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Abstract: For mechanical equipment, bearings have a high incidence area of faults. A problem for
bearings is that their fault characteristics include a vibrating screen exciter which is weak and thus
easily covered in strong background noise, hence making the noise difficult to remove. In this paper,
a noise reduction method based on singular value decomposition, improved by singular value’s
unilateral ascent method (SSVD), and a fault feature enhancement method, i.e., variational mode
decomposition, improved by revised whale algorithm optimization (RWOA-VMD), are proposed.
These two methods are used in vibration signal processing with early faults of bearings having a
vibrating screen and they have achieved significant application results. This paper also aims to
construct a multi-modal feature matrix composed of energy entropy, singular value entropy, and
power spectrum entropy, and then the early fault diagnosis of bearings of a vibrating screen exciter
bearing is realized by using the proposed support vector machine, improved by the aquila optimizer
algorithm (AO-SVM).

Keywords: bearings of vibrating screen exciter; noise reduction; feature enhancement; early fault

diagnosis; multi-modal feature matrix

1. Introduction

As an important part of vibrating machinery, large-sized vibrating screens have been
widely used, especially in the fields of coal preparation and recycling utilization of construc-
tion waste. Large disposal capacity, which has reached more than 2000 t/h [1], and poor
working conditions lead to high failure rates. In particular, due to the comprehensive influ-
ence of large clearance, spring support, and alternating excitation, the dynamic coupling
reaction between the internal parts of the exciter is strong. That is, the collision is more
frequent, the friction is aggravated, and fatigue failure is very prone to occur. Therefore,
bearing failures account for the highest proportion of exciter failures. Due to the early
failure of the weak bearing itself, submerged in the strong reciprocating vibration of the
exciter, early fault feature extraction of the bearing is more difficult, which poses a greater
challenge for the early fault diagnosis of the bearing for the vibrating screen exciter.

At present, common signal processing methods include short-time Fourier transform,
wavelet transform, empirical mode decomposition, and some other mode decomposition
algorithms. Due to the problem of the window function, the time-frequency resolution of
the short-time Fourier transform cannot be adjusted adaptively [2]. Because of the selection
of wavelet bases, the wavelet transform has the problem of insufficient adaptability [3].
Therefore, the most popular method of time-frequency analysis in recent studies is the
adaptive signal decomposition method [4]. The most commonly used adaptive mode
decomposition methods are empirical mode decomposition (EMD), ensemble empirical
mode decomposition (EEMD) [5], empirical wavelet transform (EWT) [6], and variational
mode decomposition (VMD) [7]. EMD is widely used in various fields, but it has difficulty
in mathematical modeling, noise sensitivity, and endpoint effects. EEMD overcomes the
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mode aliasing of EMD, but it takes too long and does not overcome the endpoint effect [8].
Many scholars had studied EWT [9-12], compared with EMD, the EWT method effectively
suppresses the endpoint effect and mode aliasing phenomenon [13], and because EWT
adopts a non-recursive decomposition method, it greatly improved the computational
efficiency [14]. However, the effect of EWT on boundary detection in Fourier spectroscopy
is not good [15]. VMD not only overcomes the shortcomings of endpoint effect and mode
aliasing, but also has a solid mathematical foundation; however, its parameter selection
cannot be well determined. Although many scholars have carried out research on it [16-20],
there are still certain limitations.

On the aspect of fault diagnosis, detection and diagnosis of faults (FDD) have be-
come an active issue, in which data-driven fault diagnosis applied in traction systems of
high-speed trains is one of these FDD methods. Data-driven designs can be directly imple-
mented without a logical or mathematical description of traction systems, and have thus
received special attention because of their overwhelming advantages [21-25]. For the fault
diagnosis of bearings of the vibrating screen exciter, a few scholars have conducted research.
Xu and Cai [26] applied VMD improved by K-L divergence method to the extraction of
fault characteristics of vibrating screen bearings; and Cai et al. [27] proposed an envelope
derivative energy operator (EDO). The aforementioned researches focus on the extraction
of bearing fault features of bearings of vibrating screen exciter, but they do not propose a
fault identification method to carry out intelligent diagnosis of early faults.

