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Abstract: Petri net is a widely used fault-diagnosis algorithm. However, it presents poor fault-
diagnosis effectiveness and accuracy caused by the parameter setting and adjustment, depending
entirely on expert experience in a system with a single input signal type. To address this problem,
a comprehensive learning particle swarm optimized fuzzy Petri net (CLPSO-FPN) algorithm is
proposed for motor-bearing fault diagnosis. CLPSO is employed to obtain an adaptive system
parameter set to reduce the fault-diagnosis error caused by human subjective factors. Moreover, a
new proposed concept of the transition influence factor replaces the traditional transition confidence
to improve the nonlinear expression ability of traditional Petri nets, which suppresses the space
explosion problem of the fault-diagnosis model. Finally, experiments are implemented on a dataset of
motor bearings. Compared with traditional faults diagnosis methods, the proposed method realized
better performance in the fault location and prediction functions of motor bearings, which is beneficial
for troubleshooting and motor maintenance.

Keywords: comprehensive learning particle swarm optimization; fuzzy Petri Net; motor fault
diagnosis; vibration signal; transition influence factor

1. Introduction

Many faults are caused by abrasion, high load and other complex working environ-
ments of motor bearings, and seriously affect the safe and stable operation of the motor [1].
Moreover, nonlinear and fuzzy fault relations of each functional module of the motor are
averse to equipment fault diagnosis and elimination [2–4]. Therefore, real time and accurate
fault-diagnosis methods for motor bearings represent a trending research topic [5–7].

At present, motor-bearing fault-diagnosis methods mainly include quantitative and
qualitative methods, among which the data-driven method based on quantitative analysis
is very common. Deng et al. proposed a method based on wavelet transform, fuzzy
entropy and a support vector machine [8], which could effectively remove interference
signals and improve the fault-diagnosis ability under strong noise. However, the frequency
spectrum could not be divided adaptively, and the fault diagnosis lacked adaptability.
Xu et al. proposed a fault-diagnosis method based on empirical mode decomposition
(EMD) and principal component analysis (PCA) [9]. The main fault signals were extracted
by EMD, and the dimensions of feature vectors were reduced by a PCA to achieve an
effective reduction in fault feature information. Li et al. proposed a fault-diagnosis method
based on a least square support vector machine [10], which combined the information
fusion of nonlinear features and time-domain features to address the problem of low fault
classification accuracy. Xiao et al. proposed a data enhancement method based on 2D
greyscale images and an auxiliary classification generation antagonistic network [11]. The
method could effectively reduce the number of training parameters of the deep learning
network and improve the accuracy of fault identification, as well as the speed of network
training. The above quantitative analysis was based on collecting the failure data of signal
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analysis by extracting feature information to realize fault location. However, in a complex
motor fault relation between each function module in the system with nonlinear and fuzzy
features, some function modules from the cause of the problem cannot be diagnosed by
means of data-driven methods and lack integrity.

