation can be evaluated on the vertex of the scheduling parameter space to
consider the worst-case scenarios only. Therefore, (36) can be rewritten as:[

Q QAT
d (ρi,m(j)) + RBd(ρi,m(j))

AT
d (ρi,m(j))Q + Bd(ρi,m(j))R Q

]
> 0 (37)

The previous condition must be met ∀j ∈ [k, k + Np] and ∀m ∈ [1, 2l ], where 2l is
the total number of vertices on the parameter space $ and l is the number of scheduling
variables ρi. For the half-car active suspension model, the total number of vertices in the
scheduling parameter space is equal to 16. Therefore, (37) is now a LMI finite problem
which is equal to 16 · Np. Since there exist the consideration of a static feedback gain K,
the control law is considered to be of the form u(k) = Kx(k). However, the LMI paradigm
does not consider a static feedback gain matrix, therefore, the previous condition can be
expressed as an inequality u(k) ≤ Kx(k). This led to a conservative performance of the
MPC strategy due to the limitations of the input variable and the conservative nature of the
quadratic stability condition in an uncertain system. To overcome this limitation, Section 7
aboard the inclusion of terminal sets in the LPV-MPC algorithm.

In order to include the quadratic stability conditions in the MPC algorithm, the
following optimization problem needs to be solved in order to find the optimal control
sequence at each time step k:

min
U

J s.t.(23), (24) and (37) (38)

7. MPC-LQR for LPV Models
7.1. Attraction Sets and Terminal Set

The inclusion of LMI (37) to ensure stability may result in a conservative performance
of the MPC algorithm, increasing settling times when the half-car active suspension system
is facing up disturbances. To overcome the conservative performance present in the
MPC paradigm due to the quadratic stability conditions, a series of attraction sets can be
included in the MPC strategy. The use of attraction sets and terminal sets have been used
widely in several MPC strategies, in [40] an offline MPC strategy for LPV systems using
a trajectory based on nested ellipsoids is presented. The number of nested ellipsoids is
dependent on the number of vertex of the polytope determined by the number of scheduling
parameters to comply with robust stability conditions. However, in this approach, the
corresponding feedback gain for every ellipsoid is computed offline and stored, and the
selection of a matrix gain at every simulation step is determined through interpolation
of the precomputed gains. In [41], an MPC for LPV systems using a path of ellipsoids to
predict the possible behavior of the scheduling parameter along the prediction horizon Np
is presented. The goal of this approach is to steer all the states to a terminal set, in which
the states can be steered to the origin employing a stationary feedback gain rather than the
control actions determined by the MPC law.

In this work, the future scheduling parameters are not known, but are predicted for
the next Np steps using the RLS algorithm presented in Section 3; therefore, the ellipsoids
to build around the scheduling parameters do not consider a bounded rate of change of
each scheduling parameter but rather the prediction error measured by the RLS algorithm
adjustments. To build an optimal desired trajectory, a path must be defined from every
possible initial state x(k) to an attraction set located at k + Np steps.

To steer the system into the desired attraction set, a terminal cost term JTS is added
to the cost function J presented in Equation (22). The terminal cost term is defined as the
following

JTS =
(

x(k + Np)− (xds + xdist)
)T

L
(

x(k + Np)− (xds + xdist)
)
− E(P̂) (39)
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where E(P̂) = ∑4
i=1 ∑

k+Np
j=k

[
ρi(j)− λ(j− 1)TΘ(j− 1)

]2
represents the sum of the squared

errors of the four scheduling parameters in the RLS prediction for the future values along
the prediction horizon. x(k + Np) are the predicted states at the end of the prediction
horizon, xds represents the desired state after Np steps obtained by a desired performance
without any disturbance, xdist is the predicted effect of the disturbance on the states Np
steps ahead and it was obtained by performing an open loop simulation of every possible
disturbance from every initial set of states. Both xds and xdist were computed offline and
stored in a lookup table. L is a weighing matrix of appropriate dimensions (nx × nx)
and should be selected depending on which states are more important to be steered to
the attraction sets. For this application, the states involving the suspension differential
equations are more weighted than the states involving the electro-hydraulic actuators, since
the objective is to optimize the performance of the half-car suspension. Therefore, (22) is
now defined as:

J = XTQcX + UTRcU + JTS (40)

The computation of every desired trajectory needs to be computed offline in order to
decrease execution times for the MPC algorithm and only search for the closest set of states
available in the lookup table.

