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Abstract: In the field of wind turbine surface defect detection, most existing defect detection algo-
rithms have a single solution with poor generalization to the dilemma of insufficient defect samples
and have unsatisfactory precision for small and concealed defects. Inspired by meta-learning ideol-
ogy, we devised a cross-task training strategy. By exploring the common properties between tasks,
the hypothesis space shrinks so that the needed sample size that satisfies a reliable empirical risk
minimizer is reduced. To improve the training efficiency, a depth metric-based classification method
is specially designed to find a sample-matching feature space with a good similarity measure by
cosine distance. Additionally, a real-time feedback session is innovatively added to the model training
loop, which performs information enhancement and filtering according to the task relevance. With
dynamic activation mapping, it alleviates the information loss during traditional pooling opera-
tions, thus helping to avoid the missed detection of small-scale targets. Experimental results show
that the proposed method has significantly improved the defect recognition ability under few-shot
training conditions.

Keywords: wind turbine surface defect detection; few-shot scenario; meta-learning

1. Introduction

Blades and towers are the key components of wind turbines (WTs). The former carries
the main load to obtain wind energy, while the latter plays a vital role in supporting and
absorbing the vibration of the generator set. A survey has suggested that these two parts
account for 42% of the total cost of a wind turbine [1]. However, WTs usually operate in
remote fields. Due to the harsh environment and complex working conditions, the surfaces
of wind turbine blades and towers may be prone to defects such as cracks, coating peeling,
edge corrosion, blisters, and pits [2,3], which will reduce the energy conversion rate and
have a negative impact on the power generation quality and the unit life. If the restoration
work is not completed in time, it may become a major safety hazard, or even a serious
power accident in the long run. Therefore, the fast and efficient detection of WT surface
defects has become an urgent task.

Through a review of the literature for WT defect detection, it was found that the earlier
traditional detection methods mainly rely on different types of signal sensors for diagnosis,
such as ultrasonic [4], vibration [5], acoustic emission [6], and infrared thermography [7]
techniques. However, the above methods with high cost have poor stability in harsh
environments, resulting in low detection efficiency. Therefore, the mainstream research has
gradually begun to focus on image-based visual detection.

With the wide application of UAV technology, the current research on WT surface
defect detection based on UAV images is mainly divided into two categories: artificial
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feature methods and deep learning methods. Methods based on artificial features first
extract features such as contour, texture, and color (ex. Haar-like [8], LBP [9], SIFT [10],
and HOG [11]) of image samples through traditional image processing techniques and
then train commonly used classifiers such as SVM (support vector machine) [12], Ad-
aboost [13], and Random Forest [14] for defect recognition. Considering the distribution,
severity, and development trend of cracks, Peng and Liu [15] proposed a crack analysis
method combining Wiener filtering and the adaptive median filtering algorithm, which
can effectively reduce the negative impact of motion blur. Chen and Shen [16] investigated
a three-point slope deviation method to monitor the operating condition of WT blades
in a visual inspection way, but they did not consider the impact of blade pitch, non-fault
deformation, and bad weather on the system. Long Wang et al. [17] select Haar-like features
to depict cracks on WT blades. Additionally, an extended cascade classifier is developed
to perform crack detection on UAV inspection images, using a stretchable scan window
to locate crack regions. However, pre-processing and post-processing of the signal is still
complex and time-consuming, and detection is limited to specific damage types.

In spite of having a certain degree of expressiveness, the manually extracted features
lack sufficient effective information due to the low signal-to-noise ratio, so that the precision
cannot meet the requirements of industrial applications. Meanwhile, it is time-consuming
to select appropriate features.

Applying the automatic feature extraction of CNN networks, deep learning meth-
ods [18–22] have received considerable attention recently; their accuracy and efficiency are
superior to those based on artificial features. Using the VGG-11 model, Xu et al. [23] pro-
vide an automatic feature extractor for defect blades and employ the “alternating direction
method of the multiplier” algorithm for model compression to reduce the requirements for
hardware equipment. However, as only an 11-layer CNN was employed, Xu’s classification
experiments yielded unfavorable results. Yang [24] used the ResNet50 algorithm to identify
multiple types of leaf defects, achieving a recognition accuracy of more than 95%, while
this result was obtained by an unbalanced dataset with only 10% of defect samples, which
is an inadequate validation. Qiu et al. [25] designed a WT detection system YSODA with an
improved YOLOv3 algorithm. They modified the YOLO architecture to support multi-scale
feature pyramids in CNN and expanded the number of samples by image enhancement, to
improve the performance on small-size defect detection. On the downside, the speed of the
system is slower than before due to the increased network complexity. Shortly afterwards,
Shihavuddin et al. [26] provide an automatic recommendation system by exploiting a faster
RCNN algorithm. To adapt to high-resolution images and difficult-to-separate samples, an
augmentation step called the “multi-scale pyramid and patching scheme” is proposed to
achieve higher sensitivity.