In summary, it is necessary to further study the enhanced extraction of early fault
features and the intelligent fault diagnosis algorithm of the bearings of the vibrating screen.
The remainder of this paper is organized as follows. Section 2 proposes a singular value
decomposition improved by singular value’s unilateral ascent method (SSVD) for signal
noise reduction. In Section 3, the revised whale algorithm is used to improve the variational
mode decomposition (RWOA-VMD) to enhance the application effect of fault feature
extraction. Section 4 discusses the combined application of SSVD and RWOA-VMD to the
bearing signal analysis of the vibrating screen exciter. Section 5 puts forward the energy
entropy, singular value entropy, and power spectrum entropy of the combined processed
signal in Section 4 as multi-modal features, and then proposes an improved support vector
machine based on the aquila optimizer algorithm (AO-SVM) to enhance the early fault
diagnosis accuracy of bearings of the vibrating screen exciter. Conclusions are drawn
in Section 6.

2. Improved Singular Value Decomposition Based on Singular Value’s Unilateral
Ascent Rate Method (SSVD) for Pre-Denoising

2.1. Signal Reconstruction Principle Based on Singular Value’s Unilateral Ascent Rate Method

First, a discrete signal x is constructed into the Hankel Matrix, and the delay step is 1,
that is, the data of each row (column) lags behind the data of the previous row (column) by 1.
Then, the corresponding m x n matrix is obtained:

xl xz PR xn
X2 X3 o Xptl

Amxn = . . . . (1)
Xm Xm+1 - XN

where,n = N —m+ 1.

A sequence of singular values S = [07, 02, 03, - - -, 07] are derived from the Hankel
matrix Ay« for the discrete signal x. 07 represents the rth singular value. The instanta-
neous ascent rate is defined as:

Vi=0i—0i1 ()

The average ascent rate of all singular values is defined as:

Vip=(o1—0r)/(r—1) ®)
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The singular values are arranged from small to large, and the difference between the
instantaneous ascent rate and the average ascent rate of all singular values is defined as:

Ci=Vi-Vi,(i=12,...,1) @

Singular values can reflect the energy concentration of signal and noise. Larger
singular values reflect useful signals, while the smaller values mainly represent noise.
Since the size difference of the latter is small, the instantaneous ascent rate of singular
values reflecting noise is significantly smaller than the average ascent rate of all singular
values V; ,, that is, C; < 0. When the singular value increases to a certain extent, that is,
its instantaneous ascent rate begins to have a significant change, i.e., C; > 0. Singular
values satisfying C; > 0 are equivalent to peak values derived from another noise reduction
method, namely, singular value difference spectra. However, the information carried by
peak values may not be useful information needed, which results in poor noise reduction
effect based on the singular value difference spectra. To solve this problem, this paper
proposes that only when the singular value rises at the fastest rate can the optimal number
of singular values be selected, and this point is called the k point, that is:

Ck = max(Cl,Cz,...,Cr) (5)

Therefore, the optimal number of singular values for signal reconstruction is selected
as k point and the subsequent point, that is, k~r. Therefore, this method cannot only avoid
insufficient noise reduction, but it can also avoid over-noise reduction.

The signal reconstruction method selected by this principle is called improved singular
value decomposition based on singular value’s unilateral ascent rate method (SSVD). This
method cannot only effectively remove the noise, but also avoid the phenomenon of
over-noise reduction.

2.2. Simulation

To verify the effectiveness of the singular value’s unilateral ascent method, the simu-
lated signal x(f) is constructed as:

x(t) = cos(1287tt) + 0.5 x cos(867t) + 0.3 x cos(2207tt) (6)

where the sampling frequency f; = 500 Hz and sampling time t = 1 s. A Gaussian white
noise with SNR =1 is added to the simulated signal to simulate the strong noise under actual
working conditions. Frequency spectrums with and without noise are, respectively, shown in
Figure 1. It can be found that one signal component is overwhelmed in the strong noise.
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Figure 1. Comparison of frequency spectrums: (a) without noise and (b) with noise (SNR = 1).
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The effective number of singular values is obtained by using SSVD, as shown in
Figure 2a. At the point k = 245, the difference C between the instantaneous ascent rate and
the average ascent rate is the maximum, so the singular value points from 245 to 260 are
selected for signal reconstruction. The frequency spectrum after noise reduction by SSVD
preserves the three frequency components of the original signal while greatly eliminating
the noise in the signal.
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Figure 2. (a) noise reduction based on SSVD and (b) based on singular value difference spectra.

