
����������
�������

Citation: Yan, Q.; Wu, W.; Wang, H.

Deep Reinforcement Learning for

Distributed Flow Shop Scheduling

with Flexible Maintenance. Machines

2022, 10, 210. https://doi.org/

10.3390/machines10030210

Academic Editor: Kai Wang

Received: 16 December 2021

Accepted: 14 March 2022

Published: 16 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Deep Reinforcement Learning for Distributed Flow Shop
Scheduling with Flexible Maintenance
Qi Yan, Wenbin Wu and Hongfeng Wang *

College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
yanqqz@stumail.neu.edu.cn (Q.Y.); 2070814@stu.neu.edu.cn (W.W.)
* Correspondence: hfwang@mail.neu.edu.cn

Abstract: A common situation arising in flow shops is that the job processing order must be the same
on each machine; this is referred to as a permutation flow shop scheduling problem (PFSSP). Although
many algorithms have been designed to solve PFSSPs, machine availability is typically ignored.
Healthy machine conditions are essential for the production process, which can ensure productivity
and quality; thus, machine deteriorating effects and periodic preventive maintenance (PM) activities
are considered in this paper. Moreover, distributed production networks, which can manufacture
products quickly, are of increasing interest to factories. To this end, this paper investigates an
integrated optimization of the distributed PFSSP with flexible PM. With the introduction of machine
maintenance constraints in multi-factory production scheduling, the complexity and computation
time of solving the problem increases substantially in large-scale arithmetic cases. In order to solve
it, a deep Q network-based solution framework is designed with a diminishing greedy rate in
this paper. The proposed solution framework is compared to the DQN with fixed greedy rate,
in addition to two well-known metaheuristic algorithms, including the genetic algorithm and the
iterated greedy algorithm. Numerical studies show that the application of the proposed approach in
the studied production-maintenance joint scheduling problem exhibits strong solution performance
and generalization abilities. Moreover, a suitable maintenance interval is also obtained, in addition to
some managerial insights.

Keywords: permutation flow shop scheduling; distributed manufacturing; machine deterioration;
preventive maintenance; deep reinforcement learning

1. Introduction

The permutation flow shop scheduling problem (PFSSP) has been receiving consider-
able attention by academia and industry as a consequence of its broad applications. Earlier
studies have demonstrated it to be an NP-complete problem when the number of machines
involved is more than three. Beyond that, various heuristic or meta-heuristic algorithms
have been developed [1–8]. However, those studies simply assumed that all scheduling
tasks are done in one factory [9]. In the contemporary context of the decentralized and
globalized economy, distributed PFSSPs (DPFSSP) in multi-factory production networks
are becoming increasingly significant means to increase productivity and achieve lower
production costs and higher product quality [10]. In recent years, many models and algo-
rithms have been proposed to solve DPFSSPs [9,11–14], in which two key decision-makings
are considered, including allocating jobs to suitable factories, and scheduling operations on
machines.

A common assumption in most research of DPFSSPs is that all the machines are
continuously available during the whole production process [14]. Nevertheless, machine
deterioration is inevitable as their operating times increase, causing an ever-increasing
probability of machine failures. Thus, developing a proper maintenance strategy is criti-
cal [15]. In contrast to the corrective maintenance (CM) strategy, which has to be carried out

Machines 2022, 10, 210. https://doi.org/10.3390/machines10030210 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10030210
https://doi.org/10.3390/machines10030210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines10030210
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10030210?type=check_update&version=2

Machines 2022, 10, 210 2 of 14

immediately after machine failures, two types of preventive maintenance (PM) strategies
including time-based maintenance (TBM) and condition-based maintenance (CBM) have
become more popular in common environment configurations such as single machine, flow
shop and flexible job shop configurations. For TBM, two kinds of assumptions concerning
flexible PM strategies from literature are the following: (I) PM must be carried out within a
predetermined interval [u, v] whose duration is longer than the PM time [16–18]; (II) the
interval between two PMs cannot exceed a maximum allowed continuous processing
time [19,20]. For CBM, PM is not limited to a specific duration, but typically depends
on the machine’s age or multi-state degradation process [21–23]. In this paper, a TBM
strategy is integrated into the DPFSSP to minimize the makespan of the whole distributed
production system.

A result of the complexity of the integrated optimization of multi-factory production
scheduling and PM, the application of exact algorithms has limitations. Limited studies
only employed heuristic or meta-heuristic optimization algorithms to solve a large-size
instance within a short time. For instance, Chan et al. [24] and Chung et al. [25] studied the
distributed flexible job shop scheduling problem with maintenance using improved genetic
algorithms, in which the maintenance has to be carried out if the machine’s age reaches a
given maximum. Lei and Liu [26] proposed an improved artificial bee colony algorithm to
solve a distributed unrelated parallel machines problem with flexible PM. Wang et al. [27]
investigated a DPFSSP considering event-driven policy and right-shift schedule repair,
and developed a fuzzy logic-based hybrid estimation of the distribution algorithm. More
recently, Miyata and Nagano [28] proposed a multi-level flexible maintenance strategy in a
distributed no-wait flow shop in which sequence-dependent setup times were considered
as well. An iterated greedy algorithm with variable search neighborhood was designed for
solving small-sized and large-sized instances targeted at achieving a minimal makespan.
Similarly, Mao et al. [14] assumed that the same types of machines have the same PM
intervals in a DPFSSP and a multi-start iterated greedy algorithm proposed to achieve
production-maintenance joint optimization. Jafar-Zanjani et al. [29] developed robust and
resilient scheduling approaches in a multi-factory network with periodic maintenance and
uncertain disturbances, in which the proposed model in small and medium instances were
solved by CPLEX, and large-sized instances were solved by a heuristic method based on
the genetic algorithm.

Some reinforcement learning algorithms have been applied to the scheduling field
to satisfy requirements of real-time scheduling in actual scenarios. One of them is the
Q-learning (QL) algorithm. For instance, Wang and Usher [30] applied QL to address a
dispatching rule selection problem on a single machine with different system objectives.
After that, Wang et al. [15] applied a scheduling rules-based QL approach to jointly op-
timize single-machine scheduling and flexible maintenance, in which both deteriorating
effects and machine failures were considered. In addition, some researchers combined
QL with metaheuristics. For instance, Cheng et al. [31] proposed a multi-objective super-
heuristic algorithm based on QL with four heuristic update operators as the action set
for mixed scheduling. Lin et al. [32] used multiple heuristic update rules as QL actions
to semi-conductor test scheduling problems. Shahmardan et al. [33] used QL to learn
the neighborhood deconstruction of SA to solve the problem of truck scheduling. Long
et al. [34] focused on the flexible job shop scheduling problem using QL to learn the number
of randomly updated dimensions of nectar sources to improve the neighborhood search
of the artificial bee colony algorithm. More recently, Wang et al. [35] integrated QL with
the well-known artificial bee colony algorithm to efficiently solve distributed three-stage
assembly scheduling with maintenance.

