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Abstract: In order to solve output saturation problems found in traditional stochastic resonance
methods and to improve the diagnosis ability of weak faults, a new piecewise nonlinear asymmetric
bistable stochastic resonance (PNABSR) method is proposed. This model uses a left and right
potential function with an asymmetrical shape, which makes it easier to induce stochastic resonance
phenomena. Based on the PNABSR model, the expression of the signal-to-noise ratio (SNR) is derived,
and the changes in the SNR with different parameters in the PNABSR model are analyzed. Then, the
parameters in the PNABSR model are optimized using the adaptive intelligent algorithm to enhance
the diagnostic ability. The diagnosis properties of the weak fault are compared between the PNABSR
model and the classical bistable stochastic resonance model (CBSR). The experimental results prove
that the PNABSR model can effectively extract the weak fault characteristic frequency under a strong
noise background, verifying the effectiveness of this method.

Keywords: stochastic resonance; SNR; piecewise nonlinear asymmetric bistable stochastic resonance;
weak fault diagnosis

1. Introduction

The stochastic resonance (SR) signal processing method uses noise to enhance useful
weak signals, which is helpful for extracting and detecting weak signals under low SNR
conditions. Benzi et al. [1] used the stochastic resonance method to predict periodic alter-
nations during warm climate periods. According to this theory, a moderate amount of
noise can enhance the modulation ability of weak signals to the nonlinear system. Subse-
quently, the concept of stochastic resonance is applied to enhance noise performance [2].
At present, the random facilitation effect has been proposed to explain the increase in the
system output response under the combined action of nonlinear systems, noise, and lower
frequency signals [3]. Fauve and Heslot [4] added a modulated signal and noise signal
to the Schmitt trigger circuit system and found that it had an obvious peak as the noise
intensity changed. This was the first time that the SR phenomenon was verified through
experiments. McNamara and Wiesenfeld [5] discovered the SR phenomenon by conducting
acousto-optic modulation experiments with ring lasers. Then, a classical bistable SR (CBSR)
model was applied to the fault feature extraction of a weak fault signal [6]. However,
inherent output saturation is a disadvantage of the CBSR model, as it reduces the output
signal-to-noise ratio (SNR) and limits the model’s fault diagnosis capability [7,8].

At present, some scholars have put forward optimization and improvement methods
for the CBSR model. Wang [9] proposed a new piecewise linear stochastic resonance model
for detecting weak signals in a strong noise background with large parameters. This proved
that it is easier to adjust the response characteristic of the system and to generate the SR in
the case of large parameters. In order to further improve the signal-to-noise ratio, Qiao [10]
proposed a new piecewise bistable potential model by improving the original potential
function via restriction of the movement of traditional stochastic resonance particles into a
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piecewise second-order potential function. This method was proven capable of extracting
weak fault characteristics and enhancing the anti-noise capability. Subsequently, the piece-
wise nonlinear bistable system (PNBSR) model was proposed to overcome the saturation
characteristics of the CBSR model [11]. However, the potential functions of the PNBSR
and CBSR models are same. Tang [12] proposed an improved piecewise mixed stochastic
resonance (PMSR) potential model. The fourth-order potential function in the PNBSR
model was improved to a piecewise second-order potential function. Experiments proved
that this model can accurately extract weak fault features, thereby showing effects that
were better than those obtained using the PNBSR method.

Recently, other piecewise stochastic resonance models have also been proposed.
Zhao [13] proposed a piecewise tri-stable stochastic resonance (PTSR) method. Exper-
iments proved that the output signal of this method has a larger signal amplitude and a
higher SNR. Huang [14] presented a piecewise bistable energy harvester model. The SNR
of the piecewise bistable systems were studied. The evaluation of the piecewise bistable
energy harvesters was carried out by employing the measured input signal and showed
that piecewise bistable energy harvesters with a small piecewise slope perform satisfactorily
under ultralow frequency excitation conditions. Recently, an asymmetric piecewise stochas-
tic resonance model was also studied. Xu [15] studied an asymmetric tri-stable stochastic
resonance model. It was found that the fault detection performance could be effectively
improved by exploiting the asymmetry feature. In addition to studying the SR model,
the parameters in the model can also improve performance after optimization. Liu [16]
optimized the system parameters using the improved artificial fish swarm algorithm based
on the adaptive SR theory. This experiment proved that the optimized SR model performed
better when detecting weak signal characteristics than traditional adaptive SR in a bistable
model. Above all, the piecewise SR model and asymmetric SR model have gradually at-
tracted attention due to improvements in their weak signal detection abilities. However, an
asymmetric piecewise nonlinear stochastic resonance model with parameter optimization
has not yet been implemented.