Despite a proliferation of studies that have been published in this field, the following
issues remain to be discussed:

• In practical applications, owing to the generally rare defect data, deep network training
is prone to overfitting. Collecting large-scale annotation data from scratch, however, is
time-consuming and expensive. Existing studies are limited to augmentation from a
data perspective, which performs conventional deep learning by directly expanding
the number of samples. However, few scholars have drawn on any systematic research
into considerations in model composition or into training patterns. Knowing how to
construct a robust detection model under a few-shot data scenario without sample
expansion is a primary concern.

• The diversity of shooting time, angle, and distance of UAVs increases the difficulty of
equipment image defect detection, which ensures the existing deep learning-based
methods have low recognition accuracy for extremely small and concealed defects.

For the above situation, we developed a new few-shot training framework for wind
turbine surface defect detection, and we present our phased design and field trials in this
article. The contributions of this article are as follows:
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(1) Inspired by meta-learning, a cross-task training strategy is designed pertinently for
WT surface-defect recognition. Using the MVTec dataset as raw material, a series of
different but related tasks are constructed, to find common guidelines of defect iden-
tification in all things rather than learning the given data itself. Without expanding
the amount of original data, we achieve high-precision defect recognition with only
20 training samples.

(2) To alleviate the huge computational cost of traditional classifiers with supervised
labels, we establish a non-parametric connection between samples by cosine dis-
tance in a high-dimensional vector space and expect the network to learn a general
similarity metric that maintains identity across the entire data. It helps to quickly
distinguish similarities and differences for unfamiliar data, thereby improving the
training efficiency.

(3) To tap the potential of identifying small defects and hidden defects, the depth feature
map is additionally overlaid with an equivalent soft mask map to enhance task-
relevant information and filter redundant information according to task relevance,
helping to make real-time feedback corrections in model training.

(4) In this article, class activation mapping (CAM) technology is innovatively integrated
into each round of training. This study explores, for the first time, the dynamic
interpretability of feature space in the training state, to understand and uncover the
secrets of the “black box” in deep learning.

2. Methodology
2.1. Motivation

In supervised machine learning, the learning process is often approximated by fitting
a function f to a dataset D. According to the empirical risk minimization theorem [27,28],
since the true optimal hypothesis ĥ is unknown, we give a hypothesis space H and expect to
find the best approximation hypothesis hI in H that satisfies the empirical risk minimization
through model training.

Therefore, for a dataset D with I training samples, the total error between the empirical
risk and the actual expected risk is as follows:

E
[

R(hI)− R
(

ĥ
)]

= E
[

R(h∗)− R
(

ĥ
)]

+E[R(hI)− R(h∗)] = eapp(H) + eest(H, I) (1)

The approximation error eapp(H ) represents how close the function in H can approxi-
mate the true optimal hypothesis ĥ, and estimation error eest(H, I) measures the effect of
replacing expected risk minimization with empirical risk minimization. Obviously, the
total error is affected by hypothesis space H and sample size I.

As shown in Figure 1a,b, for common supervised learning, when there is sufficient
training data with supervised information, hI can provide a good approximation. Con-
versely, in the case of few training samples, eest(H, I) may exceed a reasonable range. hI is
no longer reliable, and overfitting occurs [29].

Figure 1. The total error under different circumstances. (a) sufficient sample data (b) insufficient
sample data (c) meta-learning.
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In response to this problem, most studies have mostly focused on performing data-
augmentation techniques. However, since the augmentation strategy is only applicable
to a specific data set, it is not easy to migrate to other datasets. Moreover, the effect relies
heavily on the quality of newly generated data. It is reasonable to believe that such research
does not tackle the problem radically.

Interestingly, we found the following phenomenon in human learning: when people
learn a series of different but related tasks, they can draw inferences from each other by
distilling the cross-task knowledge and skills. For new tasks, this kind of generalization
ability ensures that the model has rules to follow and gets started quickly.

Inspired by the above idea, meta-learning, also known as learning to learn [30], enables
the machine to find a set of effective “learning paths” in the past abundant tasks, so that
it can generalize well on unseen tasks. Particularly, the generalization achieves good
performance only with few training samples.

As Blumer argues [31], the lower bound on the number of training samples required
for fitting a function can be estimated. Specifically, if sample size I satisfies:

I ≥ 1
− ln(1− ε)

(
ln(|H|) + ln

(
1
δ

))
(2)

Any hypothesis h in H that is consistent with the objective function f on dataset D
will guarantee with probability (1− δ) that the error rate of predictions on future data is
lower than ε.

It is clear that the sample size required depends only on three variables: the expected
error rate ε, the guaranteed probability δ, and the size of hypothesis space H, regardless
of the objective function f and the data’s distribution. Therefore, under the premise of
ensuring that H always contains f , the sample size can be reduced by shrinking H.

Meta-learning simultaneously learns on multiple tasks with common properties. For
example, different image recognition tasks follow the translation invariance and rotation
invariance of images. In Figure 1c, these common attributes prune the hypothesis space
H, and narrow the search area of optimation parameters, thereby reducing the training
complexity of the training and helping model adapt well to few-shot scenarios.

