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Abstract: It is difficult for rolling bearings to realize high-precision fault diagnosis with variable speed.
To obtain the features of variable speed fault signal effectively and complete the classification work of
high accuracy, robust local mean decomposition (RLMD), fractional hierarchical range entropy (FrHRE),
hunter—prey optimization algorithm (HPO) and random forest (RF) are combined. Then the paper
advances a model for fault diagnosis based on RLMD, FrHRE and HPO-REF Firstly, RLMD is selected
to reconstruct the signal to eliminate some noise interference in this paper. Secondly, FrHRE is chosen
to extract the useful feature. Next step, HPO is used to optimize the important parameters of RF and
enhance RF’s classification ability. Finally, these obtained features are imported into the optimized
RFmodel to achieve the classification. The experimental data is provided by University of Ottawa. The
experiment analysis demonstrates that the proposed method performs very well in classification.

Keywords: fractional hierarchical range entropy; variable speed condition; hunter-prey optimization
algorithm; random forest

1. Introduction

As a core component, the health of rolling bearings has a huge influence on perfor-
mance and safety of rotating machinery. Due to the complexity of the rolling bearings’
own structure and the harsh operating environment, they will inevitably have various
faults, affecting the safety of rotating machinery. Therefore, the most effective way to avoid
bearing faults causing significant economic losses and casualties is to carry out bearing
fault diagnosis as soon as possible, and then repair and replace the damaged bearings [1-5].
However, most methods for rolling bearing fault diagnosis are applied to constant speed
conditions. In contrast, there has been less research on variable speed conditions, which
are common conditions in rotating machinery [6]. When rotating machinery is operating
at variable speeds, the signal frequency will change greatly with time, the spectrum will
become blurred and the signal will be strongly non-stationary, which makes the processing
of vibration signals very challenging. Therefore, variable speed conditions are receiving
extensive attention in the fault diagnosis research of rotating machinery.

Because the vibration signals are easily influenced by various noises during the acqui-
sition process, it is an important premise to find an excellent signal preprocessing method to
ensure the effective fault feature extraction. In this respect, many researchers have executed
extensive research. Among them, Dragomiretskiy et al. [7] proposed variational mode
decomposition (VMD). However, the number of modes for VMD must be set in advance,
which can make VMD lack of adaptability. In view of this shortcoming, researchers have
studied adaptive variational mode decomposition (AVMD) and successive variational
mode decomposition (SVMD), respectively [8,9]. Although these methods have reached
some achievements, they must cooperate with other methods to complete signal prepro-
cessing in the face of signal processing under variable speed conditions. However, the
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local mean decomposition (LMD) method proposed by Li [10] can be directly applied
to the nonlinear signals and then combined with the envelope spectrum to achieve the
identification of bearing fault features. In order to improve the ability of the local mean
decomposition (LMD), the ensemble local mean decomposition (ELMD), the complete
ensemble local mean decomposition (CELMD) and the complete ensemble local mean
decomposition (CELMDAN) have been proposed [11-13]. Although these methods have
achieved certain results, they still suffer from poor adaptability, modal mixing, end effects
and so on. The robust local mean decomposition (RLMD) has solved the problems of the
above methods [14]. Moreover, RLMD combined with excellent time-frequency analysis
tools can accurately extract features of variable speed signals [15]. Therefore, this paper
chooses RLMD as the tool to reduce noise.

After using RLMD, the useful fault information is extracted from the denoised signal
by finding suitable features. Due to the inevitable friction during the bearing operation,
the signal will show non-stationary and nonlinear characteristics. At this time, the entropy
index is selected to extract different faults’ features. For example, Zhang et al. [16] studied
the multi-scale entropy (MSE). Li et al. [17] proposed refined composite multiscale fuzzy
entropy (RCMEFE) to extract fault features, which are hidden in denoised signals. Omidvar-
nia et al. [18] presented the concept of range entropy. Multiscale range entropy (MRE) was
proposed on the basis of range entropy and successfully applied to bearing fault diagno-
sis [19,20]. Combined with the advantages of hierarchical analysis, the hierarchical range
entropy (HRE) index was proposed [21]. However, this index is only applied to constant
speed conditions. Due to the complex time-varying modulation and spectral structure, it is
very difficult for rolling bearing under variable speed conditions to extract fault features. To
address the problem, a new index, called fractional hierarchical range entropy (FrHRE), is
presented. Compared with the original HRE, FrHRE reflects the features of time, frequency
and time-frequency domain at different scales. It can fully express the signal information
for the sake of extracting multi-angle and deep-level signal features with variable speeds.