In order to prove the advantage of SSVD in denoising, one commonly used method
of selecting effective singular values based on the singular value difference spectrum is
compared with SSVD here. According to the principle of the singular value difference
spectrum, as shown in Figure 2b, the maximum point of the difference spectrum appears
at point k = 2, so the first two singular value points are selected to reconstruct the signal;
however, two frequency components are obviously missing. So, this method is easy to
cause excessive noise reduction. Therefore, SSVD has a better noise reduction effect under
strong background noise.

3. Variational Mode Decomposition Improved by Revised Whale Optimization
Algorithm (RWOA-VMD) for Fault FEATURE Enhancement

VMD is an adaptive and completely non recursive method of mode variation and
signal processing. VMD can be summarized as: (1) updating each mode in the frequency
domain, and then converting the signal from the frequency domain to the time domain
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through the inverse Fourier transform; (2) the central frequency of each IMF compo-
nent is continuously re-evaluated. The specific process of the algorithm iteration is as
follows: (1) initialize each mode {1} }, center frequency {®;} and the number of de-
composition levels K, where k = 1, ...,K; (2) update 1 and wy according to equations:
F(w) =Yz i (w 1 Aw) . * wliy(w)|?dw
0 Bt 2 g e~ Lz
signal, « is penalty factor; (3) update Lagrange multiplier operator A according to equa-
tion A"t (w) = A"(w) + 1(f(w) — T ﬁ’,:“ (w)); (4) tfrlmirklate the iteration according to
HunJr _unH
ok 113
accuracy ¢ < 0), if not, return to step (2). However, the application effect of VMD on false
mode components inhibition and mode aliasing and endpoint effect alleviation is highly
dependent on the choice of two key parameters: the number of decomposition levels K
and penalty factor a. It often depends on human experience and the optimization of some
algorithms. At present, human experience mostly determines K through the observation
of central frequency, but this method is very accidental and time-consuming. Human
experience can only determine K, but cannot determine a. Although some algorithms have
achieved some results in optimizing VMD, there are also serious defects. The convergence
precision and speed are relatively slow, and they often fall into local optimization [28]. This
section will focus on the selection of the best values of these two parameters for the purpose
of improvement of VMD.

2 (W) =

, where f is the original input

whether the termination conditions are met in ), < & (where, determination

3.1. Whale Optimization Algorithm (WOA)

Inspired by the foraging behavior of humpback whales, Mirjalili and Lewis [29]
proposed a new meta-heuristic optimization algorithm, i.e., WOA. The algorithm is divided
into three stages: initialization stage, local search stage, and global exploration stage.

@ Initialization stage: Suppose that N solutions are randomly generated to form an
initial population, and the predation space is D-dimensional. D-dimensional optimization
problems can be described as:

minf(x) @

stl<x<u

where f(x) is single objective optimization function, x € RP is an independent variable,
and u,! € RP are the upper and lower boundaries of x, respectively.

The initial population can be expressed as G(0) = {x1(0),x2(0),...xn(0)}, the ith
solution is x;(0) = [x;1(0), x;2(0), ... x;p(0)]. Then, there is:

XZ](O) = l] + rand(O, 1) (Ll] - l]) (8)
where u; and [; are the upper and lower boundaries of the ith dimension, and
x.(0) = arglr<ni<nN f(x;(0)) represents the optimal individual in the population.

<i<

@ Local exploration stage: the essence of the local exploration stage is a process of
finding the optimal solution through the shrinking encircling mechanism and spiral updating
position mechanism in the local area. The mechanism of shrink wrap is expressed as:

xjj(t+1) = x,j(t) — Adjj(t) 9

A:@— tyy—n (10)
max
where ¢ is the current number of iterations, x,;(t) is the position of the current best candidate
solution, d;j(t) = |2rx,;(t) — x;;(t)|, r is uniformly distributed random number among
[—1, 1], and tyqy is the maximum number of iterations.
The spiral updating position mechanism is expressed as:

xij(t+1) = x.j(t) + ecos (27l (1) 1)
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where b is a constant relating to the spiral shape, [ is a random number of [—1, 1], and
dij(t) = [x.(t) — x;5(t)].

