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Abstract: Many consumers and scholars currently focus on driving assistance systems (DAS) and
intelligent transportation technologies. The distance and speed measurement technology of the
vehicle ahead is an important part of the DAS. Existing vehicle distance and speed estimation
algorithms based on monocular cameras still have limitations, such as ignoring the relationship
between the underlying features of vehicle speed and distance. A multi-cue fusion monocular
velocity and ranging framework is proposed to improve the accuracy of monocular ranging and
velocity measurement. We use the attention mechanism to fuse different feature information. The
training method is used to jointly train the network through the distance velocity regression loss
function and the depth loss as an auxiliary loss function. Finally, experimental validation is performed
on the Tusimple dataset and the KITTI dataset. On the Tusimple dataset, the average speed mean
square error of the proposed method is less than 0.496 m2/s2, and the average mean square error of
the distance is 5.695 m2. On the KITTI dataset, the average velocity mean square error of our method
is less than 0.40 m2/s2. In addition, we test in different scenarios and confirm the effectiveness of
the network.

Keywords: monocular depth estimation; driver assistance systems; computer vision; attention mechanisms

1. Introduction

With the rapid economic growth, the global vehicle ownership increases rapidly, lead-
ing to more serious traffic safety problems. The application of advanced driver assistance
systems allows the driver to be aware of possible hazards in advance, effectively increasing
the comfort and safety of vehicle driving. Accurate calculation of the distance and speed
between vehicles is a basic requirement for driver assistance systems.

Scene depth velocity information is a very important role in many contemporary topics
and there are many typical algorithms in current research: single-radar sensor, camera
sensor, stereo image, wireless sensing, multi-sensing fusion, etc.

Radar can achieve speed and range measurement of target vehicles, but it detects
obstacles by transmitting optical fibers, and light reflection can also cause misjudgment in
harsh environments, especially rain, snow, and water mist on foggy days [1]. In addition,
the refresh rate of LIDAR is low, and it is difficult to perceive objects ahead quickly in a
single scene at high speed. The camera sensor is another key part of a typical sensor config-
uration that can be used in normal rain and snow conditions, as it can obtain high-pixel
environmental information as well as fine-texture structure information. Therefore, many
researchers have started with a monocular sensor to explore the depth estimation algorithm.
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In wireless sensors, many scholars have also conducted research. Ciccarese et al. [2]
combined the potential of antenna array processing with cooperative strategies using
vehicle-to-vehicle and vehicle-to-infrastructure communications and defined a novel al-
gorithm with asynchronous updates triggered by beacon packet reception and capable
of reaching the angle estimation goal. This algorithm achieves high localization accu-
racy even in sparse scenarios, outperforming competitors, while maintaining lightweight
communication and low computational complexity. Shin et al. proposed [3] a prediction
algorithm of vehicle speed based on a stochastic model using a Markov chain with speed
constraints. The Markov chain generates the velocity trajectory stochastically within speed
constraints. The constraints are estimated by an empirical model that takes into account the
road geometry and is organized by the intuitive form of matrices. The experimental results
show a root mean square error of 3.8041 km/h over a prediction range of up to 200 m.
Stereo images take up too many computational resources compared to image sensors, even
though the accuracy rate is improved.

Meanwhile, deep learning has recently achieved great success in many vision applica-
tions, such as object detection [4,5], optical flow estimation [6,7], and depth estimation [8,9].
Considering economic efficiency and environmental adaptability, many researchers have
started with monocular cameras and explored their estimates of distance and speed using
deep learning methods. In addition, some researchers explore the connection between
the optical stream information and the monocular depth [10]. Ma [11] and Christoph [12]
achieved impressive results by adding stereo video sequences to the optical flow algorithm.
However, the use of stereoscopic video can lead to very high computational costs. There-
fore, the use of monocular cameras with different cues has been proposed to estimate the
speed and distance of vehicles in a real-time scene. For example, surveillance cameras can
be used to analyze traffic flow and vehicle speed in real-time by fixing camera settings and
road constraints [13]. However, the estimation becomes unstable in dynamic scenes. Thus,
the actual depth of the vehicle as well as the speed mapped to reality through image time
cues is difficult to obtain. Until the current study, studies on monocular velocity estimation
using multiple complex cues, including vehicle target tracking, dense depth information,
and optical flow information to regress the relative velocity of other vehicles, were few [14].
In the present study, we design the network systematically by combining the distance
regression model and optical flow estimation network. To enable the network to accurately
focus on the traffic prediction for each vehicle, a vehicle-centric vehicle bounding box
extraction module is used to reduce the unbalanced motion caused between the stationary
background and the moving vehicles. We focus more on the intrinsic connection between
geometric cues and deep features.

The main contributions of this study are as follows:

1. The inter-vehicle distance and relative speed estimation network is systematically
designed.

2. The intrinsic connection between geometric cues and deep features is investigated.
3. Geometric features are expanded and incorporated into the attention mechanism.
4. The results show that the speed and distance measurement results are significantly

improved.