In addition to excellent fault feature extraction methods, it also needs to be matched
with a good fault classifier so as to achieve high-precision classification under variable
speed conditions. In recent years, many machine-learning methods have been applied
on fault classification problems, for example support vector machine (SVM), extreme
learning machine (ELM), kernel extreme learning machine (KELM), least squares support
vector machine (LSSVM) and random forest (RF) [22-28]. Due to the advantages of high
classification accuracy and high calculation efficiency, RF is often applied to fault diagnosis
for fault identification. Han et al. [29] used the RF classifier to achieve accurate classification
of rolling bearing faults. Vakharia et al. [30] selected the RF to identify the ball bearing
fault and realized high-precision classification. It can be observed that the classification
performance of RF is excellent. However, there are many parameters that need to be
tuned in RF model, which will affect the classification accuracy of RF to a certain extent.
To solve this problem, researchers often use swarm intelligence optimization algorithms,
which are very straightforward and easy to comprehend [31]. For example, particle swarm
optimization algorithm, artificial fish swarm algorithm and grey wolf optimization have
been adopted to choose RF’s optimal parameters [32-34]. The classification accuracy of
the optimized RF is significantly improved. These swarm intelligence algorithms have
been applied to RF’s optimization and attained certain results. However, their exploration
and development capabilities are not very good. As a result, the hunter—prey optimization
algorithm (HPO) has been proposed [35]. The algorithm simulates the behavior of hunters
and prey and has sufficient exploration and exploitation capabilities to find the optimal
parameters adaptively. Therefore, this paper has applied HPO to the RF and adopted
HPO-RF model for fault identification.
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In conclusion, the paper presents a method for fault diagnosis with variable speed
based on RLMD, FrHRE and HPO-RF. Notably, the paper make a summary on main
contributions as follows:

1. A signal preprocessing method (RLMD) that can effectively remove noise from the
variable speed signal is adopted.

2. A new feature extraction method applied to variable speed bearing signals, namely
fractional hierarchical range entropy (FrHRE), is proposed in this paper.

3. This paper investigates an adaptive optimization-seeking fault identification model
on the foundation of RF model. RF model parameters are globally optimized by
iterative algorithm.

The rest of the paper is represented as detailed below: Section 2 presents the basic
theory of RLMD, FrFT, HRE, RF and HPO. The paper provides the explicit steps of FrHRE,
presents the steps of HPO-RF and shows the steps of proposed method in Section 3.
Section 4 analyzes the performance of RLMD, FrHRE and HPO-RF, respectively. Section 5
discusses the experimental results. Finally, some conclusions are given in Section 6.

2. Basic Theory
2.1. Robust Local Mean Decomposition (RLMD)

Robust Local Mean Decomposition (RLMD) can extract pure FM signal, envelope
signal and their product function (PFs) from any complex signal y(n) to be analyzed, so
that PFs can fully contain the multi-scale information of the original signal. Next, we will
briefly introduce the process of extracting PFs by RLMD algorithm.

Step 1: Find the local extremes of y(n), and calculate the smooth local mean me(n)
and smooth local amplitude am(n).

Step 2: The estimated zero-mean signal /11111 (1) and the FM signal ss11 (1) are calcu-
lated by Equation (1). The subscripts represent the ith PF and the jth sifting process.

hhi1(n) = y(n) — meyq (n)

(1)
ss11(n) = 2]

Continue to repeat the above steps R times with ssj;(n) as a new signal until the
sifting conditions proposed by RLMD (of;; < ofij41 < 0fjj42) are met.
If the above sifting conditions are met, it can be proved that ssjg (1) is a pure FM
signal, namely:
PFy(n) = amq(n) X ssy(n) )

Step 3: Extract the remaining PF; from y(n). y(n) can be expressed by Equation (3).
Where uy (n) is the residual signal after L repetitions.

L
y(n) =) _ PF(n) + ur(n) ®)
i=1
2.2. Fractional Fourier Transform (FrFT)

Performing FrFT on the signal is to rotate the signal counterclockwise on the time axis
by B angle to the naxis and then perform the Fourier transform. Figure 1 shows the process
of using FrFT to rotate the ¢ — f plane to the u — v plane.
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Figure 1. The t — f plane is rotated to the u—v plane by FrFT.
The FRFT of signal y(t) is defined as:
Yp(u) = F'ly(®)] = [ y(t)Kp(t,u)dt @

where p is the order of FRFT, which can change from 0 to 1, meaning that the signal changes
from time domain to frequency domain gradually. Moreover, the kernel function of FRFT is:

— 2., .2
\/1 é;()t‘gexp(jt —;u cotp—tucscpf) B #nm

6(t —u) B=2nmr ®)
O(t+u) B=02nt)m

K‘B(t, Ll) =

Its transformation formula is shown in Equation (6), where the range of § is generally
T
u=tcosp+ fsinf ©)
v=—tsinf+ fcosp

2.3. Hierarchical Range Entropy (HRE)

HRE combines hierarchical decomposition and range entropy index, which can mine
signal feature information from multi-scale aspects.  Assuming a time series
Y = {y1,y2,...,yn} is given, the process of calculating its HRE is as follows:

First, we define two operators: the average operator Qg and the difference operator
Qs, the formula is shown in Equation (7).

