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Abstract: Health state estimation can quantitatively evaluate the current degradation state of equip-
ment, and remaining life prediction can quantitatively predict the remaining service time of equip-
ment. These two technologies can provide a basis for condition-based maintenance and predictive
maintenance of equipment, respectively. In recent years, a large amount of research has been imple-
mented in these two technologies. However, there is not any systematic review that covers these two
technologies, and their engineering applications, comprehensively. To fill the gap, this paper makes
a comparative analysis of existing health state estimation and remaining life prediction methods,
and details the characteristics and limitations of various methods. The engineering applications of
these two methods are summarized, and their applicable objects are briefly given. Finally, these two
methods are summarized, and their feasibility for engineering application is discussed. This work
provides guidance for the selection of industrial equipment health assessment and remaining life
prediction methods.

Keywords: health state estimation; remaining life prediction; health state; condition assessment

1. Introduction

In the past decades, with increasing equipment complexity and integration, the failure
rate has gradually increased. In order to ensure equipment’s smooth completion of various
tasks and reduce the maintenance cost in the life cycle, prognostics and health management
(PHM) technology was born in the 1970s [1]. PHM technology represents a change in
concept, which enables the maintenance and management of equipment to engage in
post-treatment and passive maintenance, regular inspection, active protection, and then
to advance prediction and comprehensive management [2]. This technology has been
intensively studied and widely used in the UK, USA and other countries. It is an important
part of equipment maintenance and management. Health state estimation and remaining
life prediction are key technologies in PHM [3]. Health state estimation and remaining life
prediction mainly collect the output data of the equipment through various sensors, process
and analyze the data with the help of various algorithms, comprehensively evaluate the
health of the equipment and predict the remaining service time of the equipment [4]. With
the help of these two technologies, the degradation trend of the equipment can be identified
and the future service time can be evaluated. Furthermore, maintenance management
opinions can be provided in time, so as to improve the reliability and supportability of
the equipment.

There are three main ways to evaluate the health state equipment, as shown in Table 1.
The first two involve evaluating the health state level of the equipment, and the third one
is to evaluate the health value of the equipment [5]. Initially, engineers only used fault and
normal binary functions to judge the health state of equipment [6]. This method is relatively
mature and insufficient to define the state of equipment only by binary functions. Later,
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people divided the health state of the equipment into multiple levels, such as health, good,
sub-health, deterioration, and failure to describe the health state level of the system [7].
Although this method is more refined, it is not accurate enough. In recent years, scholars
have improved health state estimation, and used equal interval health values, such as 0, 10,
20~100 to quantify the health degree of the equipment [8]. The equal interval health value is
obtained by comprehensively analyzing various state information and operating conditions
during equipment operation. The health degree can more accurately and carefully reflect
the health state of the equipment, and it can be converted into a failure rate, which is
convenient for more accurate maintenance decision-making.

Table 1. Development of health state estimation methods.

Describe Characteristics Binary Function Multivalued State Equal Interval Health Value

Characteristic quantity Fault, normal [6] Health, good, sub-health,
deterioration, failure [7]

0, 10, 20~100
or 0, 0.1, 0.2~1 [8]

Characteristic Unable to quantitatively
evaluate equipment status

Unable to accurately describe
equipment status

Can quantitatively describe
equipment status to a

certain extent

The remaining life of equipment refers to the period from the time when the equipment
is put into production to the time when it can no longer be repaired and reused. It is
determined by the material, manufacturing quality, service conditions and maintenance
conditions of the equipment. Because some factors are random factors (such as environment,
climate, technical proficiency of operators, etc.), the actual remaining life of equipment
produced in the same batch will not be exactly the same. Equipment life analysis is mainly
divided into two stages; the early stage is life estimation, and then the remaining life
prediction is derived. Life estimation is mainly used to evaluate the remaining time of
newly developed components and equipment under specific working conditions. The
purpose of remaining useful life (RUL) prediction is to predict how much time is left before
the equipment fails under the condition that the current state and historical state data are
known. The formula is as follows: [9]

T − t|T > t, Z(t) (1)

where T is the random variable of failure time; t is the current running time; Z(t) is the
history up to the current time.

There are great differences in life estimation methods for equipment under different
conditions, i.e., newly developed equipment and equipment under working state, as shown
in Table 2. The life estimation methods of newly developed components and equipment
include mechanism analysis methods and environmental factor conversion methods [10].
Equipment RUL prediction in working state refers to the prediction of equipment RUL
using relevant information after the equipment has been working for a period of time [11].
Relevant information is mainly degradation data, including performance degradation data
during equipment operation, and degradation data obtained through accelerated life test or
simulation. The commonly used methods are based on a physical model and a data-driven
method. An important premise of using performance degradation data for life prediction is
to accurately define the failure of equipment. It is generally believed that the performance
degradation data is considered to have failed when it reaches a predetermined failure
threshold. For example, failure of a power supply device can be defined as when its output
voltage drops to a given threshold.
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Table 2. Development of remaining life prediction methods.

Project Type Research Object Information to Be
Obtained

Acquisition Method
of Training and

Verification Data

Available
Estimation/Prediction

Methods

Life estimation

Newly developed
parts

Failure data of
components (i.e., a

value)

Accelerated life test
and simulation

Mechanism analysis method
and environmental factor
conversion method [10]

Newly developed
equipment

(components,
systems)

Component life value Component
specification

The component reliability
synthesis method is used for
theoretical calculation [11]

Remaining life
prediction

Equipment
(components,

systems) in working
state

Degradation data Accelerated life test
and simulation

Based on physical model;
Data driven (including
machine learning and

statistical data driven) [12]

In recent years, a large amount of research has been implemented in health state
estimation and remaining life prediction. However, there is not any systematic review that
covers these two technologies, and their engineering applications comprehensively. This
greatly limits the application of health assessment and remaining life prediction methods
in industry. Therefore, it is necessary to summarize the methods of health evaluation,
remaining life prediction and their engineering applications. This paper compares and
analyzes various health assessment and remaining life prediction methods. The engineering
applications of the two methods are summarized, and their applicable objects are also
given. Finally, the feasibility of engineering applications is discussed.

2. Health State Estimation and Remaining Life Prediction Method
2.1. Health State Estimation Method

Due to the different characteristics of different equipment, the health state estimation
methods are usually different. According to different driving methods, they are divided
into three types, namely, model driven methods, knowledge driven methods and data
driven methods [13].

Model driven methods include the Mahalanobis distance method [14], fusion weight
calculation method [15], European distance method [16], fuzzy theory method [17], etc.
These methods are simple, efficient and easy to implement [18]. At present, they are
widely used, but these methods need expert experience to determine the weight and model
parameters, coupled with the idealized assumption of modeling [19]. As a result, the effect
in practice is difficult to adapt to the influence of various complex factors in the process of
equipment operation.

The knowledge-driven type of health state estimation carries out health state estima-
tion through knowledge acquisition and knowledge expression, but this type of method is
difficult in practice, and there is little research on it. This is mainly because knowledge and
experience are limited, and knowledge expression also faces the problem of knowledge
standardization.