However, in the practice of Q-learning, the dimensionality of the state space is usually
large for complex large-scale scheduling problems, resulting in Q-tables that are too large
for fast convergence. In order to solve it, attempts at neural network-based reinforcement
learning have been applied to production scheduling problems [36]; however, maintenance
activities were not considered. A deep Q-learning (DQN) approach is employed in this

Machines 2022, 10, 210 3 of 14

paper, in which the system state is defined by a binary group that consists of the interval
between the current time, the next latest start time of PM and the number of available jobs,
and the action space is a set of available jobs. In order to evaluate the solving performance
of the DQN-based solution framework, several numerical studies are conducted over many
instances. It is observed that the DQN-based optimization approach has greater solution
potential compared to two metaheuristic approaches.

The remainder of this paper is organized as follows: Section 2 describes the proposed
problem in detail; a DQN-based optimization approach is presented in Section 3; numerical
studies and discussions are conducted in Section 4; conclusions are provided in Section 5,
along with research limitations and future research directions.

2. Problem Description

The application scenario of the studied DPFSSP with PM is described as follows:
there are n jobs to be processed on f factories, in which each factory has m machines;
each job is available at time zero and its operations number is equal to the machines’
numbers in one factory, and all the operations of a job must be processed in the order
from machine 1 to machine m according to the precedence constraint; different jobs have
the same priority, and there is no priority limit between operations of different jobs; the
normal processing time of each operation of each job is known in advance and is slightly
different on different available machines; however, it may be extended as a consequence of
machines’ wear and tear, which is treated as deteriorating processing time in this paper.
Inspired by [20], the deteriorated processing time of a job is expressed as a linear function
of the machine’s age at the start time of processing the job, where the slope is the defined
deterioration rate and the intercept is the normal processing time. With increasing machine
age, the probability of machine failures increases, thus proactive maintenance strategies
become increasingly important; one of them is the time-based PM strategy. Based on the
flexible maintenance schedule defined in our previous studies [15,37], i.e., the expected
PM schedule kT(k = 1, 2, · · ·) with a fixed interval T can be shifted within flexible time
windows, where kT− ∆1 and kT + ∆2 are respectively the earliest and latest times at which
the machine starts and stops its PM. This paper assumes that each machine is assigned
periodic flexible maintenance time windows from the time it is powered on, in which
PM times on different machines are identical. However, the occurrence of PM activities
consumes an amount of production time; thus, the trade-off between production and
maintenance is critical. Hence, the minimal makespan is selected as the optimization
objective. Some additional assumptions in this paper are stated as follows: (1) if the
assigned machine is being occupied, some jobs have to wait in the buffer, and thus the
buffer space is assumed to be sufficient; (2) setup time of machines is ignored and the
transfer time between operations from one machine to another machine is negligible; (3) any
activities during the process of production and maintenance cannot be interrupted; (4) the
proposed PM is perfect, which can restore a deteriorating machine’s age to zero.

In a similar manner to the study by Mao et al. [14], the following illustrative case is
provided to evaluate the importance of the proposed DPFSSP with PM: there is a set of ten
jobs to be assigned to two factories, each of which consists of three machines. The normal
processing times of the jobs are shown in Table 1, in which FiMj represents machine j in
factory i, and the deteriorating rate is set to 0.1. As for the maintenance activities, T, ∆1 and
∆2 are set to 30, 3 and 5, respectively, and the PM time is equal to 4.

Firstly, we refer to the mixed integer linear programming (MILP) model presented
by [38] and use the software CPLEX to solve for an optimal solution to the example without
considering deteriorating effects and PM activities. As shown in Figure 1, Job 10, Job 1, Job 3,
Job 6 and Job 9 are sequentially assigned to Factory 1, and Factory 2 needs to manufacture
Job 4, Job 7, Job8, Job5 and Job 2 in sequence. In this allocation model, the maximum
completion time for each factory is 83, which also implies an optimal makespan of 83.

Machines 2022, 10, 210 4 of 14

Table 1. Normal processing times of the jobs.

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9 Job 10

F1M1 10 9 12 8 9 17 15 9 13 8
F1M2 11 14 12 11 13 14 7 13 7 14
F1M3 10 13 13 12 6 12 15 18 10 15
F2M1 9 8 11 7 10 15 15 7 13 8
F2M2 10 17 10 11 11 15 7 13 7 15
F2M3 13 12 15 13 7 12 15 18 12 16

Machines 2022, 10, x FOR PEER REVIEW 4 of 15

F2M2 10 17 10 11 11 15 7 13 7 15

F2M3 13 12 15 13 7 12 15 18 12 16

Firstly, we refer to the mixed integer linear programming (MILP) model presented

by [38] and use the software CPLEX to solve for an optimal solution to the example with-

out considering deteriorating effects and PM activities. As shown in Figure 1, Job 10, Job

1, Job 3, Job 6 and Job 9 are sequentially assigned to Factory 1, and Factory 2 needs to

manufacture Job 4, Job 7, Job8, Job5 and Job 2 in sequence. In this allocation model, the

maximum completion time for each factory is 83, which also implies an optimal makespan

of 83.

Figure 1. Gantt chart for an optimal solution of the DPFSSP without deteriorating effects and PM.

Next, deteriorating effects and PM are considered in the DPFSSP, however, we do

not change the optimal scheduling of the original DPFSSP and only insert the proposed

flexible PM constraints into the optimal scheduling considering deteriorating effects. As

shown in Figure 2, the processing time of the job is extended as long as a machine’s age at

the start time of processing the job is not zero. For instance, the deteriorating processing

time of the Job 1 of F1M1 can be calculated by 10 + 0.1 × 8 = 10.8, in which 10 is the nor-

mal processing time, 0.1 denotes the deteriorating rate, and 8 is the machine’s age imme-

diately prior to Job 1 of F1M1. It is also observed that the insertion of PM activities disrupts

the initially tight schedule. There is a lot of idle time resulting from machine unavailabil-

ity, which causes a longer makespan. Specifically, take F1M2 as an example to illustrate

this phenomenon.

Figure 2. Gantt chart after considering deteriorating effects and PM constraints in the optimal

DPFSSP solution.

Figure 1. Gantt chart for an optimal solution of the DPFSSP without deteriorating effects and PM.

Next, deteriorating effects and PM are considered in the DPFSSP, however, we do not
change the optimal scheduling of the original DPFSSP and only insert the proposed flexible
PM constraints into the optimal scheduling considering deteriorating effects. As shown in
Figure 2, the processing time of the job is extended as long as a machine’s age at the start
time of processing the job is not zero. For instance, the deteriorating processing time of the
Job 1 of F1M1 can be calculated by 10 + 0.1× 8 = 10.8, in which 10 is the normal processing
time, 0.1 denotes the deteriorating rate, and 8 is the machine’s age immediately prior to Job 1
of F1M1. It is also observed that the insertion of PM activities disrupts the initially tight
schedule. There is a lot of idle time resulting from machine unavailability, which causes a
longer makespan. Specifically, take F1M2 as an example to illustrate this phenomenon.