Qo(y):% i=1,2,...... N -1

Q1(y)=% i=12,... N-1

@)
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where Qp represents the low-frequency component of time series and Q represents its
high-frequency component [36].

Secondly, given a integer e that is non-negative, there is only one vector [v1,vy, ..., 0],
k € N, which can represent the non-negative integer ¢, as shown in Equation (8).

e= 2 ok=my (8)

Then, the operator should be used repeatedly in the hierarchical decomposition of time
series. The hierarchical decomposition components can be attained by using Equation (9).

Yie = Qvn‘Qvn,l’ cee ’Qvl (y) )

Finally, the range entropy is calculated for the hierarchical components obtained in
the above procedures, and the hierarchical range entropy can be obtained.

HRE(y,n,e,m,T) = RangeEn(Vye, m, T) (10)

2.4. Random Forest (RF)

RF is a machine learning algorithm, which can be used to classify, cluster and regress.
The classification of RF is achieved by training base decision trees, generating models
and using the comprehensive results of many decision trees to vote. The content of RF is
roughly as follows [37,38]:

Step 1: Select N samples randomly as training sample set X* = {X}, X3,..., X% } by
the bootstrap sampling method. A decision tree can be obtained by training using this
sample set, as shown in Equation (11).

hi(X*,0r) = c(x1,x2,...,xN,r00t(h;))
label (hy) hy is the leaf node (11)

e, X2, XN, ) {c(xl,x2, ..., XN, hy) Ry is the inner node
where root(h;) is the root node of the decision tree h;(X*, @), and c¢(x1, x2, ..., xn, ht) is
the splitting criterion of decision tree.

Step 2: When each sample has M features, select m(m < M) features randomly, and
input the best one at each split node of the decision tree for splitting.

Step 3: Repeat the second step and continue splitting until all training samples of this
node belong to the same class. There is no pruning behavior in the whole formation of the
decision trees.

Step 4: Build multiple decision trees in accordance with the first three steps, which
then can constitute a random forest.

Step 5: After the test samples are input into RF model, the class with the most clas-
sification results is selected as the final result. The classification decision model H(x) is
exhibited in Equation (12), where it represents the output tag variable and I(x) is the
indicative function.

H(x) = arg m&xi I(hi(X*,0) =Y) (12)
i=1
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XXi,j(t +1)

2.5. Hunter—Prey Optimizer (HPO)

HPO is a new algorithm for optimizing proposed in 2021. These sections are described
in detail below.  First, Equation (13) are used to set the initial population

(XX) = { XX1, XX5,..., XX, } Then, the fitness of each scheme is calculated by

—
XX).

Oi = f(
XX; = rand(1,d). x (uub —11b) + 11b (13)

where XX; represents the position of the hunter or prey, /Ib represents the lower limits of the
problem variables and uub represents its upper limits. d is the number of these variables.

(1)  The hunter search mechanism

In HPO, the hunter search mechanism is represented by Equation (14).

= XX;j(1) +05[ (2CZPyoy ) — XX;5(1)) + (21— ) Zpgy — XX (1) ) | (14)

where XX (t) is the current position and XX (t + 1) is the next position of the hunter. y is
no—

the mean value of all positions, that is, u = % Y. XX;. Cis the balance parameter, which is

i=1

calculated by C = 1 — it( M(i‘lg)i T

Ppos is the position of the prey, which is shown in Equation (16).

). Z is the adaptive parameter, as Equation (15) shows.

.
Z =Ry ® IDEX + R3 ® ( ~ IDEX) (15)
- e

Ppos = XX |i is sorted Deyc(kbest) (16)

(2)  The prey escaped to a safe position

When the prey is attacked, it will escape to the safe position immediately. At this time,
Equation (17) represents the update of the prey’s position.

XXi,j(f + 1) = Tpos(j) +CZ COS(27TR4) X (Tpos(j) — XXZ',j(t)) (17)

where XX (t) and XX(t + 1) are the current position and the next position of the prey,
respectively. Tyos stands for the optimal global location. R4 is a number randomly selected
from [—1,1].

To solve the problem of how to distinguish the object represented by X X;, HPO proposes
an adjustment parameter B (its value is 0.1) and a random number Rs (its range is [0, 1]).
When R5 < B, XX; is regarded as the hunter. Otherwise, XX is regarded as the prey.