The data-driven method is the most promising method at present, which makes full
use of the advantages of machine learning and deep learning. It is also a widely studied
method in health state estimation in China and abroad [20]. These methods include linear
regression [21], support vector machine [22], support vector description [23–25], neural
network and deep learning [26–28]. In particular, the rise and wide application of deep
learning have greatly promoted the development of health state estimation research.

This paper classifies the equipment health state estimation methods according to the
algorithm principle, as shown in Figure 1. The characteristics of each method are given in
Table 3.
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2.1.1. Model Calculation Method

(1) Fusion calculation method

The fusion calculation method directly calculates the overall health of the equipment
according to the impact of the index collected data on the overall health of the equipment.
Its general expression is as follows:

H =
k

∑
i=1

wi · fi(di) (2)

where H represents the health result of the assessment. Suppose there are k sampling data
in total. For the ith sampling data, wi represents the weight of the data, f (di) represents the
result of certain processing on the index collected data di.

Because it is intuitive and easy to understand, fusion computing is widely used in
health state estimation. Li et al. [29] analyzed the factors affecting transformer health state
estimation, and deduced and established the health state estimation formula that can reflect
the transformer state.

(2) Information entropy method

Information entropy method is a quantitative expression of the overall average char-
acteristics of the collected indicators, and can be used as a complexity measure analysis
method to reflect the fault characteristics. The calculation formula is as follows:

H = −
k

∑
i=1

pi · log pi (3)

where Pi represents the probability of occurrence of various sampling data. According to the
definition of entropy, the greater the entropy, the better the health of the equipment [30]. It
is worth noting that there are few applications of health state estimation using information
entropy alone, and this method is often combined with other methods. Lu et al. [31]
proposed a feature extraction method based on information entropy fusion and applied it
to gas path analysis of a turboshaft engine. The results showed that the feature extraction
method based on information entropy fusion can effectively reduce the dimension of input
parameters and simplify the feature samples, so as to improve the ability of engine health
state estimation.
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(3) Distance method

The distance method uses various vector distances or similarity calculation methods
to evaluate the health degree by comparing the distances or similarities between the vectors
to be evaluated and the standard health vector.

Yin et al. [32] proposed a rolling bearing health state evaluation method based on the
similarity of manifold space principal curve, which realized the quantitative evaluation
of rolling bearing health state. Deng et al. [33] used Mahalanobis distance to divide the
health state space to evaluate the health state of electromechanical equipment. In recent
years, multiple distance fusion calculations or combinations with other methods have
also become a research direction. In Zhang et al. [34], Jensen-Shannon (JS) divergence
based on information entropy theory was introduced to measure the similarity between the
statistical distribution of real-time state and reference health state data, and the similarity
was transformed into an index that can evaluate the health state of the system. The results
showed that this method can accurately extract the trend change in door health state and
detect the abnormal maintenance state of door systems in time.

Among the health state estimation methods, there are relatively many methods based
on distance or similarity, but the selection of health samples, the determination of parameter
weight and the selection of distance algorithms are still worthy of further research.

(4) Grey correlation degree method

Grey correlation analysis method is a kind of grey system analysis method. It states
that if the change trend of the two factors is consistent, the degree of correlation between
the two is high. Therefore, it measures the degree of correlation between factors according
to the similarity or difference between development trends between factors. Compared
with the distance method, it is more suitable to situations in which the monitoring data
change greatly due to the influence of the environment. Bai et al. [35] evaluated the blade
health of wind turbines according to the definition and calculation of health degree by the
grey relationship model.

2.1.2. Evaluation Analysis Methods

(1) Fuzzy theory

Fuzzy theory was proposed by American cybernetics expert Professor Zadeh in 1965.
In some cases, the traditional accurate evaluation methods are not applicable, the fuzzy
evaluation method can be used. Cao et al. [36] applied the fuzzy data fusion method to the
calculation of sensor health degree, calculated the membership degree of the sensor at each
time point by using the membership function, calculated the fusion membership degree of
the sensor at multiple time points by using the secondary index evaluation fusion strategy,
and finally obtained the health degree of the sensor from the mapping relationship between
membership degree and health degree. Pure calculation with fuzzy theory cannot well
reflect the impact of different collection indicators on health. Most health state estimation
methods using fuzzy theory consider the impact of weight. Qian et al. [37] proposed a
variable weight fuzzy health evaluation method, introduced the variable weight formula
based on equilibrium function, and carried out fuzzy comprehensive evaluation combined
with variable weight matrix and fuzzy relationship matrix, so as to obtain its comprehensive
health.

(2) Evidence theory

Evidence theory, also known as Dempster/Shafer (D–S) evidence theory, was first
proposed by Dempster in 1967. Yin et al. [38] used a multi-index fusion method to evaluate
radar health state, which avoids the subjectivity and limitations of the allocation of basic
reliability functions of the evaluation index in traditional methods.
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2.1.3. Machine Learning Method

(1) Traditional machine learning method

Traditionally, the estimation of equipment health mostly needs to check the operation
status of equipment manually, which increases the labor intensity and reduces the accuracy
of evaluation. Modern industrial applications prefer to automatically identify the health
state of machines, which can be achieved by using traditional machine learning models.

In the health state estimation algorithm, the support vector data description (SVDD)
algorithm is mainly used. SVDD is a single classifier, which is trained with health data
to obtain the SVDD hypersphere. Then, the distance from the sampling data vector to
the center of the sphere is calculated. Compared with the radius of the sphere, the health
represented by the sampling data can be obtained. Zhong et al. [39] designed the turnout
fault detection algorithm and health evaluation algorithm based on SVDD, so as to carry
out the health management of turnout equipment.

(2) Deep learning method

In recent years, with the rapid development of deep learning related technology,
its powerful data processing and modeling ability has attracted the attention of many
scholars in China and abroad. Some scholars have introduced deep learning technology
into equipment health state estimation, and achieved some promising results.

Wagshum et al. [40] developed a bearing health monitoring system with a similarity
inspection index based on deep neural networks (DNN). As a classical deep learning
method, convolutional neural networks (CNN) have made many outstanding achievements
in speech recognition, image recognition and target tracking [41]. Liu et al. [42] proposed
the construction path of turnout health state estimation system based on CNN architecture,
which selects the power curve of a turnout switch machine as the carrier of turnout health
state estimation. The test results showed that the CNN algorithm has good adaptability
in the application of turnout health state estimation. Residual network (RESNET) was
developed on the basis of CNN architecture and has higher generalization performance [43].
Peng et al. [44] used RESNET network architecture to evaluate the health state of bearings
and achieved competitive results.

Recurrent neural network (RNN) is a framework for processing time series data.
Due to its unique properties, it is also often used to estimate the health of equipment.
Wu et al. [45] used normal state sample data to train a long short-term memory (LSTM)
codec network and construct a feature space. The Euclidean distance between measured
data feature vector and feature space was used to measure the degradation degree of health
state, so as to effectively achieve the quantitative evaluation of health state of systems
or equipment.