The remainder of this paper is structured as follows: Section 2 introduces the related
work, Section 3 introduces the multi-cue fusion method and explores the relationship
between deep features and the network, Section 4 introduces the proposed algorithm on
two datasets, Tusimple and KITTI, and Section 5 presents the conclusion and future work.

2. Related Work

Traditional depth estimation uses binocular images for matching [15], but this method
suffers from a slow computation speed and low accuracy. Deep neural network has
become one of the most widely used depth estimation techniques. Generally, it can be
roughly divided into the following categories: learning-based stereo-matching, supervised
monocular depth estimation [16], and unsupervised monocular depth estimation. In Table 1,
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we list the model structure and main contributions of some typical algorithms. Although
they contribute significantly to the monocular depth velocity algorithm, they neglect the
underlying vehicle geometry features.

Table 1. Algorithm model comparison.

Literature Model Structure Main Contribution

Eigen et al. [17] CNN Used deep learning models for the first time
Lee et al. [18] CNN Optimizing the frequency domain
Li et al. [19] CNN Used gradient information for optimization

Laina et al. [20] FCN Proposed a new sampling module
Hu et al. [21] FCN Used multiscale information to improve
Liu et al. [22] CNN Random field step-by-step optimization
Xu et al. [23] FCN Optimized with continuity condition

In traditional methods, the Markov random field model [24,25] is usually used to
predict the monocular depth. Saxena et al. [26] trained, in a supervised manner, to model
the relationship between the depth features of the image and the image target to predict the
image depth from monocular images. Karsch et al. [27] proposed the use of nonparametric
depth to estimate the depth of monocular images and videos, and it can also realize the
transformation from stereo images to 3D images. Meanwhile, the structure of motion (SFM)
algorithm [28–30] was commonly used to estimate the depth information of objects in
monocular images.

In 2014, Eigen et al. [17] used two deep convolutional neural networks to estimate the
depth of monocular images. Subsequently, Eigen et al. [31] used a multiscale approach
to obtain the pixel set features of the image for depth prediction, which can improve the
accuracy of the network. In addition, Atapour et al. [32] used a joint training of pixel-level
semantic information and depth information to estimate the depth of objects in the scene.
Moukari et al. [33] studied four different depth networks, where the depth map can be
obtained using multiscale features in the network. Qi et al. [34] applied the uncertainty
method to monocular depth. Zhe et al. [35] applied 3D detection to monocular depth
estimation to achieve distance recovery.

Supervised monocular depth estimation requires the use of a large amount of manually
labeled data to train the model, leading to a high cost of true depth acquisition. In 2016,
Garge et al. [36] proposed an unsupervised framework based on deep convolutional neural
networks using stereo image pairs for training, without pre-training. Godard et al. [37]
proposed a consistency loss for left- and right-image parallax using polar line geometric
constraints on binocular images to improve the accuracy and robustness of monocular
depth estimation. Zhou et al. [38] established a visual correspondence between different
instances and used the inter-instance consistency relationships as supervised signals to
train convolutional neural networks. Subsequently, Zhou et al. [39] addressed the problem
of new view synthesis by synthesizing the same scene obtained from any viewpoint to
obtain a new image based on the highly correlated appearance of the same instance in
different views. Inspired by these approaches, an unsupervised learning framework based
on binocular images and image reconstruction loss [40] is widely used in monocular
depth estimation.

Relevant studies on monocular velocity estimation algorithms are relatively few.
Most of them rely on the distance information of the target ahead and then estimate the
velocity by the rate of change of the distance. However, the existence of distance errors
causes the superposition of speed estimation errors, thereby obtaining inaccurate speed
information. To obtain the relative velocity between the self-vehicle and the vehicle in front,
Christoph et al. [12] regressed the velocity of the vehicle directly from monocular sequences
that exploited several cues, such as the motion features of Flownet [41] and the depth
features of Monodepth. In addition, the authors of [42] used geometric constraints and
optical flow features to jointly predict the velocity and distance of the vehicle. Although
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these works achieved the expected performance, they predicted the state of each vehicle
separately and neglected to explore the relationship between neighboring vehicles. The
authors of [43] proposed a global relative constraint loss that requires the states between
vehicles to reduce the error.

These research results show that the use of monocular cameras for distance and
speed measurement work still has many unresolved problems. The two main factors are
as follows: one is the difficulty of obtaining distance through monocular cameras, and
the other is that the current ranging algorithms are imperfect, resulting in less accurate
monocular ranging and speed measurement than expected. To solve these problems, a
multi-clue fusion distance and speed model is proposed to estimate the distance and speed
of the vehicle ahead.

3. Method

The coordinate system of the camera is defined as follows: the z-axis is forward along
the optical axis of the camera, the x-axis is parallel to the image to the right, and the y-axis
is parallel to the bottom of the image. The specific perspective view is shown in Figure 1.