The graph theory method based on qualitative analysis can establish the system
model diagram according to the internal knowledge of the system, reflecting the logical
relationship between the system modules. Thus, it is widely used in the field of system
fault diagnosis. Among such methods, Petri net is one of the most commonly used. Zhu
et al. proposed an efficient diagnosis algorithm based on labeled Petri nets, which is
more efficient in comparison with the existing integer linear programming (ILP)-based
approaches [12]. Zhang et al. carried out rigorous mathematical reasoning on fuzzy Petri
nets and the reasoning process of the matrix [13] established a solid theoretical foundation
for the development of fuzzy Petri nets applications. Arichi et al. proposed an approach
based on two main steps: (i) designing an algebraic observer for estimating the markings
and the transitions of a partially observed Petri nets; (ii) presenting algorithms to detect
and identify faults, based on a comparison of the estimation of both the transitions and
markings of the faulty system provided by an algebraic observer with those of the normal
system [14]. Wang et al. proposed the particle swarm optimization (PSO) algorithm
to optimize the fault diagnosis of Petri nets [15], but the traditional PSO algorithm for
multidimensional parameter optimization achieved premature convergence and poor local
optimization ability. The above qualitative analysis method based on a Petri net can realize
fault prediction and positioning functions by deductive reasoning according to the logical
relationship between each module of the system, which improves the integrity of fault
diagnosis. However, the traditional fault-diagnosis method based on Petri nets can only
handle discrete fault signals, and fault diagnosis lacks timeliness. To address the above
problems, a continuous Petri net with maximum velocity variation was proposed [16,17].
Based on the traditional Petri net, the concept of dynamic time identification and transition
excitation velocity was introduced in this method. Additionally, continuous signals were
discretized through system parameters with time characteristics to realize the purpose of
processing continuous signals. This set the theoretical foundation of the Petri net in the
continuous signal processing field. Based on the characteristics of continuous Petri nets
and discrete Petri nets, a hybrid Petri net dynamic modeling approach was proposed and
applied to the fields of machinery manufacturing, transportation and robot control [18,19].
This method could process the continuous signal and the discrete signal independently,
realize the information exchange between the two systems through the conversion of the
continuous-discrete controller and the discontinuous–continuous controller and achieve
dynamic analysis ability. Alejandro Bustos et al. [20,21] proposed a method that relied on
classical signal processing techniques to identify the vibration analysis and operation status
of railway bogies, and later proposed a mechanical condition monitoring method based
on vibration analysis that supported two new signal processing techniques. However, the
above diagnosis method based on Petri net relied on expert experience in its algorithm and
in the parameter setting of the model, which was susceptible to human subjective factors
and lacked objectivity.

Aiming at the problems of the traditional Petri net fault-diagnosis method with a single
input signal and the lack of integrity and timeliness of the traditional motor-bearing fault-
diagnosis method, according to an offline and an online algorithm [22], a fault-diagnosis
method of motor bearing based on CLPSO-FPN is proposed: the EMD method is used to
obtain discrete fault classification signals to activate the discrete signal processing system,
which addresses the problems of the lack of integrity of traditional quantitative analysis
methods in fault diagnosis and the lack of timeliness of qualitative analysis methods in
fault diagnosis. The concept of transition influence factor is defined, and a comprehensive
learning particle swarm optimization algorithm is proposed to optimize the parameters of
the fault-diagnosis model, improve the adaptability of the fault-diagnosis model, reduce the
influence of human subjective factors on the fault-diagnosis results, improve the accuracy
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of fault identification and suppress the space explosion of the fault-diagnosis model of
complex systems.

The main innovations are as follows: (1) the concept of transition influence factor is
proposed to replace the traditional transition credibility, improve the nonlinear expression
ability of traditional Petri nets and suppress the problem of space explosion in diagnostic
models. (2) The comprehensive learning particle swarm optimized fuzzy Petri net algorithm
is applied to supervise and train the fault-diagnosis model to obtain an adaptive system
parameter set, which solves the problem pertaining to the setting and adjustment of
parameters in traditional fault-diagnosis methods relying entirely on expert experience and
the problem of the parameter setting lacking regularity, and reduces the fault-diagnosis
error caused by human subjective factors.

2. Fault-Diagnosis Model Architecture Based on CLPSO-FPN

As a system modeling tool, Petri net has superior performance in discrete event pro-
cessing. However, the system state usually includes two kinds of continuous and discrete
cases, making it difficult to realize the dynamic analysis of the system by only relying on
the discrete event processing mechanism of a Petri net. To improve the continuous signal
processing ability of Petri nets, the CLPSO-FPN fault-diagnosis method was proposed in
this paper, and its architecture is shown in Figure 1.
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Figure 1. The structure diagram for fault-diagnosis system of CLPSO-FPN.

The continuous signal processing system in Figure 1 applied continuous signal pro-
cessing technology to classify the real-time bearing-fault signals collected by the sensor
and transmitted the obtained discrete fault classification signals to the discrete signal
processing system to activate the discrete signal processing system. The discrete signal
processing system optimized the traditional transition based on the transition influence
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factors, constructed the fault-diagnosis model of CLPSO-FPN, obtained the probability of
fault occurrence of fault events of relevant modules through forward reasoning and reverse
reasoning and realized the accurate diagnosis of motor-bearing faults.