(® Global exploration stage

In the global exploration stage, prey search is carried out by a search agent randomly
selected from the population. The whale location can be updated as:

xj(t+1) = xp5(t) — Ady(t) (12)
where x,(t) is the jth dimension of a random whale, and d;;(t) = |2rx;(t) — x;;(t)|.

3.2. Revised Whale Optimization Algorithm (RWOA)

In order to quickly find the optimal location, each whale searches and transmits
information within a specific range. Therefore, designing a suitable search radius as the
search range of whales is very critical to improve the convergence speed of the algorithm
to obtain the optimal solution.

For the ith whale in the population x;(t), calculate the distance d¥(t) between it and
the other whales in the population xi(t), k # i,k =1,2,...,N:

D
di(t) = \J Y (xij () — x(£)? (13)
j=1

Calculate the distance d¥(t) between the ith whale x;(t) and other whales x,(t). The
maximum distance is ¢y, p # i,p = 1,2,...,N, and the minimum value is ¢;, 4 # i,
g=1,2,...,N. cq and c; are excluded in order to reduce the error caused by extremity of

the value. . »
g = d5(O)in = 1 (1
Define the search radius R;(t) of the ith whale as:
LRtk 45 (1)
Ri(t) = —N_-3 (15)
The neighborhood of the ith whale x;(t) planned by the search radius R;(t) is:
Nb;(t) = {xk(t) k(1) < Ri(t), k #i,p,q.k = 1,2,...,N} (16)
Additionally, the optimal individual of N is recorded as:
X" () = arg min f(xi(t)) (17)

X €ND;

Under the case of |A >1|, the ith whale will search in the global adaptive neigh-
borhood. In order to improve the convergence rate and overcome the problem of local
optimization, Equation (12) is revised as:

xl-]-(t + 1) = Xg?ESt(t) - Adl](t) (18)

where, dl](t) = 27’x£?35t(t) - xij(t) :
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3.3. Variational Mode Decomposition Improved by Revised Whale Optimization Algorithm
(RWOA-VMD)

For signal x(i)(i = 1,2,..., N), define its envelope entropy E, as follows:

N
E, = 421 e(i)lge(i)

1=

N
e(i) = ali)/ L ali)

i=1

(19)

where N is the number of sampling points, a(i) is the signal demodulated by Hilbert, and
€(i) is the normalized probability distribution sequence of a(i).

In the following content, WOA will be used to further improve VMD, namely RWOA-
VMD, and its flowchart is shown in Figure 3.

Initialization of whale population
position [K ,a]
¥

VMD decomposition based on the
position of each whale

Calculation of the envelope entropy and the
record of the optimal individual position

NO

The whale rpopulation The whale population The whale population is
spirals according to |[shrinks around according explored globally
Equat‘ion ) to Equf:tion 7 according to Fquation (10)
YES
<t o
<
Optimal parameter

combination [K ,u]

Figure 3. Flowchart of RWOA-VMD.

3.4. Experimental Validation of RWOA-VMD

In order to verify the effectiveness of RWOA-VMD, the vibration signal of the inner
ring at the drive end is chosen from the Bearing Center of Case Western Reserve University
(CWRU), the bearing speed is 1797 r/min, and the bearing inner ring fault frequency is
fi = 162.19 Hz. To verify the advantages of the RWOA-VMD method in noise reduction
and feature extraction, it is compared with GA-VMD and WOA-VMD. These three VMD
optimization algorithms are set up to iterate 30 times with searching ranges of K = [3, 8]
and & = [500, 2000], and the final result takes the average of 30 tests. The minimum
envelope entropy is set as the fitness function, and the adaptability optimization curve is
shown in Figure 4. GA-VMD, WOA-VMD, RWOA-VMD run to the 19th, 18th, and 15th
generation convergences, respectively, and the corresponding optimal parameter groups
[K, a] are [5, 622], [5, 673], [4, 926].
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Figure 4. Comparison of processing effect based on GA-VMD, WOA-VMD and RWOA-VMDA.