Therefore, in order to overcome the shortcomings of traditional methods and to
improve the weak fault signal extraction ability, further studies on asymmetric piecewise
SR models and on the optimization of asymmetric potential function parameters to obtain
the maximum SNR are particularly important. In-depth research should be carried out to
achieve a comprehensive understanding of the asymmetric stochastic resonance model
with parameter optimization.

In this paper, a new piecewise nonlinear asymmetric bistable stochastic resonance
method (PNABSR) is proposed. Then, the PNABSR model is used to extract the weak fault
signals of the rolling bearings. The superiority of the proposed method is compared with
the CBSR model and is verified through experiments.

2. Piecewise Nonlinear Asymmetric Bistable Stochastic Resonance Model
2.1. The Saturation Phenomena of CBSR Model

The Langevin equation (LE) of the CBSR is as follows [17]:

dx
dt

= −dUn(x)
dx

+ Acos(2π f0t) + γ(t) (1)

where Un(x) = −1
2 anx2 + 1

4 bnx4; A and f0 are the amplitude and the characteristic frequency
of the input signal; and γ(t) is additive white Gaussian noise. In Equation (2), D is the
noise intensity, and ϕ is the time interval.{

γ(t) = 0
γ(t)γ(t− ϕ) = 2Dδ(t)

(2)
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In Equation (1), A = 0, D = 0. x(t) is obtained from the following equation [18]:

x(t) = ±
√

an

bn + e−2ant (3)

Figure 1 shows the effect of the parameters of the CBSR model on the saturation
phenomenon. It can be seen that the output signal x(t) gradually stabilizes as time changes.
This is the saturation phenomenon found in traditional stochastic resonance.
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2.2. PNABSR Model and Its Performances

In order to overcome the shortcomings of the output saturation in the traditional
stochastic resonance model, a new PNABSR model, different from the previous segmented
model, was proposed. This system is composed of a monostable system and a structured
asymmetric bistable system. The potential function of the new model is as follows:

U(x) =


−a2

4b

(
x+c

c−
√

a/b

)
, x < −

√
a/b

− 1
2 ax2 + 1

4 bx4,−
√

a/b ≤ x ≤
√

a/b
1
2 a
(
x−
√

a/b
)2 − a2

4b , x >
√

a/b

(4)

where a > 0, b > 0, and c >
√

a/b (parameters a, b, and c are all constants). The first
derivative of the potential function of the PNABSR method can be written as:

dU(x)
dx

=


−a2

4b(c−
√

a/b)
, x < −

√
a/b

−ax + bx3,−
√

a/b ≤ x ≤
√

a/b
x− a

√
a/b, x >

√
a/b

(5)

Figure 2 shows the potential function of the PNABSR and CBSR models as well as
their barrier depth and potential wall height. The height that hinders particle movement
is ∆U = a2/4b. From the potential function of the traditional stochastic resonance, as the
output signal increases, the potential wall rapidly becomes steeper at that time. Hence, the
potential energy cannot have a large impact on the output signal.
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From Figure 2, it can be concluded that a small change in signal x can be observed.
In the absence of noise, the particle will be in either of the two potential wells, and the
system is not strong enough for the particles to move from one potential well to the other.
By increasing the driving force and the noise, the particles can cross the peak of the barrier,
resulting in a large-scale continuous transition between the 2D potential wells and the
stochastic resonance phenomenon.