3. Proposed Method
3.1. Fractional Hierarchical Range Entropy (FrHRE)

A new feature extraction method, fractional hierarchical range entropy (FrHRE),
is proposed by combining FrFT, hierarchical decomposition and range entropy in this
paper. From different time-frequency perspectives, FrHRE retains the strength of multi-
scale decomposition and adds high frequency components in different scales to make the
extracted features contain more information. Figure 2 is the flow chart for calculating
FrHRE. Firstly, FrFT is applied to the time series to obtain the time-frequency components
of different orders. The parameters are then initialized before calculating the HRE. Next,
calculate the HRE for each time-frequency component. Finally, the output is HRE of each
time-frequency component. That is, FrHRE is obtained.
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Fractional Fourier Transform
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Initialization parameters:
mnr
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Calculate the HRE of U,

l

FrHRE

Figure 2. The flow chart of calculating FrHRE.

3.2. Hunter—Prey Optimizer-Random Forest (HPO-RF)

In most cases, the number of base decision trees (ntrees) and minimum node-divided
samples (n_splits) in RF are selected empirically, which may increase the classification error
of RE. Therefore, this paper selects these two parameters as tuning objects to decrease the
classification error as much as possible and enhance the RF’s accuracy. The optimization
process of HPO-RF is as follows.

Input: training dataset, test dataset, the upper and lower limits of RF parameters uub
and /b, the maximum number of iterations MAX]It, the number of populations nPop, the
number of RF parameters dm and the adjustment parameter .

Output: the optimal solutions Target and TargetScore, which correspond to the optimal
parameters ntreesy,s; and n_splitsyes;.
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(1) According to the input parameters, the initial population is randomly set.

(2) Read the input training data and test data.

(3) Calculate the objective function of all members in the population and store the optimal
fitness value found so far. (In this paper, we choose the sum of the classification
error rates of training and test set as the fitness value, so the smaller fitness value is
considered as the better one.)

- =
(4) Update parameter: C, kg, Z and set Ry, R3, Ry, R4, Rs.
(5) Update the position of the current search agent using Equation (18).

XX;j(t+1) = XX j(£) + 0.5[(2CZPsj) — XX;i(1) + (2(1 — C)Zpujy — XXi(t))]

pos

R
5<p (18)

XXl',j(t +1) = Tpos(j) + CZcos(2tRy) X (Tpos(j) — XXi,]‘(t))

Rs > B

3.3. The Proposed Method

Figure 3 exhibits the flow chart of the proposed method.

Step 1: The bearing signal is decomposed by RLMD. Moreover, the optimal compo-
nents are chosen for signal reconstruction by using the principle of the maximum cross-
correlation, which can reduce noise and highlight features to a certain extent.

Step 2: FrHRE is calculated separately for the denoised signal of each state, and a
feature sample set is constructed. The parameters of FrHRE are setas: p € [0,0.1,...,1],
the number of layers is 3, the embedding dimension is 2 and  is 0.15 times of the sample’s
standard deviation. Eleven components in the fractional Fourier domain (FrFD) can be
obtained by performing FrFT of the corresponding order on the denoising signal. Where
p = 01is the time domain of signal and p = 1 is frequency domain, and the rest orders
correspond to the signal’s time domain representation at different angles. Moreover, the
range entropies at different levels are calculated for the obtained components in FrFD. Then
the features in time, frequency and time-frequency domain are obtained.

Step 3: The samples of training and test are obtained by dividing extracted feature
samples randomly, and the corresponding labels are given.

Step 4: The RF parameters that need to be optimized and their ranges are determined.
Moreover, the input of HPO-RF are the sample set.

Step 5: RF is optimized using HPO. First, the parameters of the HPO are initialized.
Secondly, the fitness values of all members in the initial population are computed (the
classification error rate of the training and test samples is chosen as the fitness value). Next,
the parameter values with the smallest fitness value are chosen as the current optimal
parameters. After that, the parameters should continue to be update and agent’s current
location should be searched for. Finally, when the maximum of iterations number is reached,
the outputs are current parameters and the corresponding fitness values. If not, the target
parameters should be updated and training continued until the iteration numbers reach
the maximum.

Step 6: These obtained optimal parameters are input into RF for training and the
classification of the test samples is completed.
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Figure 3. The flow chart of RLMD, FrHRE and HPO-RF.

4. Performance Analysis
4.1. Performance Analysis of RLMD

To analyze the performance of the RLMD, the simulated fault signal model of rolling
bearing under acceleration state is constructed, as shown in Equation (19) [39].