Consequently, RWOA-VMD has the fastest convergence rate and the highest con-
vergence precision. Each IMF1 of the three method has the minimum envelope entropy,
respectively, 6.85, 6.84 and 6.81, and is selected for signal reconstruction. Figure 4 clearly
verifies that envelope spectrum from RWOA-VMD has the most faults related to frequency
components and the highest frequency amplitude. As a result, RWOA-VMD has prominent

ability on fault feature enhancement.

4. A Novel Feature Enhancement Method for Vibrating Screen Exciter Bearing FAILURE

4.1. Experimental Arrangement

In Section 3.4, RWOA-VMD shows obvious advantages in bearing fault features extrac-
tion, but the test rig of CWRU simulates bearing faults on conventional rotating machinery,
and in order to certify the application effect of RWOA-VMD in the context of vibrating
machinery, e.g., vibrating screen exciter, the experimental verification is constructed. The
relevant parameters of the tested bearing are shown in Tables 1 and 2.
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Table 1. Bearing-related parameters.

Bearing Inner Outside . Knot Number of o
Specification Diameter/mm Diameter/mm Diameter/mm Diameter/mm Rollers Contact Angle (*)
1308 40 90 12.5 65 15 30
Table 2. Fault bearing parameters.
Location Width Depth Length Length
Inner ring 1 0.2 Bearing width/2 Bearing width/2
Outer ring 0.7 0.2 Bearing width/2 Bearing width/2
Location Rotation Rotation Frequency Sampling Failure
Speed/r/min fn/Hz FREQUENCY fs/Hz  Frequency/Hz
Inner ring 910 15.17 20,000 104.92 (fo)
Outer ring 910 15.17 20,000 146.86 (fi)

The original vibration signal and frequency spectrum of the vibrating screen bearing
with an inner ring fault are shown in Figure 5, which mainly presents the excitation
frequency of the vibrating screen exciter because its energy is very large, and the early fault
frequency is completely covered.

(a) 10 e — (b) o7 ' ' ‘
8
06 \
6
fn
05+ 1
g D
2} )]
E E o4t 1
[} Q
o iel
= =
= =
= Z 03 1
E E
< <
02+ 1
_6 4
01 1
_8 4
-10 1 1 1 1 1 1 1 L Jdies el Kl b, ' o
g 01 02 03 04 05 06 07 08 09 A 0 100 200 300 400 500 600 700 800 900 1000
t/s Frequency/Hz

Figure 5. (a) original vibration signal and (b) frequency spectrum of vibrating screen bearing with
inner ring fault.

If GA-VMD, WOA-VMD and RWOA-VMD are, respectively, applied to the original
signal, the results shown in Figure 6 only displays 2fi without other fault-related frequencies,
e.g., harmonics and modulated frequencies. A conclusion is drawn that none of these three
methods are remarkably effective in feature extraction of early fault of exciter bearing. It is
necessary to propose a method which is more suitable for vibrating machinery.
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Figure 6. Comparison of processing effect directly using: GA-VMD, WOA-VMD and RWOA-VMD
in the condition of exciter bearing with inner ring fault.

4.2. Signal Processing Method Combining SSVD and RWOA-VMD

In order to enhance the fault characteristics of the bearing of vibrating screen exciter
on the premise of reasonable noise reduction, this paper combines SSVD and RWOA-VMD
for the processing of the original vibration signal. The overall procedure of this unified
method is summarized in Figure 7 and the details are explained as follows:

Step 1: Noise pre-reduction SSVD is used to denoise the original vibration signal of
exciter bearing with an inner race fault. Comparing Figures 5 and 8, it can be found that
noise is partly removed from the original signal, but the exciting frequency is still dominant

and characteristic frequencies are still invisible.
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Figure 7. The flow chart of the method of combining SSVD and RWOA-VMD for signal processing of
vibrating screen exciter bearing.
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Figure 8. (a) signal pre-denoising by SSVD with inner ring fault and (b) frequency spectrum.

Step 2: Fault features enhancement RWOA-VMD is used to decompose the denoised
signal. After searching, the optimal parameter combination [K, «] is [4, 948]. As shown in
Figure 9a, the signal after pre-denoising is decomposed into four levels, i.e., IMF1, IMF2,
IMF3, and IMF4 at the first column with their frequency spectrums at the second column,
and the last one is the residual component. Therefore, the first level obviously contains the
exciting frequency of the vibrating screen and some relatively concentrated and orderly
frequency components, that is, the envelope entropy is the minimum. By analogy, the
envelope entropy of other layers increases in turn.
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Figure 9. The application effect of RWOA-VMD on the vibration signals of vibrating screen exciter:
(a) inner ring fault and (b) outer ring fault.