2.2. Remaining Life Prediction Methods

Scholars have classified and summarized the remaining life prediction methods.
Heng et al. [46] divided the remaining life prediction methods of mechanical equipment
into three categories—traditional reliability methods, methods based on monitoring data
and methods integrating the two—and focused on the methods based on monitoring data.
In practical engineering, there is large amount of non-mechanical equipment, such as
electronic equipment [47]. Pecht et al. [48] based on electronic equipment, divided the
remaining life prediction methods into failure mechanism analysis methods, data-driven
methods and fusion methods, as shown in Figure 2. Data-driven methods include machine
learning methods and statistical data-driven methods.
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Table 3. Advantages and disadvantages of health state estimation methods.

Algorithm Name Advantages Disadvantages

Model calculation method

Fusion calculation method
Easy to understand, simple

calculation, no need for a large
number of samples [18]

The choice of parameter weight
determination or distance

algorithm is subjective and has
poor generalization, so it is often

rarely used alone [19]

Information entropy

Distance method

Grey correlation degree

Evaluation analysis method

Fuzzy theory

It can fuse the data information
between subjective and objective
to solve the problem of decision

conflict [36]

The calculation is cumbersome,
and the selection of membership

function and weight is
subjective [37]

Evidence theory
It has the ability to deal with

uncertain information without a
priori probability [38]

When used for high conflict
evidence, the results may be

inaccurate, and the amount of
calculation is large [38]

Machine learning method

Machine learning
The explanation is strong, and the
computing resources are relatively

small [39]

Relying on artificial feature
extraction, it has insufficient

generalization and is prone to
under fitting [39]

Deep learning
No manual feature extraction is

required, which is suitable for big
data scenarios [40]

It needs a lot of labeled data,
training takes a lot of resources,
and the interpretability is not as

good as the traditional
methods [41]

Methods based on a physical model analyze the physical and chemical causes of
equipment failure, establish the relationship between equipment failure and physical and
chemical causes, such as component wear through failure physical analysis and physical
and chemical analysis, and obtain the life evolution law, so as to predict the life of equip-
ment [49]. Data-driven methods generally use the obtained data to predict the remaining
life by fitting the evolution law of equipment performance variables and extrapolating to
the failure threshold [50]. Fusion methods refer to the combination of failure mechanism
analysis and data-driven models. Although they can make full use of the advantages of the
two methods, the process is relatively complex, so such methods are rarely reported [51].
The characteristics of these three methods are shown in Table 4.
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Table 4. Characteristics of remaining life prediction methods.

Method Characteristics

Methods based on a physical model
Applicable to equipment with a clear

degradation mechanism and weak
generalization ability [49]

Data-driven methods Strong data processing ability [50]

Fusion methods Make full use of the advantages of the two
methods, but the processes are complex [51]

2.2.1. Methods Based on a Physical Model

The remaining life prediction method based on a physical model is usually suitable for
systems or devices with a clear degradation mechanism and easy description of the mecha-
nism model, which can accurately predict the life of equipment. Tanaka et al. [52] proposed
a mechanism model that can describe fatigue cracking along slip bands. Mou et al. [53]
further established a three-dimensional simulation model to describe fatigue cracking and
predicted life on this basis. It is worth noting that such methods need to be analyzed
according to specific equipment, making it difficult for them to be popularized. In addition,
due to the increasing complexity of equipment in the engineering field, it is difficult to
obtain the mechanism model of equipment, which also limits the application of this kind
of method.

2.2.2. Data-Driven Method

1. Machine learning method

Machine learning makes a computer simulate human learning behavior and continu-
ously trains the model by obtaining new information to improve the generalization ability
of the model [54]. Due to the powerful data processing ability of machine learning, this
method is widely used in data mining, speech recognition, computer vision, fault diagnosis
and life prediction. According to the depth of learning, machine learning methods can be
divided into traditional machine learning and deep learning methods, as shown in Figure 3.
Traditional machine learning algorithms largely rely on expert prior knowledge and signal
processing technology, which is difficult to automatically process and for analysis of mas-
sive monitoring data. Deep learning is developed from the traditional machine learning
algorithm. With its powerful feature extraction ability, it provides a solution for training
massive data and opens up a new direction for the field of machine learning [55].
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(1) Traditional machine learning methods

The methods based on traditional machine learning mainly include the methods based
on neural network and support vector machine (SVM). The characteristics of each method
are given in Table 5.

a Neural network

As a mathematical processing method to simulate the structure and function of biolog-
ical nervous systems, a neural network has the ability of automatic learning and summary.
It mainly includes an input layer, hidden layer and output layer, which are often used
to solve problems such as classification and regression [56]. After years of research and
exploration, it has shown strong advantages in the field of remaining life prediction. The
remaining life prediction method based on a neural network aims to take the original
measurement data or the features extracted based on the original measurement data as
the input of the neural network, continuously adjust the structure and parameters of the
network through a certain training algorithm, and use the optimized network to predict
the residual life of the equipment online. The prediction process does not need any prior
information and is completely based on the prediction results obtained from the monitoring
data [57]. At present, the methods based on a neural network mainly include the methods
based on a multi-layer perceptrons (MLP) neural network, the methods based on a radial
basis function (RBF) neural network and the methods based on extreme learning machines
(ELMS).

• Multilayer perceptron neural network

Multilayer perceptron neural network (MLP) is a kind of feedforward neural net-
work with a hidden layer, and the neuron model of the hidden layer and output layer
is consistent. MLP is mostly trained by back propagation (BP) algorithm. In addition to
using BP algorithm to train MLP, other methods are also used for training, such as in [58].
Bezazi et al. [59] used MLP artificial neural network to model the composite structure
monitoring data, and trained the network through maximum likelihood estimation and
Bayesian reasoning. The results showed that the network has good generalization ability.
On this basis, Pierce et al. [60] further analyzed the robustness of the network based on
interval uncertainty technology. This kind of research provides another idea for MLP-based
neural network training.

Because MLP has the ability to approximate any form of nonlinear function by adding
hidden layers or hidden elements, it has attracted extensive attention in the field of remain-
ing life prediction.

• Radial basis function neural network

Radial basis function neural network (RBF) neural network is a neural network struc-
ture proposed in the 1980s. It has a three-layer feedforward network with a single hidden
layer, and can approach any continuous nonlinear function with any accuracy [61,62]. The
biggest difference between RBF neural network and MLP neural network in structure is that
the independent variable of excitation function is the product of distance and deviation be-
tween input vector and weight vector, rather than the weighted sum between input vector
and weight vector. Liu et al. [63] pointed out that the key to an RBF neural network model
is to correctly select the appropriate RBF center. The number and location of RBF centers
in the hidden layer directly affect the approximation ability of the network. Li et al. [64]
constructed a life prediction model of accelerated life test by using the method of grey RBF
neural network. The test showed that the prediction result is obviously better than BP
neural network. When Li et al. [65] used RBF neural network for relay life prediction, the
input information of RBF neural network was not the original relay overtravel time with
non-stationary characteristics, but the random term obtained through wavelet transform.
The output information of RBF neural network realized the relay life prediction again
through wavelet packet reconstruction. Chen et al. [66] proposed a multivariate grey RBF
hybrid model for remaining life prediction of industrial equipment, which integrates the
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advantages of grey model and RBF neural network, effectively ensures the prediction
accuracy and has practical engineering application value.