After setting a = 1, b = 1, and c =
√

2a/b, the fourth-order Runge–Kutta method
was used for numerical simulation. Figure 3 shows a comparison of the output signals
for the CBSR and PNABSR models. It can be observed that saturation exists in the CBSR
model. However, the PNABSR method breaks through the limitations of saturation. When
the amplitude of the input signal is A = 0.2, then the value of xoutput is always greater than
zero. It can be determined that the particles are always active on the right half of the model.
When A increases, the particles move from the right well to the left well. As A changes, the
output signal of PNABSR changes significantly. As shown in Figure 3, in order to expand
the verification range of the saturation characteristics, the range of A is increased from 0.2
to 4.8. It can be clearly observed that the output signal of the PNABSR model has a faster
growth rate and greater amplitude than that of the CBSR method. The results show that
the proposed segmented asymmetric bistable system has a certain effect on suppressing
the output saturation.

After setting parameter b = 1, parameter a varies from 1 to 1.8. Figure 4a,b show
the change in the potential function in the PNABSR model. As the value of parameter a
increases, the depth of the potential well of the PNABSR system increases, and the width of
the potential well expands.

The PNABSR model is a two-state system with occupation probabilities. The signal
power spectrum can be obtained by means of the following expression [11]:

S(w) = SN(w) + Ss(w) (6)

where SN(w) and Ss(w) represent the power spectrum of noise and the input signal,
respectively.

Ss(w) =
π

2

(
Axm

D

)2 4K2

4K2 + w2
0
[δ(w− w0) + δ(w + w0)] (7)

SN(w) =

[
1− 1

2

(
Axm

D

)2 4K2

4K2 + w2
0

]
4x2

m

4K2 + w2
0

(8)
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where xm = ±
√

a/b and w0 = 2π f0; w is the frequency of the signal; and K is the
Kramers rate.
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The SNR of a bistable system is defined as the ratio of the input signal power and the
average power of the noise spectrum at w = w0, which can be obtained as follows [11]:

SNRoutput =

∫ ∞
−∞ Ss(w)dw

SN(w0)
(9)

Then, the theoretical value of the output of the SNRPNABSR can be regarded as includ-
ing three parts:

SNRle f t = π

(
Axm

D

)2
K =

πa3 A2

4D2b2
√

a/b
(
c−
√

a/b
) e−

a2
4bD (10)

SNRmiddle =
π

2

(
Axm

D

)2
KCBSR (11)

SNRright =
π

2

(
Axm

D

)2
K

[
1− 1

2

(
Axm

D

)2 4K2

4K2 + w2
0

]−1

≈ π

2

(
Axm

D

)2
K (12)
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where A � 1, D � 1 (parameters A and D are constants), c =
(√

2/2 + 1
)√

a/b, and

KCBSR = a√
2π

exp
(
− a2

4bD

)
[19,20].

The SNRPNABSR can be obtained through numerical integration. The intermediate
potential function is the same as the CBSR model, which is SNRcbs.

Figure 5 shows the change in the SNR of the PNASBR model under different parame-
ters. An increase in the value of b will affect the SNR of the left and right potential functions.
It can be seen that the SNRPNABSR changes as the noise intensity increases, rather than
being monotonic, which indicates the appearance of stochastic resonance.
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Figure 6a shows the change in the SNR’s theoretical value as the left potential function
changes with parameters a and b, indicating that the SNR is larger when the parameter
value is smaller. As shown in Figure 6b,c, when the noise intensity D increases, the SNR
on the middle and right side of the PNABSR model first increases and then decreases, and
there is a maximum value. Similarly, it can also be observed that the output SNRPNABSR
curve changes nonlinearly. This change in the SNR is due to the emergence of stochastic
resonance. Under the appropriate noise intensity, stochastic resonance will lead to changes
in the signal energy.

2.3. Optimization of PNABSR Parameters

The performance of the PNABSR model depends on the selection of its parameters. In
this paper, the adaptive ant colony intelligent algorithm is used to optimize the parameters
for the PNABSR model. The objective function is defined as follows [21]:

SNR = 10log10

(
Hd

∑N/2
i=1 Hi − Hd

)
(13)

where Hd is the power of the drive frequency, and
N/2
∑

i=1
Hi−Hd represents the total noise power.