Step 3: Components screening and signal reconstruction. One or two components with
the smallest envelop entropy are selected for signal reconstruction. IMF2 and IMF3 are chosen
from Figure 9a to reconstruct the signal. By Hilbert transformation, the envelop spectrum of
the reconstructed signal can obviously show the fault frequency and its harmonics.

Similarly, this method is used to process the vibration signal of the vibrating screen
exciter with an outer race fault, as shown in Figure 9b. The result also displays a good effect
of feature frequency extraction, which proves the universal applicability of this method.

In summary, the signal processing method based on the combination of SSVD and
RWOA-VMD is verified to have a good application effect on the noise reduction and fault
characteristic enhancement of vibration signals of the vibrating screen exciter bearing with
early fault.



Machines 2022, 10, 1007

13 of 20

5. Early Fault Diagnosis Method of Vibrating Screen Exciter Bearing Based on
AO-SVM Method

5.1. Fault Feature Extraction of Vibrating Screen Bearing

In order to identify and classify bearing faults, we construct a multi-mode feature
matrix based on the energy entropy, singular value entropy, and power spectrum entropy
calculated from signals processed by SSVD and RWOA-VMD, as shown in Figure 10. The
energy entropy distribution is in different states, i.e., normal state, outer ring fault, and
inner ring fault. A total of 200 sets of samples are adopted and each energy entropy is
obtained from 1000 processed signals. The distribution of the energy entropy has good
clustering and sensitivity. Similarly, the singular entropy distribution and power spectrum
entropy distribution are exhibited in Figure 10. Therefore, due to good qualities, these three
characteristic indexes can be used for fault diagnosis.

495 ' ! ' T ' T T T T T
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Figure 10. Distributions of energy entropy, singular value entropy, and power spectral entropy in
different conditions.

5.2. Support Vector Machine Optimized by Aquila Optimizer Algorithm (AO-SVM)

(1) Principle of AO algorithm
Inspired by the hunting behavior of aquila in nature, Laith A. [30] proposed an aquila
optimizer algorithm (AO). As shown in Figure 11, the AO algorithm is divided into five steps:
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Figure 11. The influence of the principles and parameters of each step of the aquila optimizer
algorithm on AO: (a) expanded exploration; (b) narrowed exploration; (c) expanded exploitation;
(d) narrowed exploitation; (e) narrowed exploitation; (f) the effects of the quality function (QF),
G1 and G2 on the behavior of the AO [30,31].

(@ Initialization: Suppose N solutions are randomly generated from an initial pop-
ulation, and the predation space is D-dimensional. For D-dimensional, the optimization
problem is:

minf(x)
st.UB<x<LB (20)
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where f(x) is the single objective optimization function, X represents the set of current candidate
solutions, as shown in Equation (21), which is randomly generated by Equation (18).

[ X1,1 X1 X1,D-1  X1D |
x2’1 ... xZ,] ... xZ,D
... ... x . o e “ e
x=| . 7 . (21)
XN-11 " XN-1,; T XN-1,D
L xN,l ... xN,] ... xN,D ]
Xij = LBj—i—rand(UBj — LBj),i =12...,.Nj=12,...,D (22)

@ Expanded Exploration (X7 ): During this step, the aquila recognizes the prey area
and selects the best hunting area by high soar with vertical stoop. Figure 11a shows the
high soar behavior with vertical stoop. The mathematical expression for this behavior is
presented in Equation (23):

X2(041) = Xia(8) (1= ) + (X20(8) = Ko (1) #rand) 3)
where X (f + 1) is the solution of the next iteration of t generated by expansion exploration
step (X1). Xpest (t) is the best solution obtained before the t-iteration, which reflects the ap-
proximate position of the prey, and 1 — % is the expansion of the exploration by controlling
the number of iterations. X (t) represents the average of the current solution at the first
t iteration, which is derived by Equation (24). rand is a random number between 0 and 1.
t and T represent the current iteration and the maximum number of iterations, respectively.