Figure 1. Perspective projection of the vehicle. In the above picture, p is the vehicle’s pickup point, di

denotes the distance to the previous vehicle, h denotes the camera height and li, ti, ri,bi represent the
size of the vehicle frame.

bi = (li, ti, ri, bi) ∈ R4, (1)

The cropped vehicle target bounding box, {bi |i = 1, . . . , n}, is used as the input of
the ranging and speed measurement network, and each bounding box consists of four
image coordinates: left, top, right, and bottom. The overall algorithm flowchart is shown in
Figure 2.

Figure 2. Algorithm flowchart. The target detection part is used to extract the vehicle detection frame
in the video and input it into the speed measurement and ranging network. The algorithm used for
target detection is the general Yolo3 [44] algorithm.
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3.1. Geometric Cues and Odometry Models

Many current ranging algorithms rely on additional information, such as vanishing
points and lane lines, but vanishing points and lane lines are susceptible to the influence of
road quality and surrounding references. Therefore, we explore the relationship between
geometric cues and ranging models to estimate the distance to the vehicle ahead.

According to the pinhole camera model, the distance of the vehicle ahead can be
solved in two ways: one is solved assuming that the height or width of the vehicle is
known, and the other is solved based on the vehicle’s grounding point.

The distance based on the vehicle height and width is shown in Equation (2):

dwi =
fy × Hi

bi − ti
=

fx ×Wi
ri − li

, (2)

and the distance based on the vehicle pickup point is shown in Equation (3):

dpi =
fy × Hc

bi − oy
, (3)

where fx and fy indicate the focal length of the camera, Wi and Hi are the actual vehicle
height and width, respectively, li, ri, ti, and bi are the coordinates of the left, right, top, and
bottom of the vehicle bounding box, respectively, and oy is the coordinate of the camera
optical axis in the y-axis direction under the camera plane.

Each approach has its limitations. The distance based on the vehicle height and width
requires the actual width of the vehicle. In addition, the other approach needs to assume
that the road surface is always level.

di = α·
fy × Hi

bi − ti
+ β· fx ×Wi

ri − li
+ γ·

fy × Hc

bi − oy
, (4)

Therefore, the two ranging algorithms can be fused and used to improve the accuracy
and stability of vehicle distance estimation in Equation (4), where fy

b i−ti
, fx

ri−li
, and f×Hc

bi−oy

are obtained directly from the geometric features through the camera intrinsic parameters,
bounding box parameters, and camera height, respectively. Hi and Wi are the actual height
and width information of the vehicle, respectively, depending only on the characteristics of
the vehicle. These vehicle features can be learned by a large number of training samples.
Therefore, to learn these parameters and features, they are extracted using a deep neural
network, and the distance geometric feature vector obtained is represented by gd. α, β, and
γ can be used to measure the confidence level of each partial distance estimation. gd is
shown in Equation (5):

gd =

[
fy

bi − ti
,

fx

ri − li
,

fy Hc

bi − oy

]
. (5)

In summary, the specific method for the forward vehicle distance, di, estimation is
as follows: The depth features and other different sizes are unified to the same size by
ROI align, and then spread to obtain the depth feature vector, fd. Finally, the vehicle deep
feature vector, fc,d, together with the geometric cue, gi, form the depth estimation network.

Thus, the model for distance regression can be expressed as follows:

fd = Flatten(RoI(depth(It−1, It))), (6)

fc,d = Flatten(RoI( f eature(It−1, It))), (7)

di = FCd( fd, fc,d, gd), (8)

where depth is the depth network, f eature is the feature extraction network, RoI is the
ROI align module, Flatten is the spreading operation, fd is the depth feature vector, fc,d
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is the deep feature vector, gd is the distance geometry feature vector, and FCd is the fully
connected layer.

The loss function, Ldepth, of the depth network is as follows:

Ldepth = αap

(
Lt−1

ap + Lt
ap

)
+ αds

(
Lt−1

ds + Lt
ds

)
+ αlr

(
Lt−1

lr + Lt
lr

)
, (9)

Lap =
1
N ∑ i,jα

1− SSIM
(

It−1
ij , Ĩt

ij

)
2

+ (1− α) ||It−1
ij ,−, Ĩt−1

ij ||, (10)

Lds =
1
N ∑ i,j

∣∣∣∂xdt−1
i,j

∣∣∣e−||∂x ,It−1
i,j || +

∣∣∣∂ydt−1
i,j

∣∣∣e−||∂y ,It−1
i,j ||, (11)

Llr =
1
N ∑ i,j

∣∣∣dt−1
ij − dt

ij

∣∣∣, (12)

where Lap denotes the loss function of image reconstruction, Lds denotes the smoothness
loss of parallax, Llr denotes the front-to-back consistency loss, αap, αds, and b are the
corresponding coefficients, α is the image reconstruction parameter, and SSIM is the image
structure similarity formula.