The remaining life prediction method based on RBF neural network only contains
one hidden layer, and the fitting accuracy is high. It can overcome the problems of falling
into local optimization and slow convergence of the learning process, and can realize
the dynamic determination of the network structure and the data center of the hidden
layer unit.

• Neural network based on limit learning machine

Limit learning machine (elms), as a new learning algorithm for a single hidden layer
feedforward neural network, was proposed by Huang [67]. The basic idea of the elms
training process is to randomly select the input weight and hidden layer deviation value,
manually select the number of hidden layer neurons according to the engineering practice
experience, and determine the output weight by the least square method, so as to realize
the rapid determination of network structure and parameters.

Li et al. [68] studied the problem of remaining life prediction of fan mechanical
transmission components based on elms, and introduced in detail the principle, parameter
selection and optimization process of the elms algorithm, so as to predict the trend and value
of relevant performance parameters and realize the evaluation of performance parameters
and the prediction of residual life. Liu et al. [69] extracted the features that can better reflect
the bearing degradation process through the joint approximate diagonalization method
of the two-layer feature matrix, and input the extracted features into the elms model to
accurately predict the remaining life of the bearing. On this basis, Liu et al. [70] improved
the feature extraction method, also used the elms method to train the extracted features, and
applied this method to the study of the remaining life of bearings. Du et al. [71] proposed
a multi classification probability elms model based on sigmoid a posteriori probability
mapping and Lagrange pairwise coupling method, which solved the problem of remaining
life prediction of UAV transmitters. Yang et al. [72] proposed a remaining life prediction
method based on elms, compared the relationship and difference between elms and BP
artificial neural network, and found that the internal parameters of elms do not need
iterative calculation. The test showed that the model based on elms is slightly inferior to
the model based on BP artificial neural network in prediction accuracy and stability, but
can significantly reduce the training time.

The remaining life prediction method based on elms has the following advantages: It
can make a rapid remaining life prediction and effectively reduce the model training time.
The activation function can use discontinuous functions. The problem of sensitive selection
of learning parameters and easily falling into local extremum in gradient descent learning
algorithm is avoided.

Although the method based on elms has many advantages, it also has some short-
comings. Since the deviation between the input weight and the hidden layer is generated
randomly, the network training effect of elms cannot be guaranteed, which may be good
and bad from time to time. At the same time, the number of hidden layer nodes needs to
be selected according to experience and experimental methods, which makes it difficult to
ensure the optimal model. In addition, because the output weight is calculated by the least
square method, the method based on elms will face the problem of expanding the influence
of outliers and noise.

b Method based on support vector machine

Support vector machine (SVM) was developed based on VC dimension theory and the
structural risk minimization principle. It was first proposed by Cortes and Vapnik in 1995.
It is mainly used to solve the classification and regression problems of ML and is suitable
for analyzing small samples and multidimensional data [73,74].

The main idea of the research on the remaining life prediction method based on SVM
is to train the support vector machine model with the condition monitoring data obtained
in the actual project, determine the model parameters (insensitivity coefficient, penalty
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factor, kernel function parameters, etc.), predict the future state of the system based on the
trained SVM model, and obtain the residual life of the equipment by comparing with the
preset failure threshold.

Due to the multidimensional, nonlinear and uncertain characteristics of condition
monitoring data in practical engineering, it is usually difficult to ensure the accuracy of
SVM model parameters by simply using a SVM method to train condition monitoring data.
SVM model parameters directly affect the remaining life results of equipment. Therefore,
scholars began to pay attention to how to combine SVM with other methods to predict the
remaining life of equipment.

In order to eliminate the interference information in the data, Miao et al. [75] combined
wavelet analysis with SVM to predict the remaining life of a gyroscope. Nieto et al. [76] pro-
posed an algorithm based on Hybrid Particle Swarm Optimization and SVM for spacecraft
engine remaining life prediction, solved the optimization problem of super parameters
in the training process of support vector machine, and further improved the accuracy
of prediction. Aiming at the problem that SVM cannot effectively deal with non-static
sequences with monotonic trends, Maior et al. [77] proposed a method combining empirical
mode decomposition and SVM for degradation data analysis and remaining life prediction,
and applied the proposed method to the analysis of a motor. The results showed that this
method can improve the prediction performance compared with simple SVM.

The remaining life prediction method based on SVM is more suitable for analyzing
small samples and multidimensional data. However, there are also many defects. For
example, with the increase in the sample set, the linearity will increase, resulting in the
increase of overfitting and calculation time. It is difficult to obtain the prediction of
probability formula, that is, it is impossible to evaluate the uncertainty of remaining life
prediction; the Kernel function must satisfy the Mercer condition.

Table 5. Classification and characteristics of traditional machine learning remaining life
prediction methods.

Traditional Machine Learning Remaining Life Prediction Method Advantages Disadvantages

Neural network

MLP
Has the ability to approximate any

form of nonlinear function by adding
hidden layers or hidden elements [60].

The effect is good without obvious
disadvantages [60].

RBF

The network contains only one hidden
layer, and the fitting accuracy is high;

It can overcome falling into local
optimization and realize the dynamic

determination of the network
structure and the data center of the

hidden layer unit [61,62].

The effect is good without obvious
disadvantages [66].

ELM

Short training time; The activation
function can use discontinuous

functions; It avoids the problems of
sensitive selection of learning

parameters and easily falling into
local extremum [67].

Since the deviation between the input
weight and the hidden layer is

generated randomly, the network
training effect of elms cannot be

guaranteed, which may be good and
bad from time to time. The number of

hidden layer nodes needs to be
selected according to experience and
experimental methods, which makes

it difficult to ensure the optimal model
[72].

SVM

The remaining life prediction method
based on SVM is more suitable for

analyzing small samples and
multidimensional data [75].

With the increase of the sample set,
the linearity will increase, resulting in

the increase of overfitting and
calculation time. It is difficult to

obtain the prediction of probability
formula, that is, it is impossible to

evaluate the uncertainty of remaining
life prediction; the Kernel function

must satisfy the Mercer condition [77].

(2) Deep learning

The research on equipment remaining life prediction methods based on deep learning
mainly include: methods based on deep neural network (DNN), methods based on deep
belief network (DBN), methods based on convolutional neural network (CNN) and methods
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based on recurrent neural network (RNN). The characteristics of each method are given in
Table 6.

• Deep neural network

Deep neural network (DNN) is usually a multilayer neural network formed by stacking
multilayer feature representation models. The common feature representation models
include AE and denoising automatic encoder (DAE). The main idea of the method based on
DNN is to extract the high-level features of the original data through multiple AE or DAE
stacking networks, and then realize the prediction of the remaining life based on regression
fitting method or feedforward neural network. Zhou et al. [78] proposed an early diagnosis
method of micro, slowly varying faults based on DNN. The high-dimensional fault features
extracted by deep learning are transformed into one-dimensional fault features through
the PCA method, and then the life prediction model is constructed by using the nonlinear
fitting method. Yan et al. [79] studied a remaining life prediction method combining deep
DAE and regression analysis for the big data analysis of industrial systems. Two deep
DAEs were used to process the far end signal and near end signal, respectively to obtain
the overall trend and current change process. The outputs of the two deep DAEs were
fused to predict the residual life of the equipment through linear regression.