That is, meta-learning is practical for solving few-shot learning problems.

2.2. Introductory Definition

The idea of meta-learning is divided into two main phases: meta-train and meta-
test [32] (Figure 2). In meta-train, we expect the model to acquire generalizability across
tasks in the task distribution P(T). To solve this problem in practice, a set of respective
independent source tasks is usually sampled from P(T), where each task T ∈ P(T) has a
respective task-related training and respective testing data, i.e., DT =

{
Ds, Dq

}
, and Ds, Dq

are called the support set and query set, respectively. The purpose of training is to optimize
the meta-parameter θ such that

min
θ

ET∈P(T)L(DT ; θ) (3)

where L(DT ; θ) denotes the loss over the data set DT with the model, and the optimal
solution θ∗ can be regarded as the learned cross-task knowledge (or meta-knowledge). In
the meta-test, the model is tested on a new task Tnew ∈ P(T) that is disjointed from the
data used for the source tasks in meta-train.

In contrast to traditional machine learning, the fast adaptation to the training set of
the target task T_new benefits from regarding the meta-knowledge θ∗ as prior knowledge.
θ∗ could be the estimation of the model’s initial parameters, hyperparametric optimization
strategies, the neural network architecture design, etc.
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Figure 2. The sketch map of meta-learning.

2.3. DMnet: A New Few-Shot Training Framework
2.3.1. The Overall Looking

Inspired by meta-learning ideology, we construct a new few-shot training framework
called DMnet for wind turbine defect detection. The basic flow chart is suggested in
Figure 3. To absorb prior knowledge, the machine learns from a large number of tasks
to obtain high-level generalization capability. In each task, the pre-processed image data
undergoes feature extraction by CNN to get a deep feature map, which is finally input to
the metric module for category determination. Further, the proposed dynamic activation
mapping strategy monitors this process and provides real-time feedback and corrections.
After that, the machine becomes a more powerful learner. For our target task, i.e., WT
surface defect detection, defect recognition and location on unseen samples can be achieved
with just only a small amount of supervised sample fine-tuning.

Figure 3. The basic flow chart of Dmnet.

2.3.2. The Cross-Task Training

From Section 2.3.1, meta-learning requires the support of multiple different but related
tasks, each of which has its own training and test sets. To realize the snap recognition of
WT surface defects, it is necessary to construct multiple tasks with similar settings to this,
which will participate in meta-training as training sets.

In the paper, the MVTec anomaly detection dataset [33], including 15 items such
as toothbrushes, leather, pills, wood, etc., is selected as data support for meta-learning
(Figure 4).

As depicted in Figure 5, we specifically design the following three-stage process: meta-
training, fine-tuning, and meta-testing. Dataset D is divided into three mutually exclusive
meta-sets: meta-training set Dmeta−train, meta-validation set Dmeta−valid, and meta-testing
set Dmeta−test. MVTec is used to build the first two parts, in which the wood dataset builds
Dmeta−valid, while the other 14 items build Dmeta−train.
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Figure 4. The MVTec anomaly detection dataset.

Figure 5. The detailed three-stage process.

In the first stage, we construct several tasks for meta-training and expect the model to
learn the task-to-task generalization ability: meta-training set Dmeta−train is a dataset collection of
ntasks tasks, i.e., Dmeta−train = (Dtask1, Dtask2, . . .). Each task dataset Dtask =

(
DSupport, Dquery

)
,

where support set DSupport and query set Dquery correspond to the training process and
testing process in a single task, respectively. Applying random sampling for each class, we
get ntrain_s sheets for support set and ntrain_q for query set. Meta-validation set Dmeta−valid
is built to identify defects of wood. Similarly, we have nval_s sheets for support set and
nval_q for query set, to observe the trend of model generalization performance on a new
task over model training.

However, we observed that the defects in the MVTec dataset are relatively simple and
obvious, while WT surface defects often have a complex background, which makes the
defect identification more challenging. Inevitably, the difference between our target task
and either task in the meta-training stage will be significantly greater than the within-group
task difference. To alleviate the negative influence, the fine-tuning in the second stage
performs supervised learning on the support set in meta-test set Dmeta−test.

Finally, the target few-shot task is tested. The meta-test set Dmeta−test serves our target
task—WT surface defect detection, with nwind_s sheets as the support set and nwind_q sheets
as the query set.

It should be noted that nval_s, ntrain_s, and nwind_s must be small numbers in order to
match the few-sample circumstance. In general, the size selection for both the support
set and the query set in the meta-training stage requires comprehensive consideration of
computing resources. The principle is to improve the information utilization rate as much
as possible with limited resources.

2.3.3. Feature Extraction

By analyzing the characteristics of WT’s drone images, it can be found that the defects
such as cracks and edge corrosion are in various irregular forms, which are difficult to
describe uniformly by a kind of specific feature. This raises demand for the semantic
analysis ability of the model. Moreover, factors such as the large variety of defect scales, the
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variable perspective of images and the complex background also increase the recognition
difficulty. Therefore, we choose CNN for the feature extraction in this case.