3.2. Geometric Cues and Speed Models

Solving the speed directly by distance leads to the superposition of errors because
the distance has errors, thereby resulting in inaccurate speed information. Therefore, the
speed of the vehicle ahead is estimated directly using geometric cues. In addition, because
distance and speed information are directly related, distance information is introduced as
an aid to improve the accuracy and stability of speed estimation. According to the basic
theory of relative velocity and distance of vehicles, is the following is obtained:

υi =
dt

i − dt−1
i

∆t
, (13)

where dt
i − dt−1

i is the distance that the vehicle moves between the two frames.
To obtain the velocity component in the lateral direction of the vehicle ahead, the

coordinates of the pixel point at the center of the vehicle target frame are used, as well as
the inverse perspective projection of the camera.

ui =
(li + ri)

2
, (14)

vi =
(ti + bi)

2
, (15)

[
υxi

υyi

]
=

1
∆t

 ut
i−cx
fx

dt
i −

ut−1
i −cx

fx
dt−1

i
vt

i−cy
fy

dt
i −

vt−1
i −cy

fy
dt−1

i

, (16)

where υxi is the lateral velocity of the vehicle ahead, and υyi is the longitudinal velocity of
the vehicle ahead. cx and cy indicate the offset of the optical axis concerning the coordinate

center of the projection plane, and
(
ut

i , vt
i
)

and
(

ut−1
i , vt−1

i

)
are the projection image

coordinates of pt
i and pt−1

i , respectively.
The analysis results show that the speed information of the vehicle ahead is directly

related to several parameters, such as the center point of the bounding box, the change
of height, the offset of the camera optical axis, the focal length, and the position of the
camera. These parameters can be directly obtained by the inherent parameters of the
camera, the target bounding box information, and the height of the camera, so the distance



Machines 2022, 10, 396 7 of 19

geometric vector, gd, can be expanded to obtain the expanded geometric vector, g, for speed
estimation, as follows:

g = [
fy

bt−1
i − tt−1

i

,
fx

rt−1
i − lt−1

i

,
fyHc

bt−1
i − oy

,
ut−1

i − cx

fx
,

vt−1
i − cy

fy
,

fy

bt
i − tt

i
,

fx

rt
i − lt

i
,

fyHc

bt
i − oy

,
ut

i − cx

fx
,

vt
i − cy

fy
], (17)

where ui and vi are directly related to the coordinates, so the geometric cue g can be
translated as follows:

g = [
fy

bt−1
i − tt−1

i

,
fx

rt−1
i − lt−1

i

,
fyHc

bt−1
i − oy

,

bt−1
i − cx

fx
,

rt−1
i − cx

fx
,

tt−1
i − cy

fy
,

bt−1
i − cy

fy
,

fy

bt
i − tt

i
,

fx

rt
i − lt

i
,

fy Hc

bt
i − oy

,

bt−1
i − cx

fx
,

rt−1
i − cx

fx
,

tt−1
i − cy

fy
,

bt−1
i − cy

fy
]. (18)

The motion of the vehicle is analyzed from the pixel perspective, indicating that the
relative velocity information of the vehicle is the displacement of each pixel at ∆t time
interval. This displacement information can be obtained through the optical flow network.
The feature vector fm is used to represent the extracted optical flow information.

In summary, the final model for velocity regression can be expressed as follows:

fc,m = Flatten
(

RoI
(

Edepth(It−1, It)
⊗

E f low(It−1, It)
))

,

fm = Flatten(RoI( f low(It−1, It))),

υi = FCv

(
fd
⊗

fc,m
⊗

fm
⊗

g
)

, (19)

where Edepth is the encoder of the deep network, E f low is the encoder of the optical flow
network, fc,m is the deep feature vector of the vehicle, fm is the optical flow feature vector,
g is the expanded geometric feature vector, and FCv is the fully connected layer.

The regression model for velocity contains the parameters required for the distance
regression model, as follows:

di = FCd

(
fd
⊗

fc,d
⊗

gd

)
. (20)

The attention mechanism can be viewed as a resource allocation system that reallocates
the original equally allocated features according to the importance of the features, which
are achieved in neural networks by assigning different weights. Thus, the self-attention
mechanism is improved based on the proposed framework, as shown in Figure 3. The
self-attention mechanism adjusts the previously obtained depth features, deep features,
optical flow features, and geometric features, and it generates an attention map. It forces the
model to focus on stable and geometrically meaningful features and can self-adjust without
any manual settings to capture the long-term correlation and global correlation, thereby
generating better attention-guided maps from a wide range of spatial region features as
well as features with different information for joint vehicle speed and distance estimation.
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Figure 3. Attention fusion module.