The DNN prediction method has the following characteristics: Useful features can
be extracted through multiple dimensionality reduction of input data, which can facilitate
model training. Because the DAE has the function of noise reduction and filtering, the net-
work formed by the stacking of multiple DAEs can process the monitoring data containing
noise, which fully reflects the strong robustness and universality of this method.

• Deep belief network

As a typical deep learning method, DBN is mainly a deep network composed of multi-
ple restricted Boltzman machines (RBM) stacked and a classification layer or regression
layer. It can not only realize the feature representation and extraction of observation data
from low-level to high-level, but also discover the distributed features of input data [80].
Deutsch et al. [81] successfully applied DBN to predict the remaining life of bearings, but
the prediction accuracy of the proposed method was much lower than that of the particle
filter method. Deutsch et al. [82] also proposed a remaining life prediction method for
rotating equipment integrating DBN and a feedforward neural network (FNN), which is
based on the improvement and expansion of the DBN method and can effectively combine
the feature extraction ability of DBN with the prediction performance of FNN.

In order to obtain the probability distribution of remaining life, DBN and particle filter
have been effectively combined to further improve the prediction accuracy [83]. On this
basis, Zhao et al. [84] effectively combined the advantages of DBN and RVM to study a new
method for predicting the remaining life of Li batteries. Because DBN has strong feature
extraction ability, it effectively solves the uncertainty problem caused by artificial feature
extraction and selection, and realizes the goal of intelligent feature extraction. At the same
time, the time-domain signal under this method does not need to meet the requirements of
periodicity, so it has a broad application space in the field of remaining life prediction.

However, DBN still has several limitations: The short-term prediction performance is
good, while the long-term prediction performance is poor. It cannot reflect the uncertainty
of the prediction results. Generally, it needs to be combined with other methods to reflect
the uncertainty of the prediction results.

• Convolutional neural network

As a kind of classical feedforward neural network, CNN was first proposed by Lecun
and was used to solve the problem of image processing. It is mainly composed of several
convolution layers and pooling layers. The purpose is to extract the topology features
hidden in the monitoring data step by step by constructing multiple filters, and the extracted
features will become more and more abstract with the deepening of the network level [85].
For CNN, the convolution layer uses the original input data to convolute multiple local
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filters, and the subsequent pooling layer can extract the most important features with a
fixed length. The commonly used pooling function is the maximum pooling function [86].

The research on remaining life prediction based on CNN began in 2016. Babu et al. [87]
applied deep CNN to the field of remaining life prediction, used two convolution layers
and two pooling layers to extract the characteristics of the original signal, and combined
with MLP to predict the remaining life. Li et al. [88] proposed a multivariable equipment
residual life estimation method based on deep CNN. In order to better extract features, the
time window method is used to obtain samples. At the same time, because some effective
information will be filtered out by the pooling operation, the pooling layer is ignored
in the process of building the network. Ren et al. [89] studied the problem of bearing
remaining life prediction based on CNN, combined a series of extracted features, namely
the spectrum main energy vector, into a feature map, and extracted a one-dimensional
vector that is helpful for predicting the remaining life through the structure of CNN. The
one-dimensional vector is input into the deep neural network to predict the residual life.
The bearing test showed that the proposed method is better than the traditional ML method.

The research on remaining life prediction based on CNN has the following characteris-
tics: It is suitable for engineering equipment that can monitor massive data. It can realize
automatic feature extraction and recognition without manual participation and interven-
tion. The weight-sharing feature makes the number of parameters of CNN model less and
the optimization process more convenient. However, the remaining life prediction based
on CNN is still in the preliminary exploration stage, the research results have not been
systematic, and the uncertainty of remaining life cannot be given quantitatively. Therefore,
the methods based on CNN still require in-depth research.

• Recurrent neural network

RNN is a kind of feedforward neural network including a feedforward connection
and an internal feedback connection, and is mainly used to process the monitoring vector
sequence with interdependent characteristics. Due to its special network structure, it
can retain the state information at the last moment on the hidden layer, so it has strong
advantages in the field of complex dynamic system modeling [90].

The basic idea of remaining life prediction methods based on RNN is to take the
monitoring data input in the project as the input of the RNN network, and train the model
parameters through back propagation through time (BPTT), so as to realize the remaining
life prediction of equipment. It should be noted that the internal feedback connection of
an RNN depicts the pre- and post-dependence of monitoring data. Liu et al. [91] used an
adaptive RNN to predict the remaining life of Li batteries, and online optimized the weight
of the network structure through a cyclic Levenberg–Marquardt method. The remaining
life prediction method based on RNN can integrate the original learning samples with
the new learning mode to realize the retraining of samples. It can not only improve the
accuracy of remaining life prediction, but also has the characteristics of fast convergence
and high stability. However, the traditional RNN usually has the problem of “memory
decay”, because there is no structure to control memory flow in the traditional circulation
layer. When dealing with long-term dependent degradation data, the traditional RNN
methods will face the problem of gradient disappearance or explosion, and the prediction
accuracy will be seriously affected. On the other hand, RNN cannot effectively analyze and
process multidimensional data, and usually needs to be combined with other methods for
these purposes.

Scholars have also proposed other improved deep learning methods to predict the
RUL, which show better performance than the current popular models. For instance,
Zhang et al. [91] proposed a dual-task network structure based on bidirectional gated
recurrent unit (BiGRU) and multigate mixture-of-experts (MMoE), which simultaneously
evaluates the health state and predict the RUL of industrial equipment.
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Table 6. Classification and characteristics of deep learning remaining life prediction methods.

Deep Learning Method Advantages Disadvantages

DNN

Model training is convenient; It can process the
monitoring data containing noise, which shows

that the method has strong robustness and
universality [78].

The effect is good without obvious
disadvantages [79].

DBN DBN has strong feature extraction ability [80].

The short-term prediction performance is good,
while the long-term prediction performance is

poor; It cannot reflect the uncertainty of the
prediction results [84].

CNN

It is applicable to engineering equipment that can
monitor massive data; It can realize automatic

feature extraction and recognition without manual
participation and intervention; The weight-sharing
feature makes the number of parameters of a CNN

model less and the optimization process more
convenient [85].

It is still in the preliminary exploration stage, and
the research results have not been systematized;

The uncertainty of remaining life cannot be given
quantitatively [89].

RNN

It can integrate the original learning samples with
the new learning mode to realize the retraining of
samples, improve the prediction accuracy, and has

the characteristics of fast convergence and high
stability [90].

Traditional RNN usually has the problem of
“memory decline”. When dealing with long-term
dependent degraded data, it will face the problem

of gradient disappearance or explosion, and the
prediction accuracy will be affected; RNN cannot
effectively analyze and process multidimensional

data [92].

2. Statistical data-driven approach

The statistical data-driven method is based on the theory of probability statistics,
using the historical data degradation trajectory of similar systems or products, establishing
the relationship between the data system and the degradation model, and estimating the
parameters of the degradation model, so as to obtain the analytical probability distribution
of the remaining life of the object or system and realize the prediction of the remaining
life [93].