Simulating the structure of the human brain, CNN-based deep learning techniques
build multilayer neural networks to extract low-level and high-level features from the
input data layer by layer [34]. Through this hierarchical method, it effectively establishes
the mapping relationship from the underlying signal to the high-level semantics. While
improving the target recognition rate, it avoids the complicated operation of manually
designed features in the development of traditional defect recognition.

The convolutional layer and the pooling layer are the most important components of
CNN. Combining these two elements can form a variety of CNN feature extractors. The
shallow neurons express edge and angle information, while the role of the convolutional
layer is to gradually extract more abstract structural information by increasing the local
perceptual field. The convolution kernel is calculated as follows:

yL
p′ = fac

 ∑
i∈Mp′

yL−1
p ∗ kL

pp′ + bL
p′

 (4)

where Mp′ denotes the input feature map; yL−1
p represents the convolution kernel to which

the pth feature map of the previous layer is connected with the p′th feature map of the L-th
layer; ∗ is the convolution operation; bL

p′ is the bias; and fac(·) is the activation function.
The pooling layer, also called the down-sampling layer, reduces the dimensionality of

the feature map by compressing the image, which can improve model’s noise immunity
and maintain some invariance of the features (rotation, translation, stretching, etc.).

2.3.4. The Metric Classification Module

During the meta-training, the support set in each task helps the model build a clas-
sification pattern, and the query set validates and tunes the strengths and weaknesses of
the pattern. Inspired by deep metric learning, we expect the model to learn the essential
associations of things.

Therefore, our meta-learner aims to obtain a great cross-task feature space for sim-
ilarity measurement, which performs well on new tasks. We develop a metric module
for classification based on cosine distance measurement. The higher the similarity score
between a test sample and the given data, the more likely they belong to the same class.

In Figure 6, the process of classifying defects in a single task is as follows:

Figure 6. The metric classification module.

Define a task t with support set Dt
support and query set Dt

query.
First, the embedding model is constructed by a convolutional neural network (CNN).

In this way, each sample in Dt
support can be converted into a vector representation, i.e., a
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point in high-dimensional space. Next, calculate the similarity of any two vectors in the
feature space by the metric module. Here, we have the cosine distance for measurement,
which is a parameter-free distance metric. The similarity output forms the final prediction
probability of the query sample. The overall similarity of a query sample xq to the example
set x̂k of category k:

sin
(
xq, x̂k

)
=

1
N

N

∑
n=1

cos
(

xq, xk
i

)
(5)

where xk
i is the n-th sample in x̂k and cos represents the cosine function. Then, inscribe its

prediction probability on all categories:

pred
(

xq
)
=

1

∑K
j=1 esin (xq ,x̂j)

[esin (xq ,x̂1), esin (xq ,x̂2), . . . , esin (xq ,x̂K)] (6)

The one with the highest score is the prediction category for xq.

2.3.5. The Dynamic Activation Mapping Strategy

To address the issue of low recognition accuracy for small and concealed targets in
WT surface defect detection, a dynamic activation mapping strategy is introduced in the
embedding model at the single task level. Figure 7 describes how it implements:

Figure 7. The process comparison between the original model and the model with dynamic cam.
(a) original model (b) model with dynamic cam.

Assume that for any image sample z with category label c, a depth feature map f ea is
obtained after feeding it into a CNN-based embedding model. In the beginning, a target
layer Layertarget needs to be selected. In the context of this paper, we believe that the target
layer should neither be too shallow nor too deep: if it is too shallow, excessive noise will
interfere with the accurate representation of WT defective features, while if it is too deep,
the features of small-scale defects will be drowned in the surrounding pixels due to the high
level of feature map extraction. Collectively, target layer selection depends on the average
percentage of defects in the original image. After performing pre-forward propagation and
gradient back-propagation, record the target layer’s activation value as well as the target
layer’s gradient information by backpropagation of the score on category c.

The channel weight vector on neurons is obtained,

βc
z =

1
wtar ∗ htar

∑
i

∑
j
−∂scorec

∂Tz
ij

(7)
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where wtar and htar represent the length and width of Layertarget, scorec represents sam-
ple score on category c, and Tk

ij represents pixel value in the i-th row and j-th column
in Layertarget.

In accordance with the activation value and channel weight vector, we implement
linear feature fusion on the channel dimension for Layertarget. Especially,

Lz
map = ∑

l
βc

z(l)Activationz
l (8)

where ctivationz
l , βc

z(l) represent the activation map and contribution on the l-th chan-
nel, respectively.

Only pixel points that have a positive influence on the category are taken into account,
so the Relu function is applied to the heat map. Generate a rough activation heat map,
which means the weight contribution distribution in the spatial dimension on Layertarget.