A higher output SNR means that the PNABSR model has a stronger weak fault feature
extraction ability. The detailed process is shown in Figure 7.
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In this paper, the adaptive ant colony intelligent algorithm is used to optimize the param-
eters for the PNABSR model. The objective function is defined as follows [21]: 𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 ൭ 𝐻ௗ∑ 𝐻 − 𝐻ௗே/ଶୀଵ ൱ (13)

where 𝐻ௗ  is the power of the drive frequency, and ∑ 𝐻 − 𝐻ௗே/ଶୀଵ  represents the total 
noise power. 

A higher output SNR means that the PNABSR model has a stronger weak fault fea-
ture extraction ability. The detailed process is shown in Figure 7. 

Figure 6. SNRPNABSR changes with parameter a, b, and D. (a) The signal-to-noise ratio output of the
left well:, b = 0.1, a = 0.1; (b) the signal-to-noise ratio output of the middle well: b = 0.1, a = 0.1; and
(c) the signal-to-noise ratio output of the right well: b = 0.1, a = 0.1.

Firstly, the original signal is preprocessed. The signal is compressed using frequency
shift and scaling, and the compression ratio is set to 2400. Secondly, the signal is input
into the PNABSR parameter optimization program by the adaptive ant colony intelligent
algorithm. The number of ants is set to 100, and the pheromone evaporation coefficient
Rho is 0.9. The maximum number of iterations is 5. The optimization range of the system
parameters is set from 0 to 10. The maximum output SNR of the PNABSR model is set as the
objective function in the adaptive optimization ant colony algorithm. If the SNR difference
between the two outputs is less than 0.1, then the optimal parameters of the PNABSR
model can be obtained. Then, the optimized parameters are sent to the PNABSR model.
Finally, the signals are processed by PNABSR, and the weak fault features are extracted.
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3. Analysis and Discussion
3.1. Fault Detection of Bearing SKF 6205-2RS

To verify the reliability of the PNABSR model, 6205-2RS bearings with an inner ring
fault and outer ring fault were used [22]. Table 1 shows the parameters of the deep groove
6205-2RS ball bearings.

Table 1. Parameters of bearing 6205-2RS JEM SKF.

Inside
Diameter

(mm)

Outside
Diameter

(mm)

Width
(mm)

Ball
Diameter

(mm)

Pitch
Diameter

(mm)

Ball
Number

25 52 15 7.938 39 9

The test parameters were set as follows: sampling frequency fs = 12,000 Hz;
rotating = 1750 r/min. The fault frequencies of the inner and outer ring were set to
fBPFI = 162 Hz and fBPFO = 107 Hz. The intensity of the added noise was 0.35.

(1) Bearing 6205-2RS JEM SKF with Weak Inner Ring Fault

Figure 8a provides the original signal data with the inner ring fault, and it is obvious
that the fault characteristic frequency cannot be found. As shown in Figure 8b,c, the
inner ring fault can be diagnosed by both the CBSR and PNABSR models. In addition, in
Figure 8b,c, the peaks of the power spectrum between 1000 Hz and 2500 Hz are obviously
reduced. The occurrence of this phenomenon can be understood as the transfer of high-
frequency energy to low-frequency energy. The signal-to-noise ratios obtained by the CBSR
and PNABSR models are −23.74dB and −16.35 dB. The optimized parameters of the CBSR
and PNABSR models are a = 0.2 and b = 0.8 as well as a = 0.2 and b = 0.6, respectively.
Compared to the results of Figure 8b,c, the value of the power spectrum processed by the
PNABSR model is much greater than the value of the power spectrum processed by the
CBSR model. The weak inner ring fault of the bearing can be identified clearly by the
PNABSR model.
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(2) Bearing 6205-2RS JEM SKF with Weak Outer Ring Fault

Figure 9a provides the original signal with the outer ring fault. Figure 9b,c show the
signals processed by the CBSR and PNABSR models. It was found that the power spectrum
peaks at the fault frequency from the PNABSR model are more prominent than those of
the CBSR model. Figure 9c shows that the double frequency of the outer ring fault is also
identified. The optimized parameters of the CBSR system and the PNABSR system are
a = 0.5 and b = 0.7 as well as a = 0.4 and b = 0.6, respectively. The signal-to-noise ratios
obtained by the CBSR and PNABSR models are −25.32 dB and −13.56 dB, respectively. A
weak inner ring fault of the bearing can be clearly identified by the PNABSR model.
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3.2. Weak Fault Detection Experiments of Bearing 6200-NR NSK