Machines 2022, 10, x FOR PEER REVIEW 4 of 15

F2M2 10 17 10 11 11 15 7 13 7 15

F2M3 13 12 15 13 7 12 15 18 12 16

Firstly, we refer to the mixed integer linear programming (MILP) model presented

by [38] and use the software CPLEX to solve for an optimal solution to the example with-

out considering deteriorating effects and PM activities. As shown in Figure 1, Job 10, Job

1, Job 3, Job 6 and Job 9 are sequentially assigned to Factory 1, and Factory 2 needs to

manufacture Job 4, Job 7, Job8, Job5 and Job 2 in sequence. In this allocation model, the

maximum completion time for each factory is 83, which also implies an optimal makespan

of 83.

Figure 1. Gantt chart for an optimal solution of the DPFSSP without deteriorating effects and PM.

Next, deteriorating effects and PM are considered in the DPFSSP, however, we do

not change the optimal scheduling of the original DPFSSP and only insert the proposed

flexible PM constraints into the optimal scheduling considering deteriorating effects. As

shown in Figure 2, the processing time of the job is extended as long as a machine’s age at

the start time of processing the job is not zero. For instance, the deteriorating processing

time of the Job 1 of F1M1 can be calculated by 10 + 0.1 × 8 = 10.8, in which 10 is the nor-

mal processing time, 0.1 denotes the deteriorating rate, and 8 is the machine’s age imme-

diately prior to Job 1 of F1M1. It is also observed that the insertion of PM activities disrupts

the initially tight schedule. There is a lot of idle time resulting from machine unavailabil-

ity, which causes a longer makespan. Specifically, take F1M2 as an example to illustrate

this phenomenon.

Figure 2. Gantt chart after considering deteriorating effects and PM constraints in the optimal

DPFSSP solution.

Figure 2. Gantt chart after considering deteriorating effects and PM constraints in the optimal DPFSSP
solution.

The first is the initialization of flexible maintenance time windows on Machine 2 of
Factory 1. Since the first job, i.e., Job 10 of F1M2, is initially processed immediately after
its previous operation on Machine 1 of Factory 1 which is finished at time 8, and T, ∆1

Machines 2022, 10, 210 5 of 14

and ∆2 are set to 30, 3 and 5, respectively, the set of time windows of F1M2 is noted as
{[35, 43], [65, 73], [95, 103], · · · }. The next step is to determine if the insertion of each job
conflicts with the PM, and update its actual start time and completion time accordingly.
Job 10 is finished at time 22 with a normal processing time of 14. Then, the starting time
of Job 1 of F1M2 is 22, which depends on the maximum completion time between the
last job on Machine 2 of Factory 1 and the last operation on Machine 1 of Factory 1. As a
result of the deterioration effect, the deteriorating processing time of Job 1 of F1M2 is equal
to 12.4 and its completion time is 34.4. Obviously, processing the first two jobs does not
conflict with the first flexible time window, i.e., [35, 43]. However, the next Job 3 cannot be
processed immediately after Job 1, since the insertion of Job 3 would make the completion
time greater than the difference between the upper boundary of the maintenance time
window and the PM time, i.e., it conflicts with the time window, and more importantly,
the previous operation to Job 3 has not yet been executed. Therefore, after the processing
of Job 1 of F1M2, the machine has 0.6 idle time and PM is performed at the lower bound
of the time window, i.e., at time 35, and is finished at time 39. The machine then remains
idle until time 43; the first operation of Job 3 is finished on Machine 1 of Factory 1 and the
second operation of Job 3 is started on Machine 2 of Factory 1. Similarly, the scheduling
of subsequent jobs of F1M2 generates more idle time as a result of the maintenance time
window constraints and the completion time constraints of the corresponding previous
operations. The same rule is applied to all the machines and a makespan of 123 is obtained.

Considering that the above MILP model applied to the original problem has become
difficult to derive an optimal (even a feasible) solution for in a reasonable time using
CPLEX as the problem scales up, solving the integrated optimization of the flexible PM
and the DPFSSP with deteriorating effects using traditional mathematical programming
method is even harder. To this end, a deep reinforcement learning approach is developed
in the next section to address this issue. Based on this model-free learning approach, inte-
grated optimization results can be obtained in shorter times, and the better one in limited
learning episodes is provided in Figure 3. The integrated optimization result consists of
a job sequence {Job 10, Job 2, Job 1, Job 7, Job 9} with a maximum completion time of
95.9 in Factory 1, and a job sequence {Job 4, Job 3, Job 8, Job 5, Job 6} with a maximum
completion time of 95 in Factory 2. Due to the flexibility of periodic maintenance times,
there is less idle time in addition to fewer executions of PMs. The makespan is equal to
95.9, which implies a decrease in the solution in Figure 2 of 22.03%. This also reflects the
necessity of the studied joint optimization problem in addition to the developed flexible
maintenance strategy.

Machines 2022, 10, x FOR PEER REVIEW 6 of 15

Figure 3. Gantt chart for an optimal solution of the integrated scheduling of the DPFSSP and the

PM.

3. Solution Approach Design

3.1. Background of General Q-Learning and Deep Q Networks

Among the various reinforcement learning (RL) based algorithms, Q-learning is a

typical model-free RL algorithm which directly interacts with the environment using a

trial-and-error approach. In order to find a balance between exploration (of uncharted

territory) and exploitation (of current knowledge), ϵ-greedy method is commonly used.

Specifically, a random variable τ ∈ (0,1) is generated to compare with the predefined

value ϵ; if τ < ϵ, then the action corresponding to the best Q-value will be selected, oth-

erwise an action � will be performed randomly from an action set at state �. The detailed

procedure of the general QL algorithm is shown as Algorithm 1. Each episode is treated

as one learning process. In each learning process, an action � is selected by the agent

located in state � beforehand and then a new state �� and immediate reward are re-

ceived, followed by updating the Q-value for the state-action pair (�, �). Through contin-

uous learning, better Q-values will be obtained along with an optimal action-selection

policy for the agent [15].

Algorithm 1 General Q-Learning Algorithm

Initialize Q-values �(�, �) arbitrarily for all state-action pairs

Repeat (for each episode):

Initialize a state �

 Repeat (for each episode step):

Choose an action � from the state � using ϵ-greedy policy derived from �

Take action �, and observe the new state �� and reward �(�, �)

Update Q-value, �(�, �) ← (1 − �)�(�, �) + �[�(�, �) + � ∙ ������(��, ��)]

(�: learning rate; �: discount factor)

� ← ��;

until � is terminated

As the size of the problem increases, a greater number of states and actions need to

be stored, i.e., the Q-table becomes increasingly large, making it difficult to obtain a con-

vergent result in a limited learning time. Fortunately, the introduction of a deep Q net-

work (DQN) can solve this problem by considering states as inputs to the neural network

Figure 3. Gantt chart for an optimal solution of the integrated scheduling of the DPFSSP and the PM.