Camcoarse = Relu
(

Lz
map

)
(9)

Based on the min-max normalization criterion, a normalization operation is applied.
The pixel value in the i-th row and j-th column of the new heat map Cam′coarse is

Ck
ij
′ =

Ck
ij −min(Camcoarse)

max(Camcoarse)−min(Camcoarse) + eps
(10)

where Ck
ij represents pixel value in the i-th row and j-th column in Camcoarse. max(Camcoarse)

and min(Camcoarse) are the maximum and minimum values of all elements in Camcoarse,
respectively. eps is a pretty small number to prevent overflow, which is taken as 10 × 10−6.

Then, adapt Cam′coarse to the same size as the depth feature map f ea to get the equiva-
lent soft mask map:

Cov = avgpooling
{

Cam′coarse
∣∣r = sizecam

size f ea

}
(11)

where sizecam and size f ea are the length (or width) of Cam′coarse and f ea, r is the down-
sampling rate, and avgpooling means the average pooling operation.

Finally, overlap the equivalent soft mask map on f ea to achieve the enhancement
of valid information and the filtering of redundant information on the basis of defect
correlation. The enhanced feature map

f ea′ = Cov⊗ f ea (12)

where ⊗ refers to the element multiplication operation.
We replace f ea with f ea′ as input to the subsequent classification module for defect

recognition. The equivalent soft mask map can be continuously and dynamically updated
according to the current parameters, thus assisting the model training.

As for the reason why this strategy can alleviate the accuracy degradation caused by
small and concealed defects, we take the following two underlying factors into considera-
tion: on the one hand, a dynamic activation mapping strategy, as a means of information
filtering, not only alleviates the pressure of high convolutional computation but also en-
hances task-related information on the depth feature map based on defect correlation
metrics, which increases the training efficiency and the exploitation of the model’s poten-
tial on the target task. On the other hand, the pooling operation performs forced-down
sampling in order to make the image size smaller. In the base model, scholars are generally
accustomed to choosing the last layer of features as the input to the classification module.
When the defect accounts for a small proportion of the original image, important defect
information is likely to be lost in pooling. The dynamic activation mapping pays attention
to the intermediate layer information so that the lost information can be reused, thus
helping to avoid the missed detection of small-scale targets.
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2.3.6. Optimization Goal

In contrast to the base-level learning in ordinary supervised training, we proposed
meta-level learning, which is dedicated to uncovering the commonalities that exist between
multiple similar tasks.

Different tasks have their own adapted optimal function, while our strategy is done
over the whole function space to get the common properties that all these functions follow.
The objective function in this paper considers all training tasks t ∈ Ttrain and minimizes the
sum of their loss functions on their respective test sets Dt

query, i.e.,

min ∑
t∈Ttrain

∑
(x,y)∈Dt

query

L
(
y, f
(
x, Dt

support; Θ
))

(13)

where Θ represents the meta parameter and f
(
x, Dt

support; Θ
)

represent the predicted value
for sample x.

In our approach, the meta parameter Θ is not expressed in an explicit parametric way.
Instead, the deep metric learning in 2.3.4 ensures that Θ is implicitly incorporated into the
model parameters.

3. Experiments and Discussion
3.1. Implementation Details

The experimental environment in the article is NVIDIA Tesla V100 32GB and the
Linux operating system. With PyTorch, the code is implemented in python3.8, CUDA11.3.
ntasks = 1000, ntrain_s = 10, ntrain_q = 30, nval_s = 10, nval_q = 10, nval_q = 80, epochs = 100,
and batchsize = 128. The uniform input size of the image is 224 × 224 × 3, and we used an
Adam optimizer with a 1e-3 initial learning rate for optimization training.

3.2. The Wind Turbine Inspection Dataset

The data set used in this experiment comes from the UAV aerial wind turbine dataset
provided by the Power Grid Company. To satisfy the few-shot condition, we have 20 sam-
ples for training and 2710 samples for test, i.e., nwind_s = 20, nwind_q = 2710. The data
distribution is shown in Table 1. Figure 8 contains examples of normal and defective
aerial images.

Table 1. Data distribution.

Training Set Testing Set

Normal 10 905
Defective 10 1805
Sum Up 20 2710

Figure 8. Cont.
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Figure 8. Examples of normal and defective aerial images. (a) normal samples (b) defective samples.

3.3. Defect Visualization

Figure 9 shows some examples of defect visualization. It illustrates that our DMnet
is capable of providing accurate identification for cracks, coating breakage, and corro-
sion in samples. Furthermore, even small target defects in a more difficult situation can
be pinpointed.

Figure 9. Examples of defect visualization.
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We have selected a sample to show the dynamic recognition process under the pro-
posed activation mapping strategy, as illustrated in Figure 10. We can see that in the early
stage, the model is not yet good at targeting defects for recognition, so features in abruptly
discordant locations are more likely to be noticed, such as edge lines and spindle connection
of the blade. In the intermediate stage, some of the noise has been filtered out and edge lines
are no longer mistaken for “defects”. The spindle connection, however, is more difficult to
distinguish since it has a more similar form to defects. In the later stage, the defective parts
have already been well focused. Overall, as training epochs increase, the strategy directs
the model’s attention toward the parts that are more highly associated with the defect in
the picture, ultimately helping the model to accurately identify and locate the defect.