3. Continuous Fault Signal Processing Based on EMD

A continuous signal processing system can complete the processing and classification
of continuous fault signals, which is the premise of fault location and prediction of fault-
diagnosis systems. To ensure the normal operation of the fault-diagnosis system, EMD was
applied in this paper to realize the effective processing of continuous fault signals. The
processing system flow is shown in Figure 2.
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After the fault signal was processed by EMD, the IMF components were generated
and the characteristic information was obtained.

The original data [23] were obtained from the fault data collected by the SKF6205
bearing drive end acceleration sensor in the laboratory of Case Western Reserve University
in the United States. The fault signal is shown in Figure 3.
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Figure 3. The signal of bearing fault.

EMD is an effective way to deal with nonlinear and nonstationary signals with a high
time frequency resolution, which can decompose fault signals according to the frequency
of the signals and obtain a series of intrinsic mode functions (IMFs) with the main fault
information. Compared with the problem of the short-time Fourier transform (STFT)
and wavelet transform being limited to the selection of window function and wavelet
basis function, EMD has the characteristics of adaptive decomposition, which enables
it to process continuous fault signals collected in real time and gives it a high degree
of applicability.
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A large amount of fault information is contained in high-frequency fault signals.
Because empirical mode decomposition technology can obtain IMF at different frequen-
cies, it is convenient to screen out high-frequency fault signals for feature extraction and
signal processing.

On the basis of the literature [24–27], this paper used EMD to process continuous
fault signals and selected IMF fault signals in the high-frequency band for fault feature
processing. The first five IMF components are shown in Figure 4. It can be seen from
Figure 4 that the first four IMF components had obvious characteristics, so the first four
IMF components were selected in this paper [28,29].

Machines 2022, 10, x FOR PEER REVIEW 5 of 20 
 

 

function, EMD has the characteristics of adaptive decomposition, which enables it to pro-
cess continuous fault signals collected in real time and gives it a high degree of applica-
bility. 

A large amount of fault information is contained in high-frequency fault signals. Be-
cause empirical mode decomposition technology can obtain IMF at different frequencies, 
it is convenient to screen out high-frequency fault signals for feature extraction and signal 
processing. 

On the basis of the literature [24–27], this paper used EMD to process continuous 
fault signals and selected IMF fault signals in the high-frequency band for fault feature 
processing. The first five IMF components are shown in Figure 4. It can be seen from Fig-
ure 4 that the first four IMF components had obvious characteristics, so the first four IMF 
components were selected in this paper [28,29]. 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of sampling points

-6

-4

-2

0

2

4

6

am
pl
itu
de
(m
/s

2
)

IMF1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of sampling points

-3

-2

-1

0

1

2

3

am
pl
itu
de
(m
/s

2
)

IMF2

Figure 4. Cont.



Machines 2022, 10, 1022 6 of 18Machines 2022, 10, x FOR PEER REVIEW 6 of 19 
 

 

 

 

 
Figure 4. The results of EMD decomposition. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of sampling points

-1.5

-1

-0.5

0

0.5

1

1.5

am
pl
itu
de
(m
/s

2
)

IMF3

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of sampling points

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

am
pl
itu
de
(m
/s

2
)

IMF4

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of sampling points

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

am
pl
itu
de
(m
/s

2
)

IMF5

Figure 4. The results of EMD decomposition.



Machines 2022, 10, 1022 7 of 18

Conversion of Fault Classification Information

To ensure the accurate activation of the fault-diagnosis model of the discrete signal
processing system, it is necessary to further transform the fault signals and screen out the
invalid labels. Its processing flow is shown in Figure 5.
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In Figure 5, x is the fault signal label, m is the label value of failure, n is the number of
m tags appearing continuously and k is the output threshold of the label. When the number
of tags that continuously appear in the tag is not less than the k value, it is confirmed that
the fault represented by the m tag has occurred, and the m tag is output to the discrete
signal processing system to realize the activation of the corresponding fault library.