Machines 2022, 10, 210 6 of 14

3. Solution Approach Design
3.1. Background of General Q-Learning and Deep Q Networks

Among the various reinforcement learning (RL) based algorithms, Q-learning is a
typical model-free RL algorithm which directly interacts with the environment using a
trial-and-error approach. In order to find a balance between exploration (of uncharted
territory) and exploitation (of current knowledge), ε-greedy method is commonly used.
Specifically, a random variable τ ∈ (0, 1) is generated to compare with the predefined value
ε; if τ < ε, then the action corresponding to the best Q-value will be selected, otherwise an
action a will be performed randomly from an action set at state s. The detailed procedure
of the general QL algorithm is shown as Algorithm 1. Each episode is treated as one
learning process. In each learning process, an action a is selected by the agent located in
state s beforehand and then a new state s′ and immediate reward are received, followed by
updating the Q-value for the state-action pair (s, a). Through continuous learning, better
Q-values will be obtained along with an optimal action-selection policy for the agent [15].

Algorithm 1 General Q-Learning Algorithm

Initialize Q-values Q(s, a) arbitrarily for all state-action pairs
Repeat (for each episode) :
Initialize a state s

Repeat (for each episode step) :
Choose an action a from the state s using ε-greedy policy derived from Q
Take action a, and observe the new state s′ and reward r(s, a)
Update Q-value, Q(s, a) ← (1− α)Q(s, a) + α[r(s, a) + γ·maxa′Q(s′, a′)]
(α : learning rate; γ : discount factor)
s← s′ ;

until s is terminated

As the size of the problem increases, a greater number of states and actions need
to be stored, i.e., the Q-table becomes increasingly large, making it difficult to obtain
a convergent result in a limited learning time. Fortunately, the introduction of a deep
Q network (DQN) can solve this problem by considering states as inputs to the neural
network [39,40], and generating Q function values of each state-action pair via analysis
of the neural network without taking up space for storage. This approach can deal with
complex decision-makings involving large and continuous state spaces. Specifically, two
main improvements are included in the DQN, one of which is to establish an experience
replay memory D with the capacity of N _ to store the transition (φt, at, rt, φt+1) at each
time-step t. The parameter updating depends on the minibatch of transitions randomly
selected from the replay memory, which disrupts the correlation between experiences, and
makes the neural network update more efficiently. An old experience is not replaced by a
new one until the capacity of the replay memory reaches N _. Another advancement is the
use of the target action-value function Q̂, which can update parameter θ by calculating the
target values and loss function. In addition, Q̂ is reset by the action-value function Q every
C steps, which can improve the stability of the algorithm. The detailed procedure of the
DQN is shown as Algorithm 2 [36].

To the best of our knowledge, little research has been undertaken thus far to apply this
DQN approach to the integrated optimization of production scheduling and preventive
maintenance. To this end, this paper employs the DQN optimization approach to solve the
DPFSSP considering deteriorating effects and flexible maintenance activities. The detailed
definitions of states, actions and rewards are provided in Section 3.2.

Machines 2022, 10, 210 7 of 14

Algorithm 2 Deep Q-Learning Algorithm with Experience Replay

Initialize replay memory D to capacity N _
Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ− = θ

For episode = 1: M_ do
Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
For t = 1: T_ do

With probability ε select a random action at
otherwise select at = argmaxaQ(φ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1
Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions

(
φj, aj, rj, φj+1

)
from D

Set yj =

{
rj

rj + γmaxa′ Q̂
(

φj+1, a′; θ−
) if episode terminates at step j + 1

otherwise

Perform a gradient descent step on
(

yj −Q
(

φj, aj; θ
))2

with respect to the network
parameters θ

Every C steps reset Q̂ = Q
End For

End for

3.2. Definition of Key Elements

In the studied DPFSSP with flexible PM, each machine is faced with the judgement of
whether production and maintenance are in conflict with each other. In order to portray
this feature, the array formed by the difference between the current completion time of
the job on each machine and the upper bound of the upcoming flexible maintenance time
window is treated as the system state. In order to avoid the input of DQN from varying
within a wide range, we map the above differences to a number of small intervals. In this
difference-based definition approach, it is possible to traverse the defined states several
times in a single learning session due to the periodicity of maintenance, which can improve
the learning efficiency of DQN.

As a result of the property of the permutation flow shop, assigning a job to a factory is
an action in this paper. This means that the capacity of the action space is the product of the
number of factories and the number of jobs. Compared to the case where scheduling rules
are used as actions [15,36,37], our solution space can be more diverse, and the combination
of Q-learning and neural networks can guarantee the solving speed. Moreover, the action
space is constantly changing, as it can only be selected from the actions corresponding to
jobs that have not yet been assigned. Once a job is assigned to a factory as an action is
selected, the actions for that job assigned to other factories are removed from the action
space available for this learning round.

Since the objective of the proposed problem is to minimize the makespan of all the
factories, it is critical to maintain a balance of maximum completion times across factories in
the selection of actions. To this end, variations in the variance of the maximum completion
time for each factory before and after the execution of the action are used to develop
different immediate rewards. If the variance becomes smaller, i.e., the loading capacity
of all the factories is more similar, a positive immediate reward is obtained, which is
calculated by a countdown of the current system maximum completion time. This implies
that a smaller production cycle corresponds to a larger positive reward. Conversely, a
larger variance reflects that the chosen action does not balance the capabilities of all the
factories, and a negative reward should be received by calculating the difference between
the maximum completion time before and after the action is executed. Additionally, the
final reward can be received after a learning process, reflecting the difference between
the makespan obj∗ in the current learning episode and the historically optimal makespan

Machines 2022, 10, 210 8 of 14

objmin. A smaller difference means a bigger final reward. The detailed procedure to achieve
a round of interaction between the agent and the environment is provided in Algorithm 3.