Statistical data-driven methods assume that the degradation model is known in ad-
vance, and directly use the condition monitoring data or environmental data to estimate
the model parameters offline or online. However, the degradation model in practical
engineering is unknown, and the degradation models of different types of equipment are
different. The improper selection of a degradation model will seriously affect the predic-
tion accuracy of remaining life. Typical methods include Wiener process, gamma process,
inverse Gaussian process, Markov model and so on (see Table 7).

• Wiener process

The method based on the Wiener process is mainly applicable to the non-monotonic
case of equipment performance degradation process. This method mainly uses the follow-
ing mathematical model to describe the degradation process:

X(t) = x0 +
∫ t

0
λ(s)ds + σB(t) (4)

where x0 is the initial performance degradation value; λ(s) is the drift parameter; σ is the
diffusion coefficient; B(t) is the standard Brownian motion.

After obtaining the equipment performance degradation process model, the remaining
life distribution of the equipment can be calculated by using the relevant theory of the
Wiener process on the basis of giving its failure value. In order to realize the accurate
real-time prediction of the remaining life of the equipment, usually, the real-time monitor-
ing information of the equipment can be used to dynamically update the remaining life
prediction results. Gebraeel et al. [94] first established the degradation model of equipment
based on the Wiener process with linear drift (or linearization), and assumed that the drift
coefficient obeyed the normal distribution. According to the degradation data observed
in real time, the online update of the random drift coefficient was realized by using the
method of Bayesian reasoning. The Gebraeel method has had a great impact in the field



Machines 2022, 10, 422 15 of 27

of equipment life prediction and health management. However, the remaining life pre-
diction results obtained by the Gebraeel method are only applicable to linear degradation
equipment or equipment whose performance degradation data can be directly linearized.
Moreover, the Brownian motion term in the degradation model used in this method is only
treated as the observation error, so that the remaining life distribution obtained is not the
exact solution in the sense of first arrival time.

• Gamma process

The gamma process is often used to model the degradation trajectory of monotonic
data, such as metal wear and crack growth. Abdel et al. [95] first proposed it in 1975 and
used the gamma process to model continuous monotonic degradation data. Bagdonavicius
considered the influence of dynamic environments in the degradation model and proposed
a remaining life prediction method based on the gamma process considering dynamic
environments [96]. Lawless et al. [97] considered the problem that the parameters in the
gamma process are random variables. In practical application, the duty cycle of the system
may not be periodic, which would lead to aperiodic degradation measurements. Both
of these factors affect the accuracy of health assessment and RUL prediction. In order
to meet these challenges, Zhao et al. [98] propose a Gamma state-space model of power
equipment, which considers the temporal uncertainty, measurement uncertainty, and
device-to-device heterogeneity. This method introduces a new idea for health assessment
and RUL prediction.

• Inverse Gaussian process

The basic idea of the inverse Gaussian process is to assume that the degradation is
strictly monotonic, and the increment of degradation obeys an inverse Gaussian distri-
bution. The degradation process is described by the change in increment. The inverse
Gaussian process was first proposed by Wasan et al. [99] in 1968, but it was not applied to
the degradation modeling of equipment by Wang et al. [100] until 2010. The inverse Gaus-
sian process is used to describe the monotonic degradation process due to the connection
between the inverse Gaussian distribution and the linear drift Wiener process. Compared
with the gamma process, the inverse Gaussian process is easier to deduce and implement
mathematically, and more flexible and applicable.

• Markov model

The Markov chain method is often used in the degradation modeling of processes with
continuous time discrete state characteristics. This method is based on two assumptions:
one is that the future degradation state is only determined by the current degradation state,
that is, it is memoryless. Second, the system monitoring data can reflect its working state.
The remaining life prediction method based on Markov chain defines the first arrival time
by the time when the degradation process first reaches the failure state, and calculates
the remaining life according to the first arrival time. Kharoufeh et al. [101] carried out a
series of studies on this method and proposed a degradation model based on Markov chain
considering environmental impact. Lee et al. [102] incorporated a Markov property in the
degradation process into remaining life prediction based on a regression model.
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Table 7. Classification and characteristics of statistical data-driven remaining life prediction methods.

Statistical Data-Driven Remaining Life
Prediction Method Characteristics

Wiener process
It is applicable to the non-monotonic situation

of equipment performance degradation
process [94].

Gamma process Degradation trajectory modeling commonly
used for monotone data [98].

Inverse Gaussian

Assuming that the degradation is strictly
monotonic, and the increment of degradation
obeys an inverse Gaussian distribution, the

degradation process is described by the change
in increment [100].

Markov
Degradation modeling for processes with

continuous time discrete state
characteristics [102].

3. Accuracy Evaluation Methods
3.1. Regression Index

The formula of mean absolute error (MAE) is [103]:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (5)

where N is the number of samples, yi is the real value of the ith sample, ŷi is the predicted
value of the ith sample, yi is the average value of the sample data.

The mean square error (MSE) formula is [104]:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (6)

The formula of mean absolute percentage error (MAPE) is [105]:

MAPE =
100
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (7)

MAPE expresses the prediction effect by calculating the absolute error percentage. The
smaller the value, the better. If MAPE equals 10, this indicates that the predicted average
deviates from the true value by 10%.

Since MAPE calculation is independent of dimension, different problems are compa-
rable in specific scenarios. However, the disadvantages of MAPE are also obvious, and
there is no definition at yi = 0. In addition, it should be noted that the penalty of MAPE for
negative error is greater than that for positive error.

The formula of root mean square error (RMSE) is [106]:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (8)

RMSE represents the sample standard deviation of the difference between the pre-
dicted value and the real value. Compared with MAE, RMSE has a greater penalty for large
error samples. However, one disadvantage of RMSE is that it is sensitive to outliers, which
will lead to very large RMSE results.
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Based on RMSE, there is also a commonly used variant evaluation index called root
mean square logarithmic error (RMSLE), the formula of which is:

RMSLE =

√√√√ 1
N

N

∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (9)

RMSLE penalizes the samples with small predicted value more than those with large
predicted value.

The determination coefficient is mainly evaluated by (R-square) [107], and the formula is:

R− Square = 1−

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(yi − yi)

2
(10)

R-square is used to measure the proportion of the variation of dependent variables
that can be explained by independent variables. The general value range is 0~1. The closer
R-square is to 1, the greater the proportion of the sum of regression squares in the total sum
of squares, the closer the regression line is to each observation point, the more the variation
in y value is explained by the change in x, and the better the fitting degree of regression.

3.2. Classification Index

TP, TN, FP and FN are mainly used to count the problems of two categories [108]. Of
course, multiple categories can also be counted separately, and the samples can be divided
into positive samples and negative samples (see Table 8).

Table 8. Confusion matrix.