4. The Fault-Diagnosis Method Based on CLPSO-FPN

A discrete signal processing system is a functional system for fault location and
prediction, which mainly includes discrete fault data processing, fault-diagnosis model
optimization and fault-diagnosis reasoning.

4.1. Discrete Fault Data Processing

Discrete fault data processing is the key to fault location and prediction. Based on the
modeling method of CLPSO-FPN, accurate fault model construction was realized according
to the discrete information obtained by processing. By dealing with the system structure
and fault logic, the system fault location, fault type classification and fault cause analysis
were realized, and the establishment of a fault event table was completed to provide the
basis for the establishment of the system fault-diagnosis model.

Aiming at discrete fault data of complex motor systems, combining expert experience
and engineering practice, this paper adopted the fuzzy theory. Fuzzy processing on the
fault occurrence probability of each module was obtained by statistics and was used for
determining the correlation between the confidence degree of the database and the fault
occurrence probability [30], as shown in Table 1.

Table 1. The fuzzy definition of place value.

Possibility of Failure Probability of Failure Library Confidence

Inevitable (50–100%) [0.96, 1.00]
Easily happened (40–50%) [0.81, 0.95]

Occurs more easily (30–40%) [0.76, 0.80]
May occur (10–30%) [0.51, 0.75]

Not likely to happen (0–10%) [0.35, 0.50]
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If information contains a significant amount of uncertainty during reasoning analysis,
it is necessary to generate statistics on the occurrence probability of various faults. This
reasoning analysis is called probabilistic reasoning. The problem of applying the Bayes
method to reasoning is conditional probability reasoning. When drawing a conclusion,
one should refer to the sample information observed at that time, and also to relevant past
experience and common sense. To address the problem of fewer or uncertain fault data for
some fault modules, the Bayesian method [31] was adopted to increase the confidence of the
fault module library. This method effectively realized the accurate conversion of knowledge
and experience to rules, and was conducive to solving the problem of empirical assignment.

Employing the ”Reliability data of non-electronic parts 3” as discrete fault data, the
fault event table in Table 2 and the statistical table of fault event confidence in Table 3 were
obtained through discrete data processing. The confidence vector of the base failure p1 to
p11 was calculated as follows: α = (0.658, 0.750, 0.785, 0.810, 0.875, 0.756, 0.850, 0.775, 0.880,
0.710, 0.650).

Table 2. The table of bearing fault event.

Libraries Failure Events Libraries Failure Events

p1 motor is mixed with impurities p11 load overload
p2 aging of rotor winding p12 low resistance of rotor winding
p3 Inter-turn short circuit of rotor p13 short circuit of rotor winding
p4 interphase rotor short circuit p14 bearing wear
p5 scanning cage malfunction p15 fatigue peeling of bearing
p6 rolling body fault p16 abnormal motor vibration
p7 outer ring fault p17 bearing fracture
p8 inner ring fault p18 rotor current increases
p9 sweep the chamber p19 bearing temperature rise

p10 the rotor broken bar p20 bearing fault

Table 3. The table of failure event place value.

Serial Number The Cause of the Problem The Fault Phenomenon Library Confidence

1 p1, p2, p3, p4 p20 0.144
2 p5, p6, p7 p20 0.658
3 p7, p8 p20 0.790
4 p9, p10, p11 p20 0.769

4.2. Fault-Diagnosis Model Optimization Based on CLPSO-FPN

Petri net is a mathematical representation of discrete and parallel systems. Its graphical
expression is a network information flow model, which is mainly used for dynamic model-
ing of discrete events. It is composed of repositories, tokens, transitions and directed arcs.
The library is used to describe the status or premise of system events. The token represents
the dynamic information of Petri nets, which exists in the library. The number of tokens
represents the number of dynamic information resources stored in the library. Transitions
represent events used to change the state of Petri nets. A directed arc connects two different
depots through transitions, indicating the relationship between the two depots. When the
transition triggers the ignition and causes the change of the token of the depot, the token
will flow to the next depot along the direction of the directional arc. Each directional arc
has a weight, which is called the arc weight. The occurrence of transition events is called
transition ignition, and then token flows to the next level of the library according to the
direction of the directed arc. Therefore, with the change of time, the token distribution
of the Petri net changes, which illustrates the dynamics of the Petri net. This distribution
of tokens in the repository is called repository identification. The state transition of the
Petri net model is local, which is only related to the extension of events. It only involves
a transition connecting the state change of the library through the input and output arcs,
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which is a key characteristic of the Petri net. When a token appears in a library, the events
represented by the library occur, and vice versa.