Figure 10. The dynamic recognition process.

3.4. Comparison with State-of-the-Art Methods

For a more objective evaluation, we use several indicators here, including accuracy
(Acc), precision (Pre), recall (R), and F1-score. Specifically,

Acc =
TN + TP

FP + TN + TP + FN
(14)

Pre =
TP

FP + TP
(15)

R =
TP

TP + FN
(16)

F1 =
2 ∗ Pre ∗ R

Pre + R
(17)

TP is the number of positive samples that are correctly distinguished. TN is the
number of negative samples that are correctly distinguished. FP and FN, respectively,
represent the negative and positive samples that were misclassified.

To verify the effectiveness of our method, we set up three groups of comparison models:

1. Conventional machine learning algorithms with manual feature extraction: LBF for
feature extraction and SVM for classification (one of the most widely used methods).

2. Classical image classification algorithms based on deep learning: VGG, Res2net.
3. Classical few-shot learning algorithms: MetaBaseline [35], RelationNet [36], Baseline-

plus [37], and NegMargin [38].

Table 2 compares the model performance on the metrics. The recognition accuracy of
the first group does not exceed 50%, which indicates that the manually extracted features
are likely to be poorly adapted to WT surface defect detection. The second group showed an
overall increase in performance, but the f1-score was essentially the same as the first group.
Since models in the third group are designed specifically for the few-samples situation,
they performed significantly better than the first two groups. Clearly, the proposed DMnet
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achieves the best scores on every metric. Compared to the second place, DMnet reflects an
improvement ranging from 3% to 7% on each metric.

Table 2. Comparative experiments.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LBF + SVM 49.89 62.41 62.27 62.34
VGG-16 63.32 65.02 66.74 62.80

Res2net-50 62.25 60.84 61.48 62.87
MetaBaseline 69.82 67.58 69.24 67.85
RelationNet 69.96 66.34 66.52 66.42

Baseline-plus 73.76 71.73 73.86 72.13
NegMargin 73.25 71.09 73.06 71.49

DMnet 80.41 78.80 75.70 76.83

Two additional notes on the data for Table 2:

1. Training vgg16 and Res2net from scratch with only 20 samples would be difficult to
converge due to the unreliable empirical risk minimizer described in 2.1; thus, the
results here are based on ordinary supervised learning in the context of pre-training
weights with ImageNet [39].

2. To keep the irrelevant variables consistent in the comparison, the embedding models
for both DMnet and the four classical few-shot learning algorithms in Table 2 are VGG.

3.5. Ablation Experiments

To further validate the respective validity of the innovation points in this paper and
disentangle the contributions made by each component, we set up two sets of ablation
experiments, as depicted in Table 3.

Table 3. The ablation experiments.

Embedding Model Applied Strategy Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG

baseline 63.32 65.02 66.74 62.80
Baseline + approach 1 76.94 74.22 72.52 73.19
Baseline + approach 2 73.91 70.65 68.24 69.02

Baseline + approach 1 + approach 2 80.41 78.80 75.70 76.83

Res2net

baseline 62.25 60.84 61.48 62.87
Baseline + approach 1 70.85 67.66 68.42 67.96
Baseline + approach 2 66.46 67.21 69.31 65.74

Baseline + approach 1 + approach 2 74.10 70.78 69.34 69.90

Note: Baseline: general supervised learning model (i.e., the second set of comparison models in Table 2). Approach
1: the three-stage construction introduced in Sections 2.3.2–2.3.4 Approach 2: the dynamic activation mapping
strategy introduced in Section 2.3.5.

From the first four rows, the three-stage meta-learning framework provides a signifi-
cant boost to the experimental results, enabling the model to achieve an increase of almost
14% and 11% in accuracy and F1-score, respectively. The dynamic activation mapping
strategy also contributes further gains to the final results, with each metric improving by
3.5–4.5%. This demonstrates that every component of our method is practical and effective.

The last four rows were experimented under the condition that the embedding model
was changed to res2net, and the results illustrate a similar pattern to the first four rows.
With different embedding models, DMnet is always able to make great progress compared
to baseline, which shows good generalizability and scalability.

4. Conclusions

In this paper, we propose a new few-shot WT surface defect detection framework—
DMnet. To address the few-shot issue, a cross-task training strategy is designed. Searching
for a set of generalized defect identification criterion, the hypothesis space shrinks to
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achieve rapid learning and fast adaptation to new tasks in a few-shot scenario. Moreover,
a metric-learning-based classification module is developed to learn a general similarity
measure that is transferable between tasks. Its non-parametric structure allows the network
to adapt more quickly to matching (trained and tested) samples under the same task.
Additionally, we introduce a new activation mapping strategy with a dynamic feedback
session for training to improve the recognition accuracy for small targets.