Verification experiments were carried out using the bearing test bench under different
speeds and loads. The vibration signals were sampled by acceleration sensors, as shown in
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Figure 10. The bearing parameters are shown in Table 2. The sample frequency was set
as 20 kHz, and the rotational speed was set as 1300 r/min. Here, fBPFO = 66.535 Hz and
fBPFI = 106.799 Hz; D = 0.01, and the re-scaling ratio was set as R = 4000.

Table 2. Parameters of bearing 6200-NR NSK.

Inside
Diameter

(mm)

Outside
Diameter

(mm)

Width
(mm)

Ball
Diameter

(mm)

Pitch
Diameter

(mm)

Ball
Number

10 30 9 5.5 20 10
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(1) 6200-NR NSK Bearing with Weak Inner Ring Fault

Figure 11 compares the 6200-NR bearings with the inner ring fault processed by the
different models. In Figure 11a, the fault characteristic frequency cannot be identified,
and the weak fault signal is submerged in strong background noise. From Figure 11b,c,
the peak can be observed by the PNABSR method and is more prominent, and the peak
value is about 30 times that of the CBSR method. The optimized parameters of the CBSR
system and the PNABSR system are a = 0.03 and b = 0.8 as well as a = 0.04 and b = 0.6,
respectively. The output SNR values of the CBSR and PNABSR models are −25.13 dB and
−10.86 dB, respectively. It can be seen that the PNABSR model is more suitable for weak
fault extraction because it can amplify amplitude and improve the SNR of the weak fault.
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(2) 6200-NR NSK Bearing with Weak Outer Ring Fault

Figure 12 provides a comparison of the 6200-NR bearings with an outer ring fault
processed by the different models. As shown in Figure 12a, the frequency components
are concentrated between 800 Hz and 1200 Hz. In Figure 12b,c, a power spectrum peak at
f = fBPFO can be observed. The fault diagnosis is more obvious in Figure 12c. The SNR
outputs of the CBSR and PNABSR models are −27.29 dB and −13.05 dB, respectively. The
optimized parameters of the CBSR system and PNABSR system are a = 0.04 and b = 0.5
as well as a = 0.08 and b = 0.4, respectively. This verifies the effectiveness of the PNABSR
model, which is more suitable for weak fault extraction.
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4. Conclusions

This paper proposes a new PNASBR model that is able to avoid output saturation
by establishing a piecewise asymmetric bistable model that is more conducive to weak
fault signal extraction than the traditional CBSR model. Through theoretical analysis and
experimental verification, the following conclusions were obtained:

• In this paper, a coupled piecewise nonlinear asymmetric bistable stochastic resonance
system is proposed, and the signal-to-noise ratio equation is derived.

• Using the ant colony intelligent algorithm to optimize parameters a and b, the signal-
to-noise ratio of the PNABSR model can be 45% higher than that of the traditional
CBSR model. It is easier for the PNABSR model to induce stochastic resonance.

• The test results show that the PNABSR model can observe the fault feature more clearly
in practical applications. By comparing the experimental results of the CBSR and
PNABSR models, it was found that the PNABSR system has outstanding advantages
in terms of the amplitude amplification of weak fault characteristics and in improving
the signal-to-noise ratio.

• The PNABSR model is suitable for weak fault extraction, especially under the condi-
tions of strong background noise. Because the effectiveness of this model depends on
parameter optimization, there is a certain time delay for real-time fault diagnosis.

• The extraction of the weak fault features is the first step of fault diagnosis. However,
fault classification, fault degree evaluation, and prediction are also very important for
the operation and maintenance of engineering equipment. We intend to discuss these
problems in our future work.

Author Contributions: Conceptualization, L.C. and W.X.; methodology, W.X.; software, L.C.; valida-
tion, L.C. All authors have read and agreed to the published version of the manuscript.
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