Petri nets use graphical language to describe the relationship between the library and
the change. In the graphical language, the library is represented by “#”; the transition
is represented by “z”; the token is represented by a small black dot “•”; and the directed
relationship between the transition and the repository is represented by “

⋂
”. At this time,

the input matrix I reflects the connection matrix from the depot to the transition, and the
output matrix O reflects the connection matrix from the transition to the depot.

To improve the nonlinear expression ability of the traditional Petri net and suppress
the spatial explosion of the diagnostic model, the concept of the transition influence factor
is proposed to replace the traditional transition credibility. At the same time, the parameter
setting and adjustment in the traditional fault-diagnosis method are completely dependent
on expert experience, and the parameter setting lacks regularity. To reduce the fault-
diagnosis error caused by human subjective factors, the comprehensive learning particle
swarm optimization algorithm was used to carry out supervised training on the fault-
diagnosis model to obtain the system parameter set with self-adaptability. Therefore,
the synthetic particle swarm fuzzy Petri Net was defined as a 12-tuple in the equation
as follows:

SCIPSoPRN = (P, T, I, O, M, W, H, a, B, S, D, K) (1)

(1) P = {p1, p2, . . . , pn}; P represents the collection of libraries.
(2) T = {t1, t2, . . . , tm}; T represents the change set.
(3) I is the input matrix, representing the mapping of the library to the transition.
(4) O is the output matrix, representing the mapping of transitions to the library.
(5) M = (m1, m2, . . . , mn), representing the distribution vector identified by the library.
(6) W =

(
ωij
)

is the matrix of library weight n × m, representing the influence degree of
the input database on the transition.

(7) H = (λ1, λ2, . . . , λm), representing the transition threshold distribution vector.
(8) a = (a1, a, . . . , an), ai ∈ [0, 1] represents the confidence of the event represented by the

pi of the library.
(9) B = (b1, b2, . . . , br); b represents the transition influence factor, representing the ability

of the transition to influence its output library, where r represents the number of all
arcs from the transition to its output library.

(10) S represents the number of particles in the comprehensive learning particle swarm
optimization algorithm.

(11) D represents the dimension of the particle in the comprehensive learning particle
swarm optimization algorithm.

(12) K represents the number of iterations.

4.2.1. Structure Optimization

In the traditional fault-diagnosis method based on a Petri net, the fault-diagnosis
model is prone to space explosion due to the influence of the system structure. Based on
the traditional FPN, the concept of the transition impact factor is proposed in this paper.
Through the change in the transition impact factor, the complex logic relationship between
each module of the system can be reflected, the expression ability of fault logic between
each module of the bearing can be improved, and the space explosion problem of the
bearing fault-diagnosis model can be suppressed. Combined with discrete data processing,
the bearing fault-diagnosis model shown in Figure 6 was obtained. Figure 6a was the
fault-diagnosis model based on the FPN principle, and the blank matrix is the optimized
transition. Figure 6b shows that the transition influence factor can play a role in optimizing
the model structure, reducing unnecessary transitions, simplifying matrix calculations and
helping to suppress the space explosion problem.
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4.2.2. Parameter Optimization

PSO is an optimization algorithm established to simulate the foraging behavior of
birds in intelligent algorithms. It can realize the function of searching the optimal value
by simulating the cooperation and information transmission among individuals in the
birds. PSO mainly includes two elements: speed and position. The position of each particle
represents a possible solution of the equation, and the velocity represents the direction and
step of updating the possible solution. In PSO, the position and velocity of each particle
are randomly generated first, and then the individual velocity is updated by judging
the global optimal and local optimal position of the population, and the optimization is
finally achieved through iteration. However, in a complex system, the nonlinearity and
complexity of the logical relationship between modules lead to large differences in the
parameters of different dimensions in particles, and unified updating of particles causes
the loss of the differences between parameters of different dimensions, resulting in poor
local optimization ability.