M
s1(t) = ¥, Cel=2000=1)) sin (271 x 3000(t — t;))u(t — t;)
i=1

M
sp(t) = ¥ Cel=2000=1)) sin (271 x 3500(t — t;))u(t — t;)
i=1 (19)
M
s3(t) = ¥ Cie(=200(t=t)) gin (271 x 4000(t — t;))u(t — t;)
i=1

s(t) = s1(8) +sa(t) +53() +n(t)

where s(t) is the fault simulation signal of the rolling bearing under variable speed; n(t) is
the white Gaussian noise with SNR = —5dB; C; = ¢ + A * f(t;) represents the amplitude
of the iy, impact, and both ¢ and A are constants; f(t;) represents the rotation frequency of
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the bearing at time ¢;; and ¢; is the time coordinate corresponding to the iy, impact, which is
calculated in Equation (20).

t = (1+T)/f(t0)/FCC
t; = (1+T)[1/f(fo)+1/f(t1)+"'+1/f(fi,1\/[)]/FCC i=23,---,M (20)
to=0

In Equation (20), T is the sliding error coefficient of the rolling bearing, generally
T = 0.01, and FCC represents the number of fault impact caused by each revolution of the
bearing, which is not affected by the rotation speed.

The fault signal model parameters of rolling bearing are as below: the sampling
frequency is 204,800 Hz; the sampling points’ number is 204,800; C; = 1+ 0.05 * f(t;);
f(t) = 10t + 10; and FCCuter is fault characteristic coefficient of outer race of bearing, that
is FCCouter = 3.7. At this time, the waveform and spectrum of the simulated outer race
fault signal are both exhibited in Figure 4. It can be seen that due to the influence of noise,
the frequency range of the components of simulated signal are not clear in the spectrum.

8 T T T T T T T T T 0.1

0.09

0.08

e
o
N

e
o
&

Amp]itude(m/sz)
o
[=]
S

Amplitude(m/s’)
f=]
S

0.03 |

0.02

0.01

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(s) Frequency(Hz)
(a) The waveform (b) The spectrum

Figure 4. The waveform and the spectrum diagram of simulated signal.

In this regard, CEEMDAN, LMD and RLMD are selected for comparison in terms of
noise reduction performance. Firstly, these three decomposition methods are, respectively,
applied to the simulated signal, and the component diagrams obtained by decomposition
are shown in Figure 5a,c,e. By observing these three subgraphs, we can see that the first
PF component obtained by RLMD reveals more impact. However, there is still a large
amount of noise in the IMF1 obtained by CEEMDAN and the PF1 obtained by LMD. Then,
the cross-correlation coefficients between these components and the simulated signal are
calculated, respectively. The component with the largest cross-correlation coefficient under
each decomposition method is selected as the denoised signal. The spectra of these three
denoised signals obtained are shown in Figure 5b,d,f. We can clearly see that the frequency
range cannot be clearly located in Figure 5b. From Figure 5d, the frequency range of the
signal components can only be distinguished roughly, and the spectrum still includes a
lot of interference. In Figure 5f, the frequency range of three signal components can be
distinctly observed, and most of the noise has been eliminated. Therefore, we can conclude
that RLMD not only shows an excellent decomposition effect but also exhibits superior
performance in noise reduction when performing denoising processing on the bearing
vibration signal at variable speeds.
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Figure 5. The decomposition results attained by CEEMDAN, LMD and RLMD separately and the
spectra of denoised signals obtained through them.

4.2. The Analysis of FrHRE

1/ f noise and white Gaussian noise (WGN) are commonly applied to verify the
performance of entropy [40]. Therefore, to demonstrate the superiority of FrHRE, these
two noise signals are simulated in this paper, and their sampling points are set to 2048.
Figure 6 shows their waveform and spectrum. It can be observed from the figure that white
Gaussian noise is evenly distributed in the frequency band, while the spectrum of 1/ f noise
is mainly centered in the low frequency area, which means that the periodic components
with strong correlation are mainly distributed in the low frequency band of 1/ f noise, that
is, the signal at the low frequency band is more ordered and has a lower entropy value.
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Figure 6. The time domain waveform and the spectrum of different simulated noise signal.