7.2. MPC-LQR Dual Controller

To reduce the computational burden of the MPC optimization problem, when the
states of the system reach a terminal set close to the origin, the MPC algorithm no longer
needs to be computed. Instead of the MPC law, an LPV-LQR gain can be computed based
on the actual values of the scheduling parameter in order to cope with the small deviation of
the states around the origin without the conservatism of the MPC algorithm with quadratic
stability conditions and reducing the execution time of the optimization problem. The
control law can now be presented as:

u(k) =

{
Umpc x(k) /∈ T
KLQR(ρi)x(k) x(k) ∈ T

(41)

where KLQR(ρi) is the LQR gain dependent on the scheduling parameters ρi ∀i ∈ [1, 4] and
T is the terminal invariant set defined around the equilibrium point of the system.

Figure 3 presents the block diagram for the proposed LPV-MPC-LQR control strategy
for the half-car active suspension system. Additionally, the LPV-MPC-LQR algorithm is
shown in the flowchart presented in Figure 4.

Figure 3. Block diagram of the proposed LPV-MPC-LQR control strategy for the Half-Car Active Suspen-
sion system.
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Figure 4. Flow diagram of the LPV-MPC-LQR control strategy.

8. Results and Discussion

To prove the efficiency of the proposed MPC-LQR-LPV control strategy described in
Section 7 the following simulation of the half-car active suspension system against a typical
road disturbance is presented. The control algorithm was tested using a Simulink model of
the active suspension system presented in Section 2. Table 1 shows the specifications of the
half-car active suspension system as presented in [14].

Table 1. Constant Values of the Active Suspension system.

Variable Value Units

ms 690 kg
mu1 40 kg
mu2 45 kg
Iφ 1222 kg m2

ks1 18,000 N/m
ks2 22,000 N/m
ku1 200,000 N/m
ku2 200,000 N/m
cs1 1000 N/(m/s)
cs2 1000 N/(m/s)
l1 1.3 m
l2 1.5 m
Ps 10,342,500 Pa
τ 1/30 s
A 3.35× 10−4 m2

β 1 s−1

α 4.515× 1013 N/m−5

γ 1.545× 109 N/m5/2/kg1/2

kv 1× 10−4 m/V

In order to comply with the MPC paradigm, a discretization is made using a sampling
time Ts = 10 ms. A prediction horizon of Np = 3 was determined after several tests
using different prediction horizons. Using prediction horizons longer than 3 require longer
optimization time and resulted in more inaccurate prediction of the scheduling variables
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while the overall performance of the algorithm was not improved significantly. The control
objective is to maintain passenger comfort by minimizing the acceleration of the chassis
mass ms and the chassis pitch φ while maintaining safe driving conditions by means of
minimizing the stroke zsi − zui of both front and rear suspension units. The following
constraints were included in the control inputs and the states.

−12 V ≤ u1(k) ≤ 12 V

−12 V ≤ u2(k) ≤ 12 V

−1 cm ≤ zv1 ≤ 1 cm

−1 cm ≤ zv2 ≤ 1 cm

To test the efficiency of the proposed control strategy, the half-car active suspension
system is disturbed by a 10 cm bump with a length of 5 m while the car is driving at a
velocity of 45 km/h. Figure 5 shows the road profile of the disturbance for both wheels of
the half-car vehicle.

Figure 5. Road disturbance effect in both wheels of the half-car active suspension system.