Based on the limitations of the above PSO, the comprehensive learning particle swarm
optimization algorithm is a new intelligent optimization algorithm based on PSO and
combined with a comprehensive learning strategy. In contrast to the particle swarm
algorithm, which uses particles as the optimization unit, the optimization unit of the
comprehensive learning particle swarm optimization algorithm is the different dimensions
of particles. As a result, the problem of the parameters of each dimension of the particle
being significantly different can be addressed. At the same time, the local optimal target
is changed from its own local optimal value to the local optimal value obtained through
the comparison of randomly selected particles, which improves the local optimal ability of
the algorithm and reduces the fault-diagnosis error caused by human subjective factors.
Compared with PSO, it is more suitable for parameter optimization of the complex system
fault-diagnosis models. The velocity and position update formulas of the comprehensive
learning particle swarm optimization algorithm are shown below.
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The CLPSO speed update formula is as follows:

Vd
i = k ∗Vd

i + c1 ∗ rand1d
i ∗
(

Ld
p − Ld

i

)
+

c2 ∗ rand2d
i ∗
(

Ld
g − Ld

i

) (2)

The CLPSO position update formula is as follows:

Ld
i = Ld

i + Vd
i (3)

where ∗ represents multiplication, k is a real number in the range of inertia constant [0, 1],
c is a real number in the range of learning factor [0, 2], rand represents random number, and
rand1d

i and rand2d
i represent two independent random numbers in the d dimension of the

ith particle, whose value is a random number in the range of [0, 1]. Vd
i and Ld

i represent the
velocity and position of the d dimension parameter of the ith particle, respectively. Ld

p and
Ld

g represent particles at locally and globally optimal positions, respectively. The training
process is shown in Figure 7.
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The parameters of the fault-diagnosis model are trained according to the four fault
states in Table 3. Reference [32] defines the particle number S = 200, dimension D = 43 and
the number of iterations K = 2000, and the error formula used in the optimization process
is as follows:

E =
1
2
∗

n
Σ

i=1

(
a(pi)− aE(pi)

)2
(4)

In the formula, α(pi) and αE(pi) represent the confidence of the ith library obtained
through confidence reasoning and data statistics, respectively.

The average error under the four operating states is as follows:

E = (E1 + E2 + E3 + E4)/4 (5)
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The error value is calculated from the system parameters in the global optimal particles
obtained after the training. To ensure the optimality of the training results, the average
error of the four kinds of faults are obtained through 400 independent training sessions.
The four fault mean error curves shown in Figure 8 are obtained. According to the error
curve, the average error is less than 4 × 10−3.The initial parameter set of the system
is selected as the particle value with the minimum average error. When the training
is to the 11th iteration, the minimum average error E is as follows: E = 2.695 × 10−8.
At this point, the training errors of the four faults are as follows: E1 = 4.074 × 10−9,
E2 = 3.6414 × 10−10, E3 = 5.034 × 10−8, E4 = 5301 × 10−8. It is proven that the integrated
particle swarm optimization algorithm has excellent global optimization ability and local
optimization ability.
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4.3. Reasoning Optimization

After the discrete signal processing system is activated, fault reasoning is carried out
according to the principle of CLPSO-FPN fault diagnosis, which is specifically divided
into two parts: forward reasoning and reverse reasoning. On the premise of locating the
bottom fault, forward reasoning realizes the transmission of fault information according to
the direction of the directed arc, and predicts the probability of the failure of the top fault
module by confidence reasoning. Reverse reasoning occurs according to the direction of
the directed arc, and locates the top fault and predicts the fault probability of the bottom
module by combining with the minimum cut set incidence rate to realize the function of
locating and predicting the fault cause.