The final regression model for distance velocity is obtained as follows:

(di, υi) = FC
(

fd
⊗

fc fm
⊗

g
)

, (21)

The fusion of depth features, fd, deep features, fc, optical flow features, fm, and
geometric features, g, by this attention fusion module is shown in Figure 3. Firstly, using
the obtained features, x0, the vectors Q and K are obtained by linear transformations WQ
and WK, respectively, and the similarity of the inner product of the vectors Q and K is
calculated as follows:

Q = WQ(x0) (22)

K = WK(x0) (23)

S = so f tmax
(

QTK
)

(24)

Then, for the obtained feature x0, the vector V is obtained by linear transformation
again, and the inner product is calculated with the vector S to obtain the associated feature
vector F:

V = WV(x0) (25)

F = SV (26)

Finally, the associated feature vector F is fused with the original feature vector x0
through the fully connected layer WF, to obtain the final feature vector x:

x = WF(F) + x0 (27)

The loss function, Lpv, used in the distance and velocity regression is regressed on
distance and velocity using MSE loss, as follows:

Lp,v = αLp + βLv =
1
N

(
α ∑ N

i

(
di − d̂i

)2
+ β ∑ N

i (vi − v̂i)
2
)

, (28)

where α = 0.1, β = 1, Lp is the loss function of distance, and Lv is the loss function
of velocity.

4. Experimental Validation of Distance–Velocity Estimation Network

In this section, experiments are conducted on the proposed distance–velocity esti-
mation network. We evaluate the performance metrics of the proposed network on the
Tusimple velocity dataset and the original KITTI dataset. Some evaluation metrics for
distance and speed estimation are presented, as well as experiments comparing the perfor-
mance of this proposed network with previous networks.

Evaluation metrics:
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1. Abs relative difference (AbsRel):

AbsRel =
1
N

N

∑
i=1

∣∣Di − D∗i
∣∣

D∗i
(29)

2. Squared relative difference (SqRel):

SqRel =
1
N

N

∑
i=1

∣∣Di − D∗i
∣∣2

D∗i
(30)

3. Root mean square error (RMSE):

RMS =

√√√√ 1
N

N

∑
i=1

∣∣Di − D∗i
∣∣2 (31)

4. Root mean square logarithmic error (RMSlog):

RMSlog =

√√√√ 1
N

N

∑
i=1

∣∣∣logDi − logD∗i
∣∣∣2 (32)

5. Accuracy:

max
(

Di
D∗i

,
D∗i
Di

)
= δ < threshold (33)

The three different thresholds
(
1.25, 1.252, and 1.253) are generally used in the accu-

racy metrics to measure the accuracy of the network.

6. Mean squared error (MSE):

MSE =
1
N

N

∑
i=1

(Di − D∗i )
2 (34)

The overall MSE of the three distances was used as the final metric:

Ev =
Ev, f ar + Ev,mid + Ev,near

3
, (35)

Ed =
Ed, f ar + Ed,mid + Ed,near

3
, (36)

where Di represents the distance of the vehicle ahead, and D∗i represents the distance of
the vehicle in the next frame.

4.1. Experimental Validation of the Tusimple Dataset

In the Tusimple speed estimation challenge rule, the vehicles are initially divided into
three groups according to their relative distances. The data distribution of the Tusimple
dataset is statistically distributed to obtain the distribution of samples at different distances:
near distance (d < 20 m), about 12% of the samples, medium distance (20 m < d < 45 m)
about 65% of the samples, and long distance (d > 45 m), about 23% of the samples. Related
information is shown in Table 2.
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Table 2. Distribution of the number of vehicles labeled in the Tusimple dataset.

Distance (m) Close Range
d < 20 m

Middle Range
20 m < d < 45 m

Long Range
d > 45 m Total

Training Set 166 943 333 1442

Test Set 29 247 99 375

The results of the distance estimation were not provided in the Tusimple speed chal-
lenge. Thus, the focus is placed on the comparison of the speed results. The evaluation
results are shown in Table 3.

Table 3. Quantitative results of distance velocity estimation on the Tusimple dataset.

Method
Distance Velocity

MSEP MSEV,near MSEV,mid MSEV,far MSEV

Rank1 [17] - 0.18 0.66 3.07 1.30

Rank2 - 0.25 0.75 3.50 1.50

Rank3 - 0.55 2.21 5.94 2.90

Song et al. [34] (org) 9.72 0.23 0.99 3.27 1.50

Song et al. [34] (full) 10.23 0.15 0.34 2.09 0.86

Huang et al. [27] 7.56 0.10 0.26 1.58 0.65

Our Method 5.659 0.077 0.196 1.217 0.496

The comparison results of different networks on speed metrics at different distances
are shown in Table 3. The table shows that the proposed network achieved the best results
in terms of the MSE of speed at each distance. Though the target frame of long-distance
vehicles is insufficiently rich in deep information, leading to a significant increase in
distance and speed estimation errors, the proposed network still achieved good results.