In Figure 7, when these three methods are applied to 1/ f noise, the entropy curves of
FrHRE and FrHFE show an upward trend with the increasing of scale (i.e., the entropy value
is small in low scale and large in high scale), and the entropy value curve of FrMRE remains
basically unchanged. This illustrates that compared with FrMRE, which only reflects the
signal’s low-frequency components, FrHRE and FrHFE can reflect the information not
only low-frequency but high-frequency, which makes their entropy features contain more
comprehensive information. In addition, the paper uses FrHRE, FrHFE and FrMRE to
process 20 sets of white Gaussian noise generated randomly so as to verify the stability of
FrHRE. Their standard deviations at different orders corresponding to different scales are
then calculated by averaging 20 realizations. It can be seen from Figure 8 that the standard
deviation of FrHRE in each scale is less than that of FrHFE. In addition, in some orders,
the standard deviation of FrMRE is occasionally smaller than that of FrHRE. However, on
the whole, the standard deviation curve of FrHRE is always relatively stable and the value
of its standard deviation is relatively small no matter its location in the low scale or the
high scale. This indicates that FrHRE has excellent stability performance and is superior
to the other two in stability. Considered comprehensively, FrHRE is qualified in terms of
reflecting the comprehensiveness of signal information and high stability.
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Figure 8. The standard deviation curves of FrHRE, FrHFE and FrMRE for white Gaussian noise in

different orders.

4.3. Classification Performance Analysis of HPO-RF

Since the signal model in Equation (19) is applicable to the fault of the inner race and
outer race and ball, the fault signals of the inner race and ball are, respectively, constructed
by setting the parameters of simulated inner race and ball fault signals (FCCjy,,er = 5.3,
FCCyup = 2.28, and the rest of the parameters are the same as the parameters in Section 4.1).
Their waveforms are seen in Figure 9.
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(a) The inner race signal’s waveform
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(b) The ball signal’s waveform

Figure 9. The waveforms of simulated signals.
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Secondly, the four type simulation signals are divided into 100 samples, respectively,
according to the division criterion that the length of each sample is 2048. Since the supe-
riority of RLMD and FrHRE in their respective fields have been proved in the previous
two sections, RLMD is directly selected in this section to denoise the simulation signals
of three fault states, and FrHRE is adopted to extract the entropy features for the three
denoised signals in eight scales for different orders, respectively. Therefore, the entropy
feature set can be obtained for each fault state signal. Then we randomly select training
and test samples at a ratio of 7:3 for the feature sample set of each fault. That is, the training
samples’ number in each class is 70 and test sample set is 30. The samples are described in
Table 1.

Table 1. The descriptions of the samples.

Fault Type Training Samples Test Samples Label

Inner race 70 30 1

Outer race 70 30 2
Ball 70 30 3

Finally, the whale optimization algorithm (WOA), artificial fish swarm optimization
algorithm (AFSA), gray wolf optimization algorithm (GWO) and hunter-prey optimization
algorithm (HPO) are chosen to optimize the parameters of random forest (RF), respectively,
to obtain four improved random forest models. The training and the test sample are then
imported into these classification models for learning and testing separately, so as to verify
the superiority of the classification performance of HPO-RFE. The training results and test
results of these models are shown in Figure 10. To make the results more convincing,
the paper uses randomly assigned samples for 20 runs. The average value and standard
deviation with 20 runs will be used as the evaluation index. The comparative results of the
classification performance of the four models are exhibited in Table 2.

As can be observed, the accuracy of the training model of HPO-RF is 100% and
the accuracy of the test model is 97.7778%, both of which ranked first among the four
models. Based on the table, some conclusions can be reached: first, the average accuracy of
HPO-REF classifier is higher than the other three, which verifies that HPO algorithm has
outstanding ability in parameter optimization, making its classification accuracy relatively
high; and second, the standard deviation of the HPO-RF model is the least among the four
models, which indirectly indicates that the stability of the HPO-RF model is better than the
remaining three. Put simply, HPO-RF not only has outstanding recognition ability in fault
identification but the stability of the model is also excellent.

Table 2. Classification performance of four models.

Models Training Samples Test Samples
Av.el.'age: Standard Av.er.age. Standard
Classification Deviation Classification Deviation
Accuracy (%) Accuracy (%)
HPO-RF 99.67 0.0054 97.12 0.0358
WOA-RF 96.82 0.0408 93.08 0.0771
GWO-RF 96.19 0.0473 90.44 0.0964

AFSA-RF 91.93 0.0898 82.87 0.1831
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5. Experiments
5.1. Experimental Settings

The proposed method was used on the experimental data provided by Ottawa Uni-
versity to prove the validity of the paper [41]. Experiments were conducted on the Spec-
traQuest mechanical failure simulator (MFS-PK5M), which is shown in Figure 11.

Healthy Bearing Accelerometer

- Motor

Encoder

Figure 11. The experimental equipment.

It uses a three-phase motor to drive the shaft to rotate and controls the speed through
an AC drive. All bearings used in the experiment are ER16K ball bearings. A healthy
bearing is installed on the left side of the shaft. The right one is a test bearing that can be
substituted by bearings of four health statuses. Moreover, the vibration acceleration signal
of the bearing is collected by the ICP accelerometer placed on the experimental bearing
shell. In addition, its rotational speed signal is measured by the incremental encoder. The
obtained data are collected synchronously on the NI data acquisition boards. The sampling
frequency is 200 kHz. The main experimental parameters are exhibited in Table 3.