N
Xszﬁ%ZxﬁLW:LL””D (24)

(® Narrowed Exploration (X;): During this step, the aquila narrowly explores the
selected area of the target prey in preparation for attacking. Figure 11b shows the short
glide attack behavior of aquila’s contour flight, and the mathematical expression for this
behavior is shown in Equation (25):

Xo(t+1) = Xpest (t) X Levy(D) + Xgr(t) + (y — x) * rand) (25)

where X;(f + 1) is the solution of the next iteration of + generated by narrow exploration
phase (X3). Xpes; (1) is the best solution obtained before the tth iteration. Levy(D) is Levy
flight distribution function, derived from Equation (26), and X (t) is the random solution

obtained at the first iteration.
UXCT

|o|?
where s is a constant fixed to 0.01. # and v are random numbers between 0 and 1, and o
derived from Equation (27).

Levy(D) = s x (26)

r(1+p) x sine(%ﬁ)
r(4E) < px2l)

o= (27)

where f is a constant value fixed to 1.5. In Equation (28), y and x are used to represent the
spiral shape in the search, which are calculated as follows:

y =71 x cos(H) (28)
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x =r x sin(0) (29)
Thereinto:
7:71+U+D1 (30)
0=—wxDy+6; (31)
=27 (32)

where r; takes a value between 1 and 20 to represent the number of search periods, and
U is a decimal number fixed to 0.00565. D; represents an integer between 1 and D. w is a
decimal number fixed to 0.005, and Figure 11c shows the spiral hunting behavior.

® Expanded exploitation (X3): At this stage, the aquila narrows down to explore
selected areas of the target prey in preparation for attack. Figure 11d shows the behavior of
the aquila flying low with a slow descent attack, and the mathematical expression for this
behavior is shown in Equation (33).

X3(t+1) = (Xpest (f) — Xp(t)) x & —rand + ((UB — LB) x rand + LB) x ¢ (33)

where X3(t + 1) is the solution for the next iteration of ¢ generated by expanded exploitation
(X3). Xpest(t) indicates the approximate position of the prey before the t-iteration (best
solution obtained). X)(t) represents the average for the current solution at the t-iteration,
which is derived from Equation (20). rand is a random value between 0 and 1. « and ¢ are
development tuning parameters set between (0,1), and UB and LB represent the upper and
lower limits of a given problem, respectively.

(® Narrowed Exploitation (X4): During this step, the aquila launches the ultimate
attack on the prey in the last position. Figure 11e shows the behavior of the aquila in
running and grabbing prey, and the mathematical expression for this behavior is shown in
Equation (34).

Xg(t+1) = QF X Xpest(£) — (G X X(t) x rand)—Gy x Levy(D) + rand x Gy (34)

where X4 (t + 1) is the solution of the next iteration of ¢ generated by the narrowed exploitation
(X4). QF represents the mass function used to balance the search strategy, derived from
Equation (35); G; represents the random flight posture of the Sky hawk tracking prey during
the run, derived from Equation (36); G, presents a regressive impairment from 2 to 0 to
indicate the flight slope of the Sky hawk running from the first position (1) to the last
position (t), derived from Equation (37). X(t) is the current solution of the f iteration.

2xrand—1

QF(t) =t 0= (35)
Gr=2xrand — 1 (36)
G, =2x (1—;) (37)

QF(t) is the mass function value at the time of the tth iteration. rand is a random value
between 0 and 1, and t and T indicate the current number of iterations and the maximum
number of iterations, respectively. Levy(D) is derived from Equation (26) of levy’s flight
distribution function, and Figure 11f shows the effect of the quality function (QF), G1, and
G, on AO’s behavior.

(2) SVM process optimized by AO algorithm

When the AO algorithm explores the approximate optimal solution or the reasonable
position of the optimal solution of a set of random candidate solutions through search
strategies, in order to emphasize the balance between AO search strategies (i.e., explo-
ration and exploitation), exploration and exploration set up different search strategies
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(i.e., expanded exploration, narrowed exploration, expanded exploitation, and narrowed
exploitation). The process of optimizing the SVM is shown in Figure 12.