The proposed distance–velocity estimation network on the Tusimple test set yielded a
mean velocity MSE of 0.496 m2/s2, a 42% reduction compared with [42] (full) and a 23%
reduction compared with [35]. In terms of distance, the mean distance MSE obtained was
5.695 m2, which is 44% lower than that in [34] (full) and 23% lower than that in [27]. The
distance verification results are shown in Table 4.

Table 4. Quantitative results of distance estimation for the Tusimple dataset.

Index Song et al. [34]
(org)

Song et al. [34]
(full)

Huang et al.
[27]

Our
Method

AbsRel ↓ 0.037 0.041 0.034 0.038

SqRel 0.132 0.152 0.105 0.076

RMS 2.700 2.894 2.416 1.993

RMSlog 0.059 0.062 0.050 0.038

δ < 1.251 0.989 0.987 0.997 0.997

δ < 1.252 1.000 1.000 1.000 1.000

δ < 1.253 1.000 1.000 1.000 1.000

The inference was performed on the test set using the network trained on the Tusimple
dataset to visualize the prediction effect of the proposed network. Figure 4 and Table 5 show
the results of the predicted values of the proposed network in terms of cross-longitudinal
distance and velocity compared with the labels.
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Figure 4. Qualitative visualization results for the Tusimple dataset. Figures (a–d) are typical feature
maps extracted from the Tusimple dataset.

Table 5. Predicted distance velocity estimates obtained corresponding to Figure 4.

Vehicle ID
Distance (m) Relative Velocity (m/s)

True Value Predicted Value True Value Predicted Value

A-0 (26.9, −3.1) (27.6, −3.1) (3.4, −0.1) (3.6, −0.0)

B-0 (26.1, −2.7) (26.7, −2.7) (0.6, 0.1) (0.6, 0.1)

B-1 (41.4, 3.0) (42.0, 3.3) (−3.0, −0.2) (−3.3, −0.2)

C-0 (26.2, −6.4) (26.7, −6.4) (−0.2, −0.1) (−0.2, −0.1)

C-1 (36.6, −0.3) (37.2, −0.0) (−2.3, −0.4) (−2.4, −0.4)

C-2 (28.9, 5.1) (29.5, 5.4) (−3.5, −0.9) (−3.2, −1.0)

D-0 (53.5, 2.2) (54.1, 2.5) (−1.4, 0.1) (−1.5, 0.1)

D-1 (30.4, 2.3) (31.0, 2.6) (−0.9, 0.1) (−1.0, 0.1)

D-2 (44.5, −3.6) (45.0, −3.6) (4.6, 0.0) (4.5, 0.1)

D-3 (43.9, −0.2) (44.5, −0.1) (2.0, 0.0) (2.2, −0.2)

4.2. Experimental Validation of KITTI Dataset
4.2.1. Analysis of Performance Indicators

The speed estimation results of the network on the KITTI dataset are shown in Table 6.

Table 6. Quantitative results of speed estimation for the KITTI dataset.

MSEV,near↓ MSEV,mid MSEV,far MSEV

Song et al. [34] 0.29 0.93 1.57 0.94

Huang et al. [27] 0.23 0.67 0.96 0.62

Our Method 0.16 0.27 0.78 0.40
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Table 6 shows that the MSE of the proposed network for medium distance velocity
was reduced by 59.7% compared with [27], proving the effectiveness of multiple features
for distance and velocity estimation.

Table 7 shows the quantitative results of different networks on each metric, and the
proposed network had a 13% difference in error on the AbsRel metric compared with the
method in [34], with only a 0.9% difference with the DORN method on the RMS metric.
However, a 15.5% and a 13% improvement were found in the SqRel and RMSlog metrics,
respectively. The accuracy was almost the same as other excellent networks. The proposed
network achieved excellent results in distance estimation.

Table 7. Quantitative results of distance estimation for the KITTI dataset.

Indicators 3Dbbox [45] DORN [9] Unsfm [8] Song et al.
[34]

Huang et al.
[27]

Our
Method

AbsRel 0.222 0.078 0.219 0.075 0.098 0.085

SqRel 1.863 0.505 1.924 0.474 0.444 0.375

RMS 7.696 4.078 7.873 4.639 4.240 4.114

RMSlog 0.228 0.179 0.338 0.124 0.127 0.108

δ < 1.251 0.659 0.927 0.710 0.912 0.930 0.974

δ < 1.252 0.966 0.985 0.886 0.996 0.998 0.997

δ < 1.253 0.994 0.995 0.933 1.000 1.000 1.000

4.2.2. Qualitative Visualization Analysis

The results were also visualized on the test set of the KITTI dataset to visualize the
prediction effect of the proposed network. Figure 5 and Table 8 compare the prediction
results of the proposed network with the labeling results in terms of horizontal and vertical
distance and speed.

Figure 5. Qualitative visualization results on the KITTI dataset. Figures (a–d) respectively represent
the vehicle ahead, the oncoming vehicle, the multi-vehicle in front, and the multi-vehicle in the
opposite direction.