Aiming at the problem of the multiple mapping relations between the physical struc-
ture and the faults of complex three-phase asynchronous motor equipment, and between
the faults of the equipment, according to the CLPSO-FPN operation principle, the competi-
tion operator, the maximum operator and the direct multiplication operator were defined.
Through the operator characteristics, the ability of the algorithm to deal with the complex
relations between different modules in the system was improved, and the matrix reasoning
process of the algorithm was optimized. Operators were defined as follows:

1. Competition operator5: C =5A; A is m × n matrix, C is n-dimensional vector, then
cij = max(aij), where i = 1, . . . , m, j = 1, 2, . . . , n.

2. Maximum operator ⊕: C = A⊕B; A, B and C are all m × n matrices, then cij = max(aij,
bij), where i = 1, 2, . . . , m, j = 1, 2, . . . , n.

3. Direct multiplication operator: C = A⊗b; A and C are m × n matrices, B is M-
dimensional vector, then cij = aij × bi, where i = 1, 2, . . . , m, j = 1, 2, . . . , n.
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Specific forward reasoning and reverse reasoning processes were as follows:

(1) Forward reasoning

(1) Transition trigger discrimination
Definition: X = (x1, x2, . . . xm), X is the m dimensional vector equivalent to the sum of

the product of the confidence of the library, and the corresponding weight, Xk, is the value
generated in the kth iteration. This can be demonstrated as follows:

Xk = (ak ∗Mk)·W (6)

To improve the reasoning efficiency of the algorithm, a sigmoid function is introduced
to determine the transition trigger by matrix calculation as follows:

Sk =
1

Am + exp[−d(Xk − Hk)]
(7)

where d is positive infinity and S = (S1, S2, . . . Sm) is the trigger vector of the transition, so
that when x > λ, the trigger condition Si = 1 is satisfied. When x ≤ λ, Si = 0, and Sk is the
transition triggering vector generated in the kth iteration.

(2) Fault propagation reasoning
The forward reasoning process of CLPSO-FPN reflects the dynamic propagation path

of system faults, in which the token reflects the failure situation of each module of the
system. With the trigger of change, the token is transferred from the input library to the
output library. In a Petri net, the distribution of tokens is called the library identifier, and is
represented by vector M. The fault propagation inference formula is as follows:

Mk+1 = Mk ⊕
[

1
An + exp[−d((Sk·OT)− An)]

]
(8)

where Mk is the vector identified by the library generated in the kth iteration, and the change
of the vector reflects the change of Token in the library. A represents an n-dimensional row
vector with elements of 1.

(3) Confidence reasoning
To determine the confidence of the library in the CLPSO-FPN model, based on the

traditional fuzzy Petri net, this paper uses the Gaussian function 1/ exp
(

10b ∗ (x− 1)2
)

to replace the transition confidence and uses the transition influence Factor b to reflect
the influence ability of the transition on the output database. At the same time, due to
the competitive relationship encountered in the fault-diagnosis process of Petri nets, the
competitive operator is introduced to optimize the matrix reasoning method, and the
optimized confidence reasoning formula is shown as follows:

ak+1 = ak ⊕

∇

 Xk

exp
[
10Bk ∗ (Xk − Am)

2
]
T ⊗

OT



 (9)

where ak is the confidence vector of the library generated in the kth iteration. According to
the requirement of fault-diagnosis reasoning of the CLPSO-FPN algorithm, the reasoning
ends when ak+1 = ak.

(2) Reverse reasoning

(1) Transition trigger discrimination
The way to determine the transition trigger of reverse reasoning is different from that

of forward reasoning. The transition trigger does not need to meet the condition of the
transition threshold, and information transfer from the transition output database to the
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input database is inevitable. Therefore, the reverse transition trigger formula is defined
as follows:

S−k = M−k ·I
− (10)

where S−k is the reverse transition triggering vector generated in the kth iteration and I− =
O is the input matrix of reverse reasoning, namely, the output matrix of forward reasoning.