Algorithm 3 Interaction Process between the Agent and the Environment at Each Decision Point t

Reserve the completion time list [C11(t− 1), · · · , C1m(t− 1), C21(t− 1), · · · , C2m(t− 1), · · ·]
immediately prior to at and corresponding maximum completion time list
[maxC1m(t− 1), maxC2m(t− 1), · · ·]
Update the completion time list [C11(t), · · · , C1m(t), C21(t), · · · , C2m(t), · · ·] mediately after at

and corresponding maximum completion time list
[
maxC1m(t), maxC2m(t), · · · , maxC f m(t)

]
Find the latest maintenance start time in upcoming time windows
[T11(t), · · · , T1m(t), T21(t), · · · , T2m(t), · · ·]
Calculate the differences [T11(t)− C11(t), · · · , T1m(t)− C1m(t), T21(t)− C21(t), · · · , T2m(t)−
C2m(t), · · ·]
Update the system state list [s11(t), · · · , s1m(t), s21(t), · · · , s2m(t), · · ·] based on the above
difference list
Remove all the actions that relate to the assigned job in at from the available action space
If the system state is terminated, i.e., there are no more jobs that can be assigned to any factory,
then

calculate the final reward, i.e.,
(

objmin − obj∗)/objmin

Else
Calculate the variance of [maxC1m(t− 1), · · ·] and [maxC1m(t), · · ·] as ϑ1 and ϑ2, respectively
If ϑ1 ≤ ϑ2 then

receive a negative immediate reward, i.e., max[maxC1m(t− 1), · · ·]− max[maxC1m(t), · · ·]
Else

a positive immediate reward is obtained, i.e., 1/max[maxC1m(t− 1), · · ·]
End If

End If

3.3. Overall Algorithm Framework

The training method is based on the framework of DQN which consists of one input
layer and one output layer. The numbers of nodes in input and output layers are equal
to the numbers of states and available actions, respectively. In the training process, the
decision point t is defined as every time an action at is about to be selected, followed by the
execution of Algorithm 3. However, this algorithm does not include the scenario where
t = 1, which means that t is at least greater than or equal to 2. This is a result of the
first action being selected without a prior sequence of jobs for comparison and the initial
state of the system is still not initialized, for which we design Algorithm 4. The selection
of the first action is crucial to ensure the quality of the solution from a certain point of
view. Completely random selection, although it guarantees the diversity of solutions, does
not consider the propensity to select the first action in the historical optimal solution. In
our algorithm, if the makespan learned in a certain round is better than the minimum of
historical learning, the first action of this round will be inherited for the next generation
of learning; otherwise, the greedy strategy of random exploration is used again. The
procedure for initializing the flexible maintenance time window list for each machine is
shown in Algorithm 5.

Machines 2022, 10, 210 9 of 14

Algorithm 4 Selection of the First Action

Input (Optional): The Job List which includes the first job of each factory in the previous solution
Initialize the list of machines in all the factories, i.e., ML = [′F1M1′, · · · , ′F2M1′, · · ·]
For machine in ML do

If the machine index is equal to 1 then
let the starting time of the machine is 0 and initialize the time window list using Algorithm 5
If the input is empty, i.e., the previous solution is worse than the historical optimal solution,

then
select the first job randomly from the optional job list for the machine

Else
select the job of the corresponding machine in the list of entered Job List

End If
Else

Update the current machine and machine index
Calculate the starting time of the machine, i.e., the completion time of the previous machine
Initialize the time window list using Algorithm 5
Identify and reserve the selected operation which depends on the last operation of the

previous machine
End If
Update the available action space, remaining operation number
Update the lists of the starting time, processing time, machine’s age, completion time
Initialize the system state referring to the difference calculation in Algorithm 3
Remove the selected operation from job lists for all the factories

End For
Reserve the maximum completion time for all the factories
Output: System state features, available action space

Algorithm 5 Initialization of Flexible Maintenance Time Windows

timeWindowList = [[] for machine in ML]
Input: Machine type (e.g., ′F1M1′), machine′s starting time st
For index = 1: N + 2 do

Append [st + index ∗ T − ∆1, st + index ∗ T + ∆2] in the corresponding list in the
timeWindowList
End For
Output: timeWindowList

Regarding the selection of subsequent actions based on the observed state features,
an improved version of the ε-greedy policy presented in Algorithm 1 is implemented.
Specifically, an initial period of learning experience is explored using a completely random
strategy, followed immediately by a linear reduction in the greedy rate to ensure that the
subsequent learning process is more based on prior experience rather than being dominated
by randomness. Due to the setting of flexible maintenance time windows and priority
constraints between operations, the selected action may not be performed immediately.
Specifically, if the direct execution of an action conflicts with the flexible maintenance
constraint or the completion time of the last operation, the implementation of the action
will be postponed. The detailed judgement and coordination of the production actions and
the implementation of PM are given in Algorithm 6. The overall framework is presented in
Algorithm 7.

Machines 2022, 10, 210 10 of 14

Algorithm 6 Judgement of the Start Time of Actions

Input: Selected action
Decode the selected action, i.e., which job is to be assigned to which factory
For machineIndex = 1 : M do

If the machine index is equal to 1 then
the earliest start time of the action is initialized as the completion time of the last job on this

machine
Else

the earliest start time depends on the maximum completion time of the previous job as well
as operation

End If
Update the available action space, remaining operation number
Calculate the actual processing time and remove the selected operation from job lists for all the

factories
If the completion time of the previous job does not conflict with the adjacent time window and

the insertion of the action still does not conflict with the time window constraint then
the starting time of the action is equal to the earliest start time of the action

Else if the PM is performed immediately after the previous job then
the starting time of the action is equal to the maximum value of the action’s earliest start time

and the completion time of PM
Else if the completion time of the previous job does not conflict with the adjacent time window

and the insertion of the action still does not conflict with the time window constraint then
the machine keeps idle until the lower bound of the time window and PM is performed

Calculate the starting time of the action by evaluating the maximum value of the action’s
earliest start time and the completion time of PM

End If
Update the lists of the starting time, processing time, machine’s age, completion time
Update the system state referring to the difference calculation in Algorithm 3

End For
Reserve the maximum completion time for all the factories
Output: Start time of the selected action

Algorithm 7 DQN-Based Solution Framework

Input: Learning number, learning rate α, greedy rate ε and its rate of change, capacity N _ of
replay memory, minibatch size, discount factor γ, iteration interval C of updating the target
network Q̂
For episode = 1: Learning number do

Select the first action using Algorithm 4 to initialize the system state features
While True:

Choose an action based on the observed state features using Algorithm 2
Judge the actual start time of the chosen action using Algorithm 6
Update new state features and calculate immediate reward using Algorithm 3
Store the transition process in D using Algorithm 2
If there are no more jobs that can be assigned to any factory then

calculate the final reward using Algorithm 3
Break

End If
End While

End For
Output: Algorithm runtime, learning curve, detailed optimal scheduling result

4. Numerical Experiments

In this section, parameter settings are provided at first, followed by the description
of several algorithm competitors and the analysis of comparative experiments. Last but
not least, different maintenance cycle settings are analyzed to derive a better makespan.
All algorithms are coded in Python 3.6 and run on an Intel(R) Core(TM) i7-8700 CPU
(3.20 GHz/16.00 GB RAM) PC.