As shown in the table, the distance and speed in the longitudinal direction are shown
on the left side of the brackets, and the distance and speed in the lateral direction are shown
on the right side. After the statistical Table 8, the network can reach an average relative
error of 2.1% in terms of distance and 2.6% in terms of relative speed obtained from the
KITTI dataset. The proposed network can maintain high accuracy and stability for multiple
targets, as well as for the prediction of the oncoming traffic situation.
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Table 8. Qualitative results obtained from predictions corresponding to Figure 5.

Vehicle ID
Distance (m) Relative Speed (m/s)

True Value Predicted Value True Value Predicted Value

A-0 (32.3, −0.1) (32.3, −0.2) (−0.8, 0.1) (−0.8, 0.1)

B-0 (42.9, −21.4) (41.9, −22.4) (−14.3, −0.2) (−14.6, −0.2)

B-1 (30.1, −0.6) (30.4, −0.9) (−1.7, 0.0) (−1.7, 0.0)

C-0 (31.8, −3.8) (30.5, −4.0) (−24.4, 0.3) (−23.5, 0.3)

C-1 (53.1, −3.7) (51.3, −4.7) (−24.4, 0.1) (−23.8, −0.1)

C-2 (28.9, 0.1) (29.3, −0.1) (1.5, −0.1) (1.4, −0.1)

D-0 (28.8, −20.8) (29.2, −21.6) (−10.3, 0.4) (−10.3, 0.4)

D-1 (34.0, −20.0) (33.9, 20.9) (−10.2, 0.3) (−9.9, 0.3)

D-2 (25.9, −3.7) (25.2, −3.8) (−22.4, 0.0) (−22.7, 0.1)

D-3 (61.2, −4.2) (58.4, −5.5) (−24.0, 0.6) (−23.4, 0.6)

D-4 (27.3, −0.0) (27.9, −0.2) (1.3, 0.2) (1.2, 0.2)

4.2.3. Visualization Analysis under Different Working Conditions

This section visualizes and analyzes different working conditions separately to clearly
show the effect of the range and speed measurement network. The selected video clip
scenes are as follows: forward following scene, containing 291 frames of images, lateral
incoming scene, containing three targets with 56 frames of images, and opposite incoming
scene, containing 17 frames of images.

Figure 6 shows the prediction results of the forward-following scenario. The red box
is the obtained bounding box of the target vehicle, and the prediction is performed for
each frame to obtain the real-time distance and speed variation of the target vehicle in the
forward-following scenario, as shown in Figure 7.

Figure 6. Prediction results of the target vehicle in the forward-following scenario. The green font
represents the true values, which are the longitudinal lateral distance and longitudinal lateral velocity;
the blue represents the predicted values, which are the longitudinal lateral distance and longitudinal
lateral velocity.

Figure 7a,b show that the predicted value and the actual value of the longitudinal
distance and the transverse distance are offset at some moments. The maximum offset on
the longitudinal distance is around 1 m, and the offset on the transverse distance is around
0.2 m. In addition, the predicted result has the same trend as the actual value, and the
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change is relatively smooth, indicating that the network has high accuracy and robustness
in the prediction result on the distance. Figure 7c,d show that the predicted value always
fluctuates up and down near the actual value in the transverse and longitudinal velocities,
and a better result can be obtained for the case of violent vehicle movement. Although
the predicted velocity curve has some fluctuations, the magnitude of the fluctuations is
maintained within a small range.

Figure 7. Real–time variation curve of distance and speed of the target vehicle in the forward-
following scenario. (a) Longitudinal distance, (b) Lateral distance, (c) Longitudinal velocity,
(d) Lateral velocity.

Figure 8 shows the prediction results of the lateral incoming vehicle scene. Figure 9
shows the real-time variation curves of the distance and speed of the target vehicle under
the lateral incoming traffic scenario.

Figure 8. Prediction results of the target vehicle in the lateral incoming vehicle scenario.
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Figure 9. Real-time variation curves of the distance and speed of the target vehicle under the lateral
incoming traffic scenario. (a) Longitudinal distance, (b) Lateral distance, (c) Longitudinal velocity,
(d) Lateral velocity.

Figure 9a,b show that the prediction effect of the network on vehicles with farther lateral
distances decreases in the longitudinal and lateral distances. Figure 9c,d show the predicted
effect of the vehicle on longitudinal and lateral speeds. The error gradually decreases as the
vehicle moves to the front of the self-propelled vehicle. In the transverse longitudinal distance,
the slope of the distance prediction curve is different from that of the actual value curve, resulting
in a bias between the predicted and actual results. The two reasons for the error in the lateral
speed are as follows: on the one hand, the lateral incoming car belongs to a more difficult
scene than the following car, which cannot be easily learned by the; on the other hand, the
amount of data trained for this scene is relatively small, thereby increasing the error. Through
the calculation, the error on the lateral speed is around 2% and that on the longitudinal speed is
around 4%, which is still in a very low range.