Figures 6–9 show the behavior of the suspension when the disturbance showed in
Figure 5 is introduced. The control algorithm and the system simulations were done in the
Matlab-Simulink software environment. Furthermore, the software YALMIP [42] using the
QP-solver SDPT3 was used to solve the MPC optimization problem. The results presented
in [14] are included to make a comparison. Additionally, the results using the pure LQR
controller and the pure MPC controller are included to prove the efficiency of the combined
control strategies.
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Figure 6. Chassis acceleration (Blue—MPC-LQR, Red—H2, Yellow—MPC, Purple—LQR, Green—
Passive).

Figure 7. Pitch Acceleration (Blue—MPC-LQR, Red—H2, Yellow—MPC, Purple—LQR, Green—
Passive).
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Figure 8. Front Stroke (Blue—MPC-LQR, Red—H2, Yellow—MPC, Purple—LQR, Green—Passive).

Figure 9. Rear Stroke (Blue—MPC-LQR, Red—H2, Yellow—MPC, Purple—LQR, Green—Passive).

The results of the accelerations of both the chassis and the pitch angle show a better
performance, reducing the peak values of both the passive suspension and the H2 controller.
The settling time increases in the proposed LPV-MPC-LQR approach in order to dissipate
the disturbance energy in the suspension unit while preserving comfort for the passengers.
In terms of road-holding, the suspension strokes also exhibit a reduction in their peak
values while maintaining the same settling time, resulting in better road-holding for both
the front and rear suspension unit when compared to the other controllers presented and
the passive suspension.

Additionally to the presented graphic results, Tables 2 and 3 present the numerical
results of the compared algorithms. Table 2 presents the RMS value of the chassis accelera-
tion, pitch acceleration, and front and rear stroke, while Table 3 presents the peak values
for the aforementioned variables.
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Table 2. RMS Values performance.

Variable MPC-LQR-LPV H2 (Chen, 2005) MPC LQR Passive

Chassis Acceleration (m/s2) 0.1580 0.5716 0.1677 0.2671 0.7498
Pitch Acceleration (rad/s2) 0.1837 0.3966 0.4349 0.2910 0.5886

Front Stroke (m) 0.0276 0.0108 0.0238 0.0261 0.0537
Rear Stroke (m) 0.0289 0.0102 0.0350 0.0379 0.0665

Table 3. Max Values performance.

Variable MPC-LQR-LPV H2 (Chen, 2005) MPC LQR Passive

Chassis Acceleration (m/s2) 0.4766 1.6402 0.5487 0.7172 3.5120
Pitch Acceleration (rad/s2) 0.5779 1.6101 1.0416 0.6869 3.8897

Front Stroke (m) 0.0635 0.0822 0.0744 0.0777 0.0947
Rear Stroke (m) 0.0814 0.0822 0.1094 0.1154 0.1698

As shown in the previous Tables, the proposed MPC-LQR-LPV strategy presents
better results in terms of comfort than the other control strategies, reducing its RMS values
in a 72% and 54% in chasis and pitch acceleration, respectively, while the attenuation
in the peak values shows an improvement of 71% for chassis acceleration and 64% for
pitch acceleration when compared with the H2 controller. Furthermore, road-holding is
preserved in both front and rear suspension units with fewer peak values for the stroke
c[pink]with a reduction of 23% in the front stroke peak value when compared to the H2
controller strategy while maintaining similar RMS values for both rear and front strokes.

9. Conclusions and Future Work

In this paper, the control of a half-car active suspension system with electro-hydraulic
actuators is made by an MPC-LQR LPV control strategy ensuring Quadratic Stability and
the inclusion of attraction sets. The proposed strategy runs an RLS algorithm to obtain
the prediction of the four scheduling parameters of the LPV system along a prediction
horizon to simplify the optimization problem of the MPC. This application can cope with
other nonlinear systems with multiple nonlinearities which can be embedded into LPV
representations and therefore reduce the complexity of the MPC optimization problem and
allow faster execution times. The results show improvements in the performance of the
half-car active suspension system with electro-hydraulic actuators in terms of passengers’
comfort while maintaining appropriate road-holding conditions. Future research works
will focus on recursive feasibility analysis based on both stability and robust conditions.
Optimization of the MPC-LQR LPV algorithm to achieve faster execution times using
embedded systems techniques will be considered as future work as well.
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