Real Category
Forecast Category

Positive Samples Negative Samples

Positive example TP FN
Negative example FP TN

The first letter in TP, TN, FP and FN indicates whether the recognition result of the
classifier is correct. The first letter of true is t, and the first letter of false is f. The second
letter indicates the decision result of the classifier; P indicates that the classifier decides to
be a positive sample, and N indicates that the classifier decides to be a negative sample.
TP: the classifier recognizes correctly, and the classifier considers the sample as a positive
sample; TN: the classifier recognizes correctly, and the classifier considers the sample as
a negative sample; FP: the recognition result of the classifier is wrong, and the classifier
thinks the sample is a positive sample, therefore, in fact, the sample is a negative sample;
FN: the recognition result of the classifier is wrong, and the classifier considers the sample
to be a negative sample, therefore, in fact, the sample is a positive sample.

Accuracy refers to the proportion of the number of samples with correct model predic-
tion (including true prediction and false prediction) in the total number of samples [109],
i.e.,

Accuracy =
mcorrect

mtotal
(11)

where mcorrect represents the number of samples correctly classified by the model, and mtotal
represents the number of all samples.

Accuracy is one of the simplest and most intuitive evaluation indicators in classifi-
cation problems, but there are some limitations in accuracy. For example, in the second
classification, when negative samples account for 99%, if the model predicts all samples as
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negative samples, it can also obtain 99% accuracy [110]. Although the accuracy seems high,
this model is actually useless because it cannot find a positive sample.

Precision refers to the proportion of the number of samples predicted to be true by the
model and actually true to the number of samples predicted to be true by the model [111],
i.e.,

Precision =
TP

TP + FP
(12)

Recall refers to the proportion of the number of samples predicted by the model and
actually true to the number of samples actually true [112], i.e.,

Recall =
TP

TP + FN
(13)

Generally speaking, the accuracy rate and recall rate are mutually exclusive; that is to
say, if the accuracy rate is high, the recall rate will become low. If the recall rate is high, the
accuracy rate will be low. Therefore, an index value considering both accuracy and recall is
designed. The value is the harmonic average of accuracy rate and recall rate [113], i.e.,

F1 =
2 · Precision · Recall
Precision + Recall

(14)

In some scenarios, we pay different attention to the accuracy rate and recall rate. At
this time, the Fa value in the more general form of F1 value can be satisfied. The Fa value is
defined as follows:

Fα =
(1 + α) · Precision · Recall

α2 · Precision + Recall
(15)

We average all the arithmetic indexes in [114], and then calculate the average value of
each category.

Precisionmacro =
N

∑
i=1

Precisioni (16)

Recallmacro =
N

∑
i=1

Recalli (17)

Fα−macro =
(1 + α) · Precisionmacro · Recallmacro

α2 · Precisionmacro + Recallmacro
(18)

where i represents the ith category.
We establish a statistical matrix for each instance, and then calculate the corresponding

data in the global index set [115].

Precisionmicro =
TP

TP + FP
(19)

Recallmicro =
TP

TP + FN
(20)

Fα =
(1 + α) · Precisionmicro · Recallmicro

α2 · Precisionmicro + Recallmicro
(21)

3.3. Index Selection Principle

If the health state grade is used to evaluate the health degree of the equipment, it
can be regarded as a classification problem, and the indicators of the above classification
problems can be used [116,117]. If a specific value is used to evaluate the health of the
equipment, it can be regarded as a regression problem, and the indicators of the above
regression problem can be used. However, the regression problem can also be transformed
into a classification problem, so as to use the indicators of the classification problem.
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If the regression scheme is adopted, the recommended evaluation index is mean square
error or R-square. If the classification scheme is adopted, the recommended evaluation
index is accuracy or F1 value.

4. Application of Health State Estimation and Remaining Life Prediction
4.1. Application of Health State Estimation in Various Industries

Each industry has estimated the health degree of the following products, and the
specific contents are shown in the Table 9: The power industry mainly estimates the health
of electronic products such as battery energy storage systems and electric energy meters,
electrical products such as wind turbine drive chains and generator sets, and mechanical
products such as power mechanical equipment. The transportation industry mainly eval-
uates the health of vehicle batteries and other electronic products. The Internet industry
mainly estimates the health of electronic products such as server hosts. The petrochemical
industry mainly estimates the health of electronic products such as coal mine underground
systems and electrical products such as electric submersible pumps. The water industry
mainly estimates the health of electrical products such as water supply equipment. The
manufacturing industry mainly estimates the health of mechanical products such as robots
and electrical products such as air conditioners. The medical industry mainly estimates the
health of human muscles. It can be seen that health state estimation has been applied to a
wide extent in industry. In addition, there are a variety of health state estimation methods.

4.2. Remaining Life Prediction in Various Industries

Each industry has made RUL predictions on certain products (see Table 10), as follows:
In the aviation field, RUL prediction is carried out for electronic products such as hierarchi-
cal control systems and mechanical products such as blades. In the power industry, RUL
prediction is carried out for electronic products such as power batteries, converters and
power modules. In the vehicle industry, RUL prediction is made for electrical products
such as mechanical relays and mechanical products such as brake shoes. In the household
appliance industry, RUL prediction is made for mechanical equipment such as rolling
bearings. It can be seen that remaining life prediction has been applied to a certain extent
in industry, but it is not widely used compared with health state estimation. In addition,
there are a variety of remaining life prediction methods used in industry.
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Table 9. Health assessment in various industries.

Industry Product Method Category References

Power Battery Manually formulate score deduction rules Electronics [118]

Power Power equipment Manually formulate score deduction rules Electrical [119]

Power Thermal power generating
set

Expert experience, entropy weight method,
subjective and objective integration method Electrical [120]

Power Wind turbine drive chain Expert experience Electrical [121]

Power Wind turbine Expert experience Electrical [122]

Power Electric energy meter Principal component analysis, expert
experience Electronics [123]

Power Mechanical parts Feedforward neural network Mechanical [124]

Transportation Power battery Fitting Electronics [125]

Transportation Battery Expert experience Electronics [126]

Transportation Switch Convolutional neural network Mechanical [127]

Transportation Axle counter Analytic hierarchy process Electronics [128]

Transportation Switch machine Cyclic neural network Electrical [129]

Transportation Lithium ion battery Multi-scale extended Kalman filter (EKF) Electrical [130]

Internet Server host Expert experience Electronics [131]

Petrochemical industry Coal mine underground
system

Hidden Markov and feedforward neural
networks Mechanical [132]

Petrochemical industry Electric submersible pump CNN, LSTM Electrical [133]

Water affairs Water supply equipment Expert experience Electrical [134]

Manufacture Industrial robot Distance method (European distance) Mechanical [135]

Manufacture Air conditioner Manually formulate health scoring rules Electrical [136]

Medical Science Human body Comparison with scoring criteria Other [137]

Medical Science Human muscle Comparison with scoring criteria Other [138]

Table 10. Remaining life prediction methods in various industries.

Industry Product Category Life Prediction Method References

Aviation Aircraft control system Electronics Based on CNN and LSTM [139]

Aviation Engine compressor inlet
surge blade Mechanics

Based on physical model
and linear cumulative

damage model
[140]

Power Power battery Electronics neural network [141]

Power Converter power module Electronics Physical model [142]

Vehicle Vehicle relay Electrical
Combination of statistical

method and life
conversion method

[143]

Vehicle Vehicle brake shoe Mechanics Physical based life
estimation method [144]

Vehicle Mechanical equipment Mechanics

Combining single-layer
perceptron model and

back propagation neural
network model

[145]

Household Electric Appliances Rolling bearing Mechanics Iterative correlation
vector machine [146]

5. Applicable Objects of the Methods

The objects of health state estimation and remaining life prediction are different.
Among them, health state estimation is applicable to equipment with a high failure rate and
low importance. Remaining life prediction is applicable to equipment with a low failure
rate and high importance.