Table 3. The basic parameters in the experiment.

Name of Parameters Value of the Parameter
Bearing type ER16K
Number of Balls 9
Pitch diameter 38.52 mm
Ball diameter 7.94 mm
Sampling frequency 200 kHz

According to the variable speed condition of the bearing, each health state is divided
into four conditions: speed-up, speed-down, speed-up then speed-down and speed-down
then speed-up. In this paper, four kinds of signals under the speed-up condition are selected
as the research objects. Then the proposed method is applied to those experimental data
and analysed in this paper so as to prove its effectiveness.

Under the condition of increasing speed, the experimental signal consists of four health
states. Therefore, the experimental analysis can be viewed as a four-class classification
problem. In this paper, the first 409600 points of the vibration signal of each class are
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equally divided into 200 non-overlapping data samples. That is, the sampling length of
each sample is 2048, each class has 200 samples and there are 800 samples in total.

5.2. Experimental Verification

Figure 12 exhibits four time-domain waveforms of the bearing sampling data under
the speed-up condition. It can be viewed that the signal amplitude gradually increases
with the speed.

Health Bearing

1 1 1 1 1

2 3 4 5 6 7 8 9 10
Time(s)

Inner race Fault

Time(s)
Quter race Fault

L 1 T I T

] 1 1 1 1

2 3 4 5 6
Time(s)
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Time(s)

Figure 12. The waveforms of four bearing fault signals with speed-up.

Some useful fault feature information is hidden due to the existence of more disturbances.
Therefore, RLMD is first selected to decompose the signals of each healthy state, and then
multiple PF components and residual terms are obtained in this section. Taking the inner
race fault signal as an example, Figure 13 shows the six PF components and a residual
term obtained by its decomposition. Moreover, the cross-correlation coefficients between
these PF components and original signals of their corresponding health state are calculated,
respectively. Signal reconstruction is performed by selecting the component with the largest
cross-correlation coefficient. Thus, the effect of removing a certain degree of noise is achieved
by reconstructing the signal helps to increase the accuracy of fault classification.

Secondly, the proposed FrHRE was utilized to extract features from denoising signals.
Then a 200 x 88 time-frequency domain feature set was obtained for each health state. The
11 subgraphs in the following figure are the FrHREs of 11 components with orders from
0 to 1 under 8 scale factors. As can be observed from Figure 14, the trend of the FrHRE
curve for the inner and outer race fault signal at each order is almost the same, while the
trend of the curve for the healthy state signal and the curve for the ball fault signal are
also generally similar. This indicates that the disorder of the inner race and outer race
fault signal is similar. (The same can apply to the health state signal and the ball fault
signal.) This also implies that misdiagnosis in fault identification can occur when the two
signals with similar disorder have very small differences in the value of FrHRE at certain
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scales. For example, the inner race and outer race fault signal, the health state signal and
the ball fault signal in Figure 14f,j, and the health state signal and the ball fault signal in
the subgraph(h) have similar entropy values on each scale. However, in most orders, the
FrHRE curves of the four health states signals can be clearly distinguished. For example, in
Figure 14a—e,g,Lk, the FrHRE values for the four states are more clearly different on most
scales. These components can clearly distinguish the FrHRE curves of different states on
most scales.

PF1
0.2F T T T T T T =
0 -
02t 1 1 1 1 1 1 —
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x10°
PEF2
01 T T T T T T T
O —
_0-1 1 1 1 1 1 I 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
% 10°
PF3
0_02 T T T T T T T T =
0 -
-0.02 I 1 L 1 1 f =
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x10°
PF4
0.0 ! I T T
—0.0é E‘
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x10°
%1073 PES
- 1 : I 1 1 I 3
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
% 10°
%1073 PF6
_4 T : T : T | T T 3
0] 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x10°
<104 PF7
8 | | | : ' : : : :
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x10°
Residual
833 ; : : : : : | : ]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
% 10°

Figure 13. The PF components obtained by RLMD.

In summary, although the entropy curves of the four signals are overlapped at a small
number of orders, the FrHRE curves can still be clearly distinguished in most orders. This
shows that FrHRE can play a positive role in feature extraction and make good preparations
for subsequent fault identification.
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Figure 14. The FrHREs of 11 components by using RLMD-FrHRE.
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For the sake of testing the modeling accuracy and generalization of HPO-RF, the

sample set processed by RLMD-FrHRE is used to test the established HPO-RF model.