Figure 10 shows the prediction results of the lateral incoming car scenario. The red box
is the boundary box of the obtained target vehicle. Figure 11 shows the real-time distance
and speed change of the target vehicle in the lateral incoming car scenario.

Figure 10. Prediction results of the target vehicle in the opposite direction traffic scenario. The green
font represents the true values, which are the longitudinal lateral distance and longitudinal lateral
velocity; the blue represents the predicted values, which are the longitudinal lateral distance and
longitudinal lateral velocity.
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Figure 11. Real–time variation curve of the distance and speed of the target vehicle in the opposite
direction of incoming traffic scenario. The red lines represent the true values, (a–d) are the longitudinal
transverse distance and longitudinal transverse velocity.

Figure 11a,b show that the network’s prediction effectiveness decreases for long-
distance vehicles at longitudinal and lateral distances. This finding is due to the small
target frame obtained from the long-range vehicle volume and the insignificant parameter
variation, which leads to the reduced effectiveness of the network for long-range target
prediction. However, the error gradually decreases as the target vehicle continues to
approach the self-vehicle. Figure 11c,d show that the predicted value fluctuates up and
down around the actual value in the transverse longitudinal velocity. This finding is due to
the fast speed of incoming traffic in the opposite direction, and the fluctuations are elevated
compared with the following scenario, but still remain small.

The analysis of the prediction effect of the network under different scenarios indicates
that the network has a high prediction accuracy for medium- and close-range targets.
Although the prediction accuracy for long-range and lateral farther targets is reduced, it
still has a good prediction effect.

In addition to this, the model in this paper is also capable of running in real time, with
each vehicle-centric patch running on a single TITAN XP with an inference time of 38 ms.
The time consumption results for the different layers are shown in Table 9.

Table 9. Time consumption statistics for different layers.

Deep
Network

Optical Flow
Network

Attention
Mechanism

Fully
Connected

Layer

Total Time
Consumption

Hardware
Time

GPU
8 ms

GPU
20 ms

GPU
0.4 ms

GPU
0.3 ms

GPU
30 ms

5. Discussion and Conclusions

The main focus of this study was a monocular camera-based distance and speed
measurement method for forwarding vehicles in autonomous driving scenarios. The
proposed algorithm in this paper enables end-to-end training of a monocular ranging
and speed measurement model for ADAS systems. The main work was divided into the
following parts.
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1. Training process and dataset preparation: Firstly, the target frame parameters of the
vehicle were obtained using a typical target detection algorithm. Then, the detected target
frame was expanded so that some background information around the target frame could
be preserved. Next, the previous frame was sampled and cropped using a vehicle-centric
sampling strategy to deal with unbalanced motion distributions and perspective effects
to obtain the image pairs for network input. Finally, the extracted image pairs from the
Tusimple dataset and the KITTI dataset were used to train the network, and the distance
and speed labels of the dataset were extracted and transformed to obtain the distance and
speed labels of the targets.

2. We proposed a neural network-based multi-feature fusion distance and speed
regression model. Firstly, by deriving the geometric relationship between the target frame
information and the information between distance and speed, the information required
in the distance and speed estimation was obtained to solve the problems existing in the
current distance and speed measurement algorithm. By introducing depth features of
images, optical flow features, deep features of vehicles, and geometric features obtained
from target frame parameters and camera parameters, the fusion of multiple features was
achieved, the accuracy of distance and speed estimation was improved, and a multi-feature
distance and speed regression model based on neural network was presented. The attention
mechanism was used to fuse different feature cues. The distance and speed information of
the vehicle ahead was obtained by constructing distance and speed loss and adding depth
loss as an auxiliary loss to regress the distance and speed.

3. On the Tusimple dataset, the mean squared error of the mean velocity of this
method was less than 0.496 m2/s2, and the mean squared error of the distance was 5.695 m2.
The relative velocity estimation performance of this method was better than the existing
techniques in all distance ranges. On the KITTI dataset, the mean speed mean squared
error of this method was less than 0.40 m2/s2, and the method achieved the best results
in most of the metrics and obtained fewer outliers in terms of distance. In addition, the
prediction effect plots of the KITTI test set were visualized and the robustness of the model
in the KITTI test set was verified. Figures 6–9 show the lateral incoming traffic scenario,
and the comparison curve with the true value shows that the error was also within a small
range. Figures 10 and 11 show the opposite direction incoming vehicle scenario in the
KITTI dataset. From the real-time true value curves of the distance and speed of the target
vehicle, it can be seen that the distance error became smaller and smaller as the vehicle
came closer and closer, and the speed fluctuation in the horizontal and vertical directions
also became smaller and smaller. In summary, the algorithm in this paper has a good
effect at medium and long distance, and also has a good performance in other working
conditions, which directly proves that the model has a certain generalization ability and is
suitable for multi-scene working conditions.
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