In the rail transit industry, the average annual failure frequency can be used as an
indicator of failure rate, and the delay time can be used as an indicator of importance.
Using these two indicators, the equipment of rail transit is divided into four categories.
Among them, the equipment with high annual failure frequency and low delay time is
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suitable for health state estimation, and industrial computers constitute such equipment.
The equipment with low annual failure frequency and high delay time is suitable for
remaining life prediction, and the power supply is one such piece of equipment. The
equipment with low annual failure frequency and low delay time is suitable for fault alarm.
Subsystems and components with high annual failure frequency and delay time are suitable
for design improvement.

6. Conclusions
6.1. Methods Summary

In terms of health, the following summary is given:
(1) Various health state estimation methods have been applied in industry. The

health state estimation method has been applied in the industry to a certain extent, and
the application objects include electronic, electrical, mechanical equipment and so on.
Therefore, it is feasible to estimate the health degree of equipment in various industries.

(2) The health state estimation methods based on non-machine learning and machine
learning are suitable for different objects. Among them, non-machine learning methods
have the advantages of strong interpretability, being easy to understand and they do not
need a lot of equipment, but they also have the disadvantages of poor generalization
and subjective weight determination. Machine learning methods have the advantages
of strong generalization ability, but they have the disadvantage of weak interpretability.
Based on the above two points, when estimating the health of equipment, if the number
of output parameters is small, the relationship between fault and output parameters can
be listed, and the method needs some explanation, the non-machine learning methods are
recommended. If the amount of equipment data is sufficient and the method needs strong
generalization ability, and in addition, if the equipment output parameters are complex
and the relationship between fault and output parameters cannot be obtained, the machine
learning methods are recommended.

(3) The accuracy and reliability of health state estimation are affected by many factors.
In terms of accuracy, before the implementation of the two health state estimation methods,
experts need to establish the corresponding relationship between parameters and scores,
that is, expert scoring, also known as expert labeling. The quality of expert scoring basically
determines the upper limit of the accuracy and reliability of machine learning methods.
Moreover, if the equipment data cannot cover most degradation situations in equipment
engineering applications, the accuracy of health state estimation will also be affected. In
addition, the assessment indicators of health state estimation effect (false report and missing
report) are different, and the estimation effect is also different.

The remaining life prediction is summarized as follows:
(1) Various remaining life prediction methods are applied in industry. The application

objects mainly involve electrical and mechanical equipment with obvious degradation laws.
Therefore, it is feasible to predict the remaining life of equipment in various industries.

(2) The remaining life prediction methods based on a physical model and data are
applicable to different objects. Among them, the physical model method is suitable for
equipment with a single degradation characterization parameter and a clear degradation
mechanism, but its generalization ability is poor. The machine learning methods in the data-
driven methods have the advantages of strong data-driven ability and good generalization.
They are suitable for equipment with multiple degradation characterization parameters,
and are extremely suitable for equipment with an unclear relationship between the degra-
dation characterization parameters and their failure. The statistical data-driven methods
in the data-driven methods have strong interpretability and are suitable for equipment
with only a single degradation characterization parameter and significant degradation
characteristics. Based on the above three points, the physical model method is not suitable
for the remaining life prediction of rail transit equipment. When predicting the residual life
of equipment, if the equipment has only one degradation characterization parameter and
needs some explanation, the statistical data-driven methods are recommended. If there are
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many equipment output parameters and the relationship between the equipment output
parameters and their failure is not clear, the machine learning methods are recommended.

(3) The accuracy of remaining life prediction is greatly affected by equipment degra-
dation data and actual working conditions of equipment. The premise of remaining life
prediction is to have sufficient equipment degradation data or equipment life data as
support. If the test conditions covered by the data are single and the types of working
conditions are less, the representativeness of the data is poor. The remaining life prediction
methods trained by the data in this case have poor accuracy and applicability. In addition,
if the actual working conditions of the equipment change greatly, the general life prediction
methods cannot meet the accuracy requirements, and the life prediction methods need to
be improved.

The selection of accuracy evaluation methods is summarized as follows:
(1) The health state estimation methods can be classified as both s classification problem

and a regression problem. The appropriate index evaluation method needs to be selected
according to the specific situation. Remaining life prediction is a regression problem, which
can be evaluated by regression index.

(2) The recommended classification evaluation index is accuracy or F1 value, and the
recommended regression evaluation index is mean square error or R-square.

6.2. Feasibility Analysis

Feasibility analysis of health state estimation methods:
(1) The economic cost, time cost and labor cost of fault injection tests are within an

affordable range. Because the training data and verification data of health state estimation
methods can be derived from fault injection test, the sample of this test can be recycled, so
the economic cost of the test sample is within an acceptable range. Since this test can be
conducted intermittently and the time spent in each group of tests can be reduced to weeks,
the test time is also within the acceptable range. In addition, the test needs the cooperation
of engineers who are proficient in products, data acquisition and accelerated life tests. If
there are engineers with these abilities in the unit, it is feasible only from the perspective
of manpower.

(2) The time cost and labor cost of exploring the health state estimation methods
are large. If the company has no research foundation in this field, the exploration and
comparison of various non-machine learning methods will take a long time. The labor
cost depends on the number of non-machine learning health state estimation methods. If
more non-machine learning health state estimation methods are selected, the labor cost will
be large.

(3) The health degree estimation methods can bring greater economic benefits and
better social benefits. If the equipment in the industry is more suitable for health state
estimation, these health state estimation methods can be applied to a wide range of engi-
neering in the future, which will bring great economic benefits. Engineering application
can greatly improve the operation safety and reliability of unit products, so as to obtain
better social benefits.

Feasibility analysis of remaining life prediction methods:
(1) The economic cost, time cost and labor cost of accelerated life test are significant.

Because the training data and verification data of remaining life prediction methods need
to be derived from accelerated life test, this test is a destructive test, and the sample cannot
be recycled. Therefore, the economic cost of the test sample is high. Since this test needs to
be carried out continuously until the sample fails, the time spent on each group of tests is
basically half a year, so the test time is long. In addition, during the accelerated life test,
personnel are required to be on duty 24 h a day, and engineers proficient in products, data
acquisition and accelerated life test are required to work together, so the labor cost is high.

(2) The time cost and labor cost of exploring the remaining life prediction methods
are large. If the unit has no previous experience in remaining life prediction methods,
the exploration of various remaining life prediction methods will take a long time. The
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labor cost depends on the number of remaining life prediction methods utilizing machine
learning. If more machine learning remaining life prediction methods are selected, the
labor cost will be greater.

(3) The remaining life prediction methods can bring less economic and social benefits.
If only some equipment in the unit is suitable for remaining life prediction, the engineering
application volume of remaining life prediction method is poor and the economic benefits
are small.
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