Eigenvector training set

)
The initialization vector position
of aquila population [C, g]
¥
Data set training using SVM according
to each aquila position

— Eigenvector test set

o
The fitness of each individual is I
solved and the current best candidate
solution Xbest was recorded SVM

¥
Output recognition
accuracy

End

Equation (32)

Update the current

solution according to solution according to

Update the current Update the current
solution according to

Equation (21)

Update the current
solution according to
Equation (23)

Equation (31)

¥

Output optimal parameter
combination [C,g]

Figure 12. The flowchart of SVM improved by AO algorithm.

5.3. Application Comparison of Different SVM Optimization Algorithms

In order to verify that the AO-SVM-based algorithm has a better fault diagnosis
capability, the optimized SVM based on the seagull optimization algorithm (SOA) and the
optimized SVM based on the cuckoo search (CS) are selected for comparison.

Multi-modal features are, respectively, calculated and input to the AO-SVM, SOA-SVM,
CS-SVM models. The kernel function width g affects the learning performance of SVM.
When g is too large, the sample data cannot be effectively distinguished by the SVM
classifier; although the sample data can be correctly classified when g is too small, the
algorithm is very easy to over fit, resulting in the unknown samples cannot be correctly
classified. The penalty factor C is another important parameter. When C is large, the
generalization ability of SVM will be reduced; when C is small, the sample data cannot
be fully trained by the SVM model, and the risk of inadequate learning and fitting error
increase. Based on the above considerations, the optimization range of SVM penalty
parameter C is [0.01, 100]; and the optimization range of the width of the kernel function
g is [0.01, 100]. Moreover, the population parameters of the three models are set to 20;
the maximum number of iterations is 50 times. There are 50 sets of data for each state
as training groups and 10 sets of data for each state as test groups. The comparison of
recognition results of CS-SVM, SOA-SVM, and AO-SVM is shown in Figure 13. Table 3
demonstrates that AO-SVM has the highest accuracy for fault diagnosis. Therefore, a
conclusion is drawn that the multi-modal features and AO-SVM algorithm proposed in
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Sections 5.1 and 5.3 has a good application effect in the early fault diagnosis of vibrating
screen bearing.
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Figure 13. Comparison of identification results of three SVM algorithms: CS-SVM, SOA-SVM, and
AO-SVM.

Table 3. Comparison of SVM optimization algorithms.

SVM Model Penalty Parameters C Kernel Function Width g Accuracy (%)
CS-SVM 76.9775 56.3112 90.0000
SOA-SVM 61.4716 98.3154 93.3333
AO-SVM 46.2141 22.6567 96.6667

6. Conclusions

In this paper, taking the vibrating screen from vibrating machinery as an example,
the extraction of early fault characteristics and fault diagnosis methods of the bearing of
vibrating screen exciter are studied. Based on the study, the conclusions and novelties of
this paper can be drawn:
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e Considering the strong background noise of the early fault signal of bearings, an
improved SVD based on singular value’s unilateral ascent method, i.e., SSVD, for
pre-denoising is proposed.

e Inview of the weak fault characteristics of the early fault signal of bearings, a fault
feature enhancement method, i.e., variational modal decomposition improved by
revised whale algorithm optimization (RWOA-VMD), is proposed.

e  Considering that the early fault characteristics of the vibrating screen bearings are
much weaker than those of the traditional rotating machinery, it is impossible to effec-
tively extract fault features by separately using SSVD or RWOA-VMD; and then, the
joint application of SSVD and RWOA-VMD can achieve remarkable application effects.

e In order to intelligently realize the early fault diagnosis of the bearing of vibrating
screen bearings, a multi-modal feature matrix consisting of the energy entropy, singular
value entropy, and power spectrum entropy, is constructed.

e By improving the support vector machine using the Aquila optimizer algorithm, the
early fault diagnosis of vibrating screen bearings is accurately realized.

As described in the paper, it requires the combination of SSVD and RWOA-VMD
methods, which means that the time spent is a little longer. Therefore, further study
is needed to improve the efficiency of the method. Moreover, the experiment is only
conducted for the single point corrosion of the inner and outer rings of the vibrating screen
bearing, so it is necessary to continue to verify the effectiveness of this method for coupling
failures such as multiple point corrosion of the bearing components.
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