Before testing, the samples are separated into training samples and test samples. By
convention, the ratio of the training samples to the test samples should be 7:3 or 8:2, that is,
the number of training samples for each class in this paper should be 140 or 160. However,
when the number in each class is 140, the training result of the proposed model is 100%,
while its test result is 96.25% in Figure 15. When 160 samples are chosen randomly from
each class as training samples, the model achieves a training result of 100% and a test result

of 97.5%.

Table 4 is presented to provide a clearer visualisation of the results of different training
samples numbers of the model’s classification accuracy. Different numbers of training
samples has no effect on the training results. Moreover, the accuracy of the test results of
the model is the highest (97.5%) when the number of training samples randomly extracted
from each class is 150 or 160. This indicates that the proposed model has the excellent clas-
sification ability with the number of training samples per class being 150 or 160. Although
the test accuracy of the model with the training sample size of 150 is the same as that with
the training sample size of 160, we believe that the model’s classification performance was

not improved after adding 10 samples, a factor which was undoubtedly useless.

Therefore, this paper chooses 150 samples as training samples of each class, and then
the remaining 50 samples are applied for testing. Table 5 gives the detailed introduction of
the samples for each health state.
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Table 4. The different results with different training sample numbers.

Training Samples Randomly

Selected by Each Class Training Result of HPO-RF Test Result of HPO-RF
120 100% 95.88%
130 100% 96.07%
140 100% 96.25%
150 100% 97.5%
160 100% 97.5%
170 100% 95.83%

Table 5. The detailed description of the samples.

Fault Type Training Samples Test Samples Label
Healthy bearing 150 50 1
Inner race 150 50 2
Outer race 150 50 3
Ball 150 50 4

The diagnostic results are seen in Figure 16 and Table 6. As is seen, the classification
accuracy of HPO-RF model for training samples has reached 100%, and there is no overfit-
ting. This also verifies that the HPO-RF model has strong learning ability. Subsequently, we
input the remaining 200 test samples into the HPO-RF model for classification validation.
The results are observed in Table 7 and Figure 17. The test precision of the established
HPO-RF model is 97%. It can accurately identify the four signal types. However, among
the five misidentified samples, two outer race fault samples were wrongly classified as
inner race fault samples. Additionally, two samples of inner race faults were identified as
outer race fault samples by mistake. It can be seen from Figure 14 that the FrHRE trends
of inner race and outer race, which are of different orders, are similar, that is, the disorder
degrees of these two kinds of fault information are similar. This is the reason why the
samples that belong to outer race fault or inner race fault account for a large proportion of
the incorrectly identified samples.

Therefore, we can see that the HPO-RF model has good modeling accuracy and
generalization ability when inputting training samples and test samples into the HPO-RF
model, respectively. The paper provides a method for the bearings’ fault diagnosis with
variable speeds.

Table 6. Diagnosis results of training sample.

Real

HPO-RF Precision
Healthy Bearing Inner Race Outer Race Ball
Healthy 150 0 0
earing
Predict Inner race 0 150 0 0 100%
Outer race 0 0 150 0
Ball 0 0 0 150
Table 7. Diagnostic results of testing sample.
Real
HPO-RF Precision
Healthy Bearing Inner Race Outer Race Ball
Healthy 19 0 0
bearing
Predict Inner race 0 48 2 0 97.5%
Outer race 0 2 48 0
Ball 1 0 0 50
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6. Conclusions

The paper presents a novel model for variable speed bearing signal based on a combi-
nation of RLMD, FrHRE and HPO-RFE.

In terms of signal preprocessing, the robust local mean decomposition (RLMD) is
chosen for noise reduction of variable speed bearing signals. RLMD and other signal
decomposition methods are applied to the simulated signal, respectively. By comparing
their respective denoising effects, it is proved that RLMD is superior to other methods in
eliminating noise, and it also has better performance in noise reduction.

In view of the difficulty of feature extraction for variable speed bearing signals, this
paper introduces the fractional Fourier transform to improve it on the basis of hierarchical
range entropy, and proposes a new method, namely fractional hierarchical range entropy
(FrHRE). The comprehensiveness and stability of FrHRE in extracting entropy features are
verified by using simulated noise signal.

Aiming at the problem that the parameters of random forest (RF) cannot be obtained
adaptively, this paper improves the RF by using the hunter-prey optimization algorithm
(HPO) in order to establish a random forest model with adaptive parameters. Compared
with RF model improved by other optimization methods, the stability and accuracy of RF
are superior.

The experimental data provided by Ottawa University validates that the proposed
method can diagnose the faults effectively under variable speed conditions with good effects.

For the fault diagnosis that rolling bearing is in the working environment of variable
speed, we can continue to improve FrHRE to complete higher precision feature extraction
in the future. Furthermore, the proposed method should be used on other experimental
data to further verify its universality.
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