To ensure a few-shot scenario, we specified to conduct experiments with a training
set of only 20 wind turbine defect samples. Under the same experimental conditions,
our method has the best defect recognition ability compared with conventional machine
learning algorithms, classical deep-learning-based image classification algorithms, and
classical few-shot learning algorithms. In particular, compared to the most commonly used
deep learning methods, ours reflects improvements ranging from 9% to 14% in accuracy,
precision, recall, and F1-score metrics. The ablation results illustrate that by chunking the
model, it is confirmed that both the three-stage construction and the dynamic activation
mapping strategy are valid components and each contributes to the gain. Further, the
results present consistent patterns after replacing the base model, which indicates that
DMnet can be adapted to different deep learning models, which is highly scalable.

In general, DMnet alleviates the information scarcity caused by insufficient defect
samples by constructing a large number of similar tasks to obtain prior knowledge, which
is applied to solve few-shot defect detection problems. Additionally, it provides the first
dynamic interpretability within the network during training by formulating a feedback
mechanism, which greatly improves the sensitivity of recognizing defects in small and
concealed targets, and finally achieves high-precision universal defect detection, which is
of great significance to the research of equipment diagnostics and condition monitoring.

Due to the data limitation, this paper only discusses whether the wind turbine is
defective or not. In the next step, we consider subdividing the defect categories by collecting
more samples of different defect types. Additionally, for the more difficult new tasks, cosine
distance may not be effective enough to reflect the similarity between samples owing to its
limitations as a predefined metric. The similarity measure that is dynamically updatable
(e.g., a learnable network) may be a good choice for greater expressiveness.

Author Contributions: Conceptualization, J.Y.; methodology, K.L. (Kaipei Liu), L.Q. and J.Y.; soft-
ware, B.L. and J.Y.; validation, J.Y.; formal analysis, J.Y.; investigation, Q.L., F.Z. and Q.W.; re-
sources, Q.L., F.Z. and Q.W.; data curation, H.L. and J.Y.; writing—original draft preparation, J.Y.;
writing—review and editing, J.Y.; visualization, K.L. (Kexin Li) and J.W.; supervision, Q.L., F.Z. and
Q.W.; project administration, L.Q.; funding acquisition, L.Q. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the science and technology project of State Grid Information
and Telecommunication Group Co., Ltd. (SGTYHT/19-JS-218).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dutton, A.; Backwell, B.; Fiestas, R.; Joyce, L.; Qiao, L.; Zhao, F. Balachandran NGlobal Wind Report 2019. 2020. Available online:

https://gwec.net/global-win-report-2019/ (accessed on 12 June 2022).
2. Shi, Y. Phased array ultrasonic detection of glass fiber composites for Wind Turbine Blades. Nondestruct. Test. 2018, 40, 56–58.

[CrossRef]
3. Yang, Q. How to detect wind Turbine blade defects. Sci. Technol. Wind. 2019, 1.
4. Tiwari, K.A.; Raisutis, R.; Samaitis, A. Hybrid signal processing technique to improve the defect estimation in ultrasonic

non-destructive testing of composite structures. Sensors 2017, 17, 2858–2879. [CrossRef] [PubMed]

https://gwec.net/global-win-report-2019/
http://doi.org/10.1080/10589759.2016.1265963
http://doi.org/10.3390/s17122858
http://www.ncbi.nlm.nih.gov/pubmed/29232845


Machines 2022, 10, 487 15 of 16

5. Tarfaoui, M.; Khadimallah, H.; Shah, O.; Pradillon, J.Y. Effect of spars cross-section design on dynamic behavior of composite
wind turbine blade: Modal analysis. In Proceedings of the International Conference on Power Engineering, Istanbul, Turkey,
13–17 May 2013; pp. 1006–1011.

6. Bo, Z.; Yanan, Z.; Changzheng, C. Acoustic emission detection of fatigue cracks in wind turbine blades based on blind deconvolu-
tion separation. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 959–970. [CrossRef]

7. Hwang, S.; An, Y.-K.; Sohn, H. Continuous-wave line laser thermography for monitoring of rotating wind turbine blades. Struct.
Health Monit. 2019, 18, 1010–1021. [CrossRef]

8. Lienhart, R.; Maydt, J. An Extended Set of Haar-like Features for Rapid Object Detection. In Proceedings of the Image Processing
International Conference, Rochester, NY, USA, 22–25 September 2002.

9. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 247, 971–987. [CrossRef]

10. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
11. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society

Conference, San Diego, CA, USA, 20–25 June 2005; pp. 886–893.
12. Hearst, M.A.; Dumais, S.T.; Osman, E.; Platt, J.; Schölkopf, B. Support vector machines. IEEE Intell. Syst. 1998, 13, 18–28.

[CrossRef]
13. Viola, P.A.; Jones, M.J. Rapid Object Detection using a Boosted Cascade of Simple Features. In Proceedings of the IEEE Computer

Society Conference on Computer Vision Pattern Recognition, Kauai, HI, USA, 8–14 December 2001.
14. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
15. Peng, L.; Liu, J. Detection and analysis of large-scale WT blade surface cracks based on UAV-taken images. IET Image Process.