Machines 2022, 10, 210 11 of 14

4.1. Parameter Settings

To the best of our knowledge, there is no existing instance of the proposed problem,
thus some benchmarks are generated based on the following parameters in Table 2, where
the normal processing time of a job on each machine follows a uniform distribution from
5 to 20, which is slightly different for different factories. We refer to the research of Mao
et al. [14] to set the variation range of maintenance interval T from 50 to 150. Unlike them,
this paper assumes that T is the same for each machine and wants to explore a T that
makes the makespan optimal using simulation experiments. The time window parameters
and the length of maintenance are fixed as 3, 5 and 4, respectively, based on our previous
research [37]. In addition, the parameters related to the deep reinforcement learning are
presented in Table 3.

Table 2. Problem-related parameters.

Number of jobs {20, 40, 60, 80, 100}
Number of machines {3, 5}
Number of factories {2, 3, 4}
Processing time of a job [5, 20]
Maintenance cycle {50, 60, 70, 80, 90, 100 110, 120, 130, 140, 150}

Table 3. Learning-related parameters.

Parameters Values

Learning number 5000
Replay memory size 2000
Batch size of samples to perform gradient descent 128
Greedy rate Linearly decreases from 0.5 to 0.1
Learning rate 0.1
Discount factor 0.9
Iteration interval of updating the target network 300

4.2. Performance Evaluation of the Developed Algorithm

In this section, the maintenance cycle is fixed as 50, and 30 scenarios in terms of
different numbers of factories, machines and jobs are designed to evaluate the performance
of the proposed DQN with diminishing greedy rate (DQND) by comparing with three
optimization algorithms, including state-of-the-art genetic algorithm (GA) [41], iterated
greedy algorithm (IGA) [14] and the DQN with fixed greedy rate of 0.1 (DQNF). The
termination condition of all the algorithms is a maximum elapsed CPU time which is
estimated by the formula t = C_ × m× n [14], in which C _ is set to 200 for the comparison
experiments. The detailed experimental comparison results are shown in Table 4, in which
the symbols ‘mean’ and ‘std’, respectively, denote the means and standard values of
20 trials for each algorithm. In order to show these results more clearly, a one-tailed
t-test with 38 degrees of freedom at a 0.05 level of significance is employed to conduct
statistical analysis. The comparative results are shown as ‘+’, ‘−’ or ‘~’, respectively, when
the proposed DQND is significantly better than, significantly worse than, or statistically
equivalent to its algorithm competitors. Obviously, the performance of proposed DQND is
better than the others within limited time resources in almost all the scenarios, particularly
in complicated scenarios. Besides, the advantage of distributed manufacturing is also
confirmed in experiments, i.e., the greater the number of factories, the smaller the makespan
for the same number of jobs and machines set up.

Some interesting managerial insights are also obtained by adjusting different T under
a specific environment configuration of F = 2, M = 3 and J = 40. As shown in Table 5, the
objective function does not exactly show a monotonic trend of variation with increasing T,
but there is still a gradual deterioration process, which implies that too large a T results in
an exacerbated amplification of the deterioration effect of the jobs within a maintenance

Machines 2022, 10, 210 12 of 14

cycle. By comparing all the extreme value points, it is not difficult to find the optimal
maintenance cycle.

Table 4. Comparison of four approaches to the makespan objective when T = 50, δ1 = 3 and δ2 = 5.

F M J
DQND DQNF GA IGA

Mean Std Mean Std t-Test Mean Std t-Test Mean Std t-Test

2 3

20 178.00 2.19 183.12 1.20 + 177.20 2.25 ~ 175.11 1.56 −
40 322.15 1.75 340.52 2.56 + 324.86 3.86 + 321.89 2.49 ~
60 495.63 2.01 533.17 1.79 + 501.89 4.79 + 498.24 3.46 +
80 642.40 2.98 679.30 3.05 + 658.45 4.35 + 650.75 2.89 +
100 808.28 3.48 867.95 3.76 + 820.14 5.80 + 812.37 4.01 +

2 5

20 221.29 1.76 235.24 0.99 + 219.54 1.42 − 218.46 1.68 −
40 380.65 1.45 394.66 1.49 + 383.27 2.43 + 384.12 1.77 +
60 539.78 1.89 578.20 2.64 + 548.31 2.87 + 545.33 2.20 +
80 707.51 2.18 746.79 1.86 + 715.24 3.58 + 709.64 3.87 +
100 891.45 2.45 911.56 2.51 + 901.70 4.76 + 896.34 4.06 +

3 3

20 131.02 0.86 145.28 2.01 + 129.11 1.10 − 130.97 1.92 ~
40 234.64 1.64 252.69 1.94 + 233.98 2.49 ~ 235.88 2.04 +
60 344.48 1.82 356.17 2.31 + 350.86 3.47 + 349.18 3.28 +
80 455.89 2.49 470.92 1.68 + 460.75 2.54 + 459.66 4.08 +
100 554.10 3.08 581.34 1.99 + 565.34 4.97 + 560.02 3.67 +

3 5

20 168.02 1.54 188.02 1.76 + 167.20 1.16 − 166.16 1.01 −
40 281.72 1.25 294.32 0.86 + 283.56 2.89 + 282.14 2.04 +
60 390.15 1.99 410.59 2.14 + 395.68 4.06 + 393.54 3.47 +
80 495.17 2.51 512.62 3.12 + 506.86 3.85 + 500.02 2.88 +
100 601.44 1.67 624.25 2.68 + 606.79 5.10 + 604.29 3.79 +

4 3

20 100.12 0.76 120.96 1.58 + 99.59 1.29 − 99.76 0.99 ~
40 194.06 1.05 230.42 2.16 + 196.13 2.16 + 194.32 1.83 +
60 278.46 1.69 291.68 1.76 + 283.59 3.47 + 280.49 2.56 +
80 360.17 2.54 379.69 1.53 + 369.96 4.63 + 365.56 3.29 +
100 437.69 2.34 455.16 2.18 + 442.77 3.57 + 439.76 4.25 +

4 5

20 131.35 1.86 152.30 2.34 + 131.59 2.44 + 130.45 1.85 −
40 225.16 2.04 248.36 1.58 + 233.75 3.86 + 229.37 2.88 +
60 315.33 1.66 330.27 1.36 + 318.62 2.76 + 317.60 3.49 +
80 410.89 2.38 440.86 2.86 + 415.63 4.35 + 415.31 2.95 +
100 475.51 3.06 501.24 2.76 + 481.21 3.86 + 479.62 4.32 +

Table 5. Comparison of four approaches to the makespan objective when F = 2, M = 3 and J = 40.