2018, 12, 2059–2064. [CrossRef]
16. Chen, J.; Shen, Z. Study on visual detection method for wind turbine blade failure. Int. Conf. Energy Eng. Environ. Prot. 2018,

121, 042031. [CrossRef]
17. Wang, L.; Zhang, Z. Automatic Detection of Wind Turbine Blade Surface Cracks Based on UAV-taken Images. IEEE Trans. Ind.

Electron. 2017, 64, 7293–7303. [CrossRef]
18. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Proceedings of the

32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; PMLR: Online, 2015.
19. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.
21. Gao, S.-H.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-H.; Torr, P. Res2net: A new multi-scale backbone architecture. IEEE

Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [CrossRef]
22. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019.
23. Xu, D.; Wen, C.; Liu, J. Wind turbine blade surface inspection based on deep learning and UAV-taken images. J. Renew. Sustain.

Energy 2019, 11, 053305. [CrossRef]
24. Yang, P.; Dong, C.; Zhao, X.; Chen, X. The Surface Damage Identifications of Wind Turbine Blades Based on ResNet50 Algorithm.

In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 6340–6344.
25. Qiu, Z.; Wang, S.; Zeng, Z.; Yu, D. Automatic visual defects inspection of wind turbine blades via YOLO-based small object

detection approach. J. Electron. Imaging 2019, 28, 043023. [CrossRef]
26. Shihavuddin, A.S.M.; Chen, X.; Fedorov, V.; Nymark Christensen, A.; Andre Brogaard Riis, N.; Branner, K.; Bjorholm Dahl, A.;

Reinhold Paulsen, R. Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis. Energies 2019,
12, 676. [CrossRef]

27. Bottou, L.; Bousquet, O. The tradeoffs of large-scale learning. In Proceedings of the 21st Annual Conference on Neural Information
Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 161–168.

28. Bottou, L.; Curtis, F.E.; Nocedal, J. Optimization methods for large-scale machine learning. SIAM Rev. 2018, 60, 223–311.
[CrossRef]

29. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a Few Examples: A Survey on Few-shot Learning. ACM Comput. Surv.
2020, 53, 1–34. [CrossRef]

30. Vanschoren, J. Meta-learning: A survey. arXiv 2018, arXiv:1810.03548.
31. Schmidhuber, J. Evolutionary Principles in Self-Referential Learning. On Learning How to Learn: The Meta-Meta-Hook. Ph.D.

Thesis, Institut f. Informatik, Technische Universität München, Munich, Germany, 1987. Volume 1.
32. Lu, J.; Gong, P.; Ye, J.; Zhang, C. Learning from very few samples: A survey. arXiv 2020, arXiv:2009.02653.
33. Bergmann, P.; Fauser, M.; Sattlegger, D.; Steger, C. MVTec AD—A Comprehensive Real-World Dataset for Unsupervised Anomaly

Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 16–20 June 2019; IEEE: Piscataway, NJ, USA, 2020.

34. Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional networks. In Proceedings of the
Conference Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; p. 1097.

http://doi.org/10.1111/ffe.12556
http://doi.org/10.1177/1475921718771709
http://doi.org/10.1109/TPAMI.2002.1017623
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1109/5254.708428
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1049/iet-ipr.2018.5542
http://doi.org/10.1088/1755-1315/121/4/042031
http://doi.org/10.1109/TIE.2017.2682037
http://doi.org/10.1109/TPAMI.2019.2938758
http://doi.org/10.1063/1.5113532
http://doi.org/10.1117/1.JEI.28.4.043023
http://doi.org/10.3390/en12040676
http://doi.org/10.1137/16M1080173
http://doi.org/10.1145/3386252


Machines 2022, 10, 487 16 of 16

35. Chen, Y.; Liu, Z.; Xu, H.; Darrell, T.; Wang, X. Meta-baseline: Exploring simple meta-learning for few-shot learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9062–9071.

36. Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.S.; Hospedales, T.M. Learning to Compare: Relation Network for Few-Shot
Learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–23 June 2018.

37. Chen, W.-Y.; Liu, Y.-C.; Kira, Z.; Wang, Y.-C.F.; Huang, J.-B. A closer look at few-shot classification. arXiv 2019, arXiv:1904.04232.
38. Liu, B.; Cao, Y.; Lin, Y.; Li, Q.; Zhang, Z.; Long, M.; Hu, H. Negative Margin Matters: Understanding Margin in Few-shot

Classification. Eur. Conf. Comput. Vis. 2020, 12349, 438–455.
39. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ,
USA, 2009.


	Introduction 
	Methodology 
	Motivation 
	Introductory Definition 
	DMnet: A New Few-Shot Training Framework 
	The Overall Looking 
	The Cross-Task Training 
	Feature Extraction 
	The Metric Classification Module 
	The Dynamic Activation Mapping Strategy 
	Optimization Goal 


	Experiments and Discussion 
	Implementation Details 
	The Wind Turbine Inspection Dataset 
	Defect Visualization 
	Comparison with State-of-the-Art Methods 
	Ablation Experiments 

	Conclusions 
	References