T
DQND DQNF GA IGA

Mean Std Mean Std Mean Std Mean Std

50 322.15 1.75 340.52 2.56 324.86 3.86 321.89 2.49
60 332.71 1.46 348.85 1.95 334.22 2.89 331.89 2.43
70 331.25 2.03 341.55 2.58 332.17 4.21 332.12 1.68
80 335.42 1.45 349.79 1.64 334.69 2.89 336.88 3.49
90 342.56 1.67 356.34 1.35 345.86 2.64 344.64 2.34

100 346.28 1.89 359.60 2.57 346.98 1.97 345.66 2.69
110 361.29 2.56 386.99 2.68 365.47 3.44 363.20 3.64
120 362.75 2.35 385.42 3.04 363.70 1.66 364.18 2.34
130 361.92 1.75 386.48 2.67 362.86 2.76 362.56 3.48
140 366.46 2.41 397.12 1.95 369.79 3.45 365.79 2.99
150 371.11 2.68 402.31 1.86 377.64 2.86 374.55 3.47

Machines 2022, 10, 210 13 of 14

5. Conclusions

Distributed manufacturing has attracted a lot of attention from scholars and practition-
ers in recent years; however, it is rarely studied in conjunction with preventive maintenance.
This paper investigated a joint production-maintenance problem in the context of a dis-
tributed interchange flow shop scenario. A DQN-based solution framework was applied to
minimize the makespan of the proposed problem. The performance of the developed solu-
tion framework was validated by comparing it against three other optimization approaches
within the same solving time. Some managerial implications regarding the determination
of the maintenance interval were also provided for practitioners.

In the near future, we will continue focusing on distributed manufacturing, consider-
ing deterioration effects and preventive maintenance. Firstly, other distributed manufac-
turing scenarios can be addressed, for instance, distributed flexible job shops. Secondly,
some dynamic factors, such as new job arrivals and stochastic failures can be considered.
Last but not least, single-objective optimization should be extended to multi-objective, and
efficient multi-objective optimization algorithms should be studied in depth.

Author Contributions: Software, W.W.; validation, W.W.; formal analysis, Q.Y.; investigation, W.W.;
writing—original draft preparation, Q.Y.; writing—review and editing, Q.Y.; supervision, H.W.; fund-
ing acquisition, H.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Key Research and Development
Program of China under Grant no. 2021YFF0901300, and the National Natural Science Foundation of
China under Grant no. 62173076.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Framinan, J.M.; Gupta, J.N.; Leisten, R. A review and classification of heuristics for permutation flow-shop scheduling with

makespan objective. Oper. Res. Soc. 2004, 55, 1243–1255. [CrossRef]
2. Zobolas, G.; Tarantilis, C.D.; Ioannou, G.J.C. Minimizing makespan in permutation flow shop scheduling problems using a

hybrid metaheuristic algorithm. Comput. Oper. Res. 2009, 36, 1249–1267. [CrossRef]
3. Yenisey, M.M.; Yagmahan, B.J.O. Multi-objective permutation flow shop scheduling problem: Literature review, classification and

current trends. Omega 2014, 45, 119–135. [CrossRef]
4. Wu, X.; Che, A.J.O. Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood

search. Omega 2020, 94, 102117. [CrossRef]
5. Jiang, E.D.; Wang, L. An improved multi-objective evolutionary algorithm based on decomposition for energy-efficient permuta-

tion flow shop scheduling problem with sequence-dependent setup time. Int. J. Prod. Res. 2019, 57, 1756–1771. [CrossRef]
6. Mishra, A.; Shrivastava, D.J.C.; Engineering, I. A TLBO and a Jaya heuristics for permutation flow shop scheduling to minimize

the sum of inventory holding and batch delay costs. Comput. Ind. Eng. 2018, 124, 509–522. [CrossRef]
7. Fu, Y.; Wang, H.; Tian, G.; Li, Z.; Hu, H. Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective

evolutionary algorithm. J. Intell. Manuf. 2019, 30, 2257–2272. [CrossRef]
8. Han, Y.; Li, J.; Sang, H.; Liu, Y.; Gao, K.; Pan, Q. Discrete evolutionary multi-objective optimization for energy-efficient blocking

flow shop scheduling with setup time. Appl. Soft Comput. 2020, 93, 106343. [CrossRef]
9. Wang, S.-Y.; Wang, L.; Liu, M.; Xu, Y. An effective estimation of distribution algorithm for solving the distributed permutation

flow-shop scheduling problem. Int. J. Prod. Econ. 2013, 145, 387–396. [CrossRef]
10. Fu, Y.; Hou, Y.; Wang, Z.; Wu, X.; Gao, K.; Wang, L. Distributed scheduling problems in intelligent manufacturing systems.

Tsinghua Sci. Technol. 2021, 26, 625–645. [CrossRef]
11. Wang, J.J.; Wang, L. A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop. IEEE

Trans. Syst. Man Cybern. Syst. 2018, 50, 1805–1819. [CrossRef]
12. Wang, G.; Gao, L.; Li, X.; Li, P.; Tasgetiren, M.F. Energy-efficient distributed permutation flow shop scheduling problem using a

multi-objective whale swarm algorithm. Swarm Evol. Comput. 2020, 57, 100716. [CrossRef]
13. Deng, J.; Wang, L. A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem.

Swarm Evol. Comput. 2017, 32, 121–131. [CrossRef]

http://doi.org/10.1057/palgrave.jors.2601784
http://doi.org/10.1016/j.cor.2008.01.007
http://doi.org/10.1016/j.omega.2013.07.004
http://doi.org/10.1016/j.omega.2019.102117
http://doi.org/10.1080/00207543.2018.1504251
http://doi.org/10.1016/j.cie.2018.07.049
http://doi.org/10.1007/s10845-017-1385-4
http://doi.org/10.1016/j.asoc.2020.106343
http://doi.org/10.1016/j.ijpe.2013.05.004
http://doi.org/10.26599/TST.2021.9010009
http://doi.org/10.1109/TSMC.2017.2788879
http://doi.org/10.1016/j.swevo.2020.100716
http://doi.org/10.1016/j.swevo.2016.06.002

Machines 2022, 10, 210 14 of 14

14. Mao, J.-Y.; Pan, Q.-K.; Miao, Z.-H.; Gao, L. An effective multi-start iterated greedy algorithm to minimize makespan for the
distributed permutation flowshop scheduling problem with preventive maintenance. Expert Syst. Appl. 2021, 169, 114495.
[CrossRef]

15. Wang, H.; Yan, Q.; Zhang, S. Integrated scheduling and flexible maintenance in deteriorating multi-state single machine system
using a reinforcement learning approach. Adv. Eng. Inform. 2021, 49, 101339. [CrossRef]

16. Zhao, Z.; Shen, L.; Yang, C.; Wu, W.; Zhang, M.; Huang, G.Q. IoT and digital twin enabled smart tracking for safety management.
Comput. Oper. Res. 2021, 128, 105183. [CrossRef]

17. Chen, J.-S. Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan. Eur.
J. Oper. Res. 2008, 190, 90–102. [CrossRef]

18. Yang, S.-L.; Ma, Y.; Xu, D.-L.; Yang, J.-B. Minimizing total completion time on a single machine with a flexible maintenance
activity. Comput. Oper. Res. 2011, 38, 755–770. [CrossRef]

19. Mosheiov, G.; Sarig, A. Scheduling a maintenance activity to minimize total weighted completion-timeComput. Math. Appl. 2009,
57, 619–623.

20. Wang, T.; Baldacci, R.; Lim, A.; Hu, Q. A branch-and-price algorithm for scheduling of deteriorating jobs and flexible periodic
maintenance on a single machine. Eur. J. Oper. Res. 2018, 271, 826–838. [CrossRef]

21. Zandieh, M.; Khatami, A.; Rahmati, S.H.A. Flexible job shop scheduling under condition-based maintenance: Improved version
of imperialist competitive algorithm. Appl. Soft Comput. 2017, 58, 449–464. [CrossRef]

22. Rahmati, S.H.A.; Ahmadi, A.; Govindan, K. A novel integrated condition-based maintenance and stochastic flexible job shop
scheduling problem: Simulation-based optimization approach. Ann. Oper. Res. 2018, 269, 583–621. [CrossRef]

23. Ghaleb, M.; Taghipour, S.; Sharifi, M.; Zolfagharinia, H. Integrated production and maintenance scheduling for a single degrading
machine with deterioration-based failures. Comput. Ind. Eng. 2020, 143, 106432. [CrossRef]

24. Chan, F.T.S.; Chung, S.H.; Chan, L.Y.; Finke, G.; Tiwari, M.K. Solving distributed FMS scheduling problems subject to maintenance:
Genetic algorithms approach. Robot. Comput. Manuf. 2006, 22, 493–504. [CrossRef]

25. Chung, S.H.; Chan, F.T.S.; Chan, H.K. A modified genetic algorithm approach for scheduling of perfect maintenance in distributed
production scheduling. Eng. Appl. Artif. Intell. 2009, 22, 1005–1014. [CrossRef]

26. Lei, D.; Liu, M. An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive
maintenance. Comput. Ind. Eng. 2020, 141, 106320. [CrossRef]

27. Wang, K.; Huang, Y.; Qin, H. A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation
flowshop scheduling problems under machine breakdown. J. Oper. Res. Soc. 2016, 67, 68–82. [CrossRef]

28. Miyata, H.H.; Nagano, M.S. Optimizing distributed no-wait flow shop scheduling problem with setup times and maintenance
operations via iterated greedy algorithm. J. Manuf. Syst. 2021, 61, 592–612. [CrossRef]

29. Jafar-Zanjani, H.; Zandieh, M.; Sharifi, M. Robust and resilient joint periodic maintenance planning and scheduling in a
multi-factory network under uncertainty: A case study. Reliab. Eng. Syst. Saf. 2022, 217, 108113. [CrossRef]

30. Wang, Y.; Usher, J.M. Application of reinforcement learning for agent-based production scheduling. Eng. Appl. Artif. Intell. 2005,
18, 73–82. [CrossRef]

31. Cheng, L.; Tang, Q.; Zhang, L.; Zhang, Z. Multi-objective Q-learning-based hyper-heuristic with Bi-criteria selection for energy-
aware mixed shop scheduling. Swarm Evol. Comput. 2022, 69, 100985. [CrossRef]

32. Lin, J.; Li, Y.-Y.; Song, H.-B. Semiconductor final testing scheduling using Q-learning based hyper-heuristic. Expert Syst. Appl.
2022, 187, 115978. [CrossRef]

33. Shahmardan, A.; Sajadieh, M.S.J.C.; Engineering, I. Truck scheduling in a multi-door cross-docking center with partial unloading–
Reinforcement learning-based simulated annealing approaches. Comput. Ind. Eng. 2020, 139, 106134. [CrossRef]

34. Long, X.; Zhang, J.; Qi, X.; Xu, W.; Jin, T.; Zhou, K. A self-learning artificial bee colony algorithm based on reinforcement learning
for a flexible job-shop scheduling problem. Concurr. Comput. Pract. Exp. 2021, 34, e6658. [CrossRef]

35. Wang, J.; Lei, D.; Cai, J. An adaptive artificial bee colony with reinforcement learning for distributed three-stage assembly
scheduling with maintenance. Appl. Soft Comput. 2021, 117, 108371. [CrossRef]

36. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,
91, 106208. [CrossRef]

37. Wang, H.; Yan, Q.; Wang, J. Blockchain-secured multi-factory production with collaborative maintenance using Q learning-based
optimisation approach. Int. J. Prod. Res. 2021, 59, 1–18. [CrossRef]

38. Naderi, B.; Azab, A. An improved model and novel simulated annealing for distributed job shop problems. Int. J. Adv. Manuf.
Technol. 2015, 81, 693–703. [CrossRef]

39. Liu, C.; Zhang, Y.; Sun, J.; Cui, Z.; Wang, K. Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor.
Int. J. Energy Res. 2021, 46, 3034–3043. [CrossRef]

40. Hua, Y.; Wang, N.; Zhao, K. Simultaneous unknown input and state estimation for the linear system with a rank-deficient
distribution matrix. Math. Probl. Eng. 2021, 2021, 1–11. [CrossRef]

41. Gao, J.; Chen, R. A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. Int. J. Comput. Intell.
Syst. 2011, 4, 497–508.

http://doi.org/10.1016/j.eswa.2020.114495
http://doi.org/10.1016/j.aei.2021.101339
http://doi.org/10.1016/j.cor.2020.105183
http://doi.org/10.1016/j.ejor.2007.06.029
http://doi.org/10.1016/j.cor.2010.09.003
http://doi.org/10.1016/j.ejor.2018.05.050
http://doi.org/10.1016/j.asoc.2017.04.060
http://doi.org/10.1007/s10479-017-2594-0
http://doi.org/10.1016/j.cie.2020.106432
http://doi.org/10.1016/j.rcim.2005.11.005
http://doi.org/10.1016/j.engappai.2008.11.004
http://doi.org/10.1016/j.cie.2020.106320
http://doi.org/10.1057/jors.2015.50
http://doi.org/10.1016/j.jmsy.2021.10.005
http://doi.org/10.1016/j.ress.2021.108113
http://doi.org/10.1016/j.engappai.2004.08.018
http://doi.org/10.1016/j.swevo.2021.100985
http://doi.org/10.1016/j.eswa.2021.115978
http://doi.org/10.1016/j.cie.2019.106134
http://doi.org/10.1002/cpe.6658
http://doi.org/10.1016/j.asoc.2021.108371
http://doi.org/10.1016/j.asoc.2020.106208
http://doi.org/10.1080/00207543.2019.1693649
http://doi.org/10.1007/s00170-015-7080-8
http://doi.org/10.1002/er.7360
http://doi.org/10.1155/2021/6693690

	Introduction
	Problem Description
	Solution Approach Design
	Background of General Q-Learning and Deep Q Networks
	Definition of Key Elements
	Overall Algorithm Framework

	Numerical Experiments
	Parameter Settings
	Performance Evaluation of the Developed Algorithm

	Conclusions
	References