(2) Fault propagation reasoning
The fault propagation reasoning of reverse reasoning is different from that of forward

reasoning. Forward fault propagation reasoning reflects the dynamic propagation path of
the system fault. Reverse reasoning reflects the bottom fault related to the top fault, that is,
the various causes of the fault. To improve the matrix reasoning ability of the algorithm,
the backward fault propagation reasoning formula is defined as follows:

M−k+1 = M−k ⊕
[

1
An + exp

[(
−b
((

S−k ·O−T
)
− An

))]] (11)

where M−k is the vector identified by the reverse library generated in the kth iteration,
and O− = I is the output matrix of reverse reasoning, namely, the input matrix of forward
reasoning. When M−k+1 = M−k , the reasoning ends.

(3) Confidence reasoning
Since both transition triggers and fault propagation are inevitable in the reverse

reasoning process, the probability of each module’s fault occurrence cannot be obtained by
using the forward confidence reasoning method. To address the problem of the confidence
value being unobtainable by backward reasoning, the minimum cut set sorting method was
introduced. When the top-level module fails, the bottom fault that causes the top fault can
be obtained through reverse transition trigger and fault propagation reasoning. Finally, the
probability of occurrence of each bottom fault module can be obtained through the sorting
method of the minimum cut set to avoid overhaul blindness, improve the efficiency of
bearing fault troubleshooting and maintenance and be conducive to the stability of system
operation. If the minimum cut set is G = {p1, p2, . . . , pn}, the probability formula of the
occurrence of the minimum cut set is shown as follows:

G =
p1 + p2 + · · ·+ pn

n
(12)

5. Experiments and Discussion

The sampling frequency of the data was 12 kHz. The data were composed as follows:
sampling points 1 to 1200 were bearing data in normal state, sampling points 1201 to 2400
were data in case of rolling element failure, sampling points 2401 to 3600 were data in
case of inner ring failure, and sampling points 3601 to 4800 were data in case of outer ring
failure. In order to verify the effectiveness of the fault-diagnosis method in this paper, the
fault tree method was introduced to carry out fault reasoning for motor-bearing faults, and
the effectiveness of the method was verified by comparing the diagnosis results. “Rolling
element failure”, “inner race failure” and “outer race failure” were taken as examples
for verification and comparison, and the bearing fault tree was established, as shown in
Figure 9.

The competition relationship in Petri nets is represented by the OR logic consisting
of X15 and X19. In this case, if two events occurred at the same time, the event with the
largest probability value would be selected as the trigger condition of X20. According to
the trigger rule calculation, the probability value X20 = 0.790 of X20 was derived, and the
calculation result was consistent with that of CLPSO-FPN, which proved the effectiveness
of the fault-diagnosis method in this paper.
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Due to the influence of fuzzy theory, the system parameters of fuzzy Petri nets are
often assigned by expert experience, and the accuracy of fault diagnosis is low, which
makes it difficult to meet the needs of fault diagnosis of complex systems. In order to
solve the above problems, a fuzzy Petri net fault-diagnosis method based on the artificial
intelligence algorithm was proposed. Based on the strong self-learning and optimization
ability of the artificial intelligence algorithm, the fuzzy and empirical problems of the
system parameters were effectively solved, and the accuracy of the system fault diagnosis
was improved. At present, BP neural network and particle swarm optimization algorithms
are often used in the optimization algorithm of fuzzy Petri nets. In order to verify the
optimization ability of the integrated particle swarm optimization algorithm proposed in
this paper for fault diagnosis of fuzzy Petri nets, CLPSO algorithm, PSO algorithm and BP
neural network algorithm were used to optimize the fault-diagnosis model of three-phase
asynchronous motors. Through the forward reasoning analysis of the three fault states, the
accuracy of fault diagnosis of FPN, BP-FPN, PSO-FPN and CLPSO-FPN was compared.

For FPN-based fault diagnosis, the parameters of weight W, threshold h and transition
influence factor B were obtained by expert experience, where threshold λ = 0.2, and b = 0.3.
For fault diagnosis based on BP-FPN, the initial parameters of its weight W, threshold
h and transition influence factor B were the same as those of FPN, and the number of
iterations was k = 1000. The fault-diagnosis process based on PSO-FPN was similar to the
fault-diagnosis process based on CLPSO-FPN, with k = 400 iterations and S = 200 particles.

According to the analysis in Section 4.2, the initial parameter set of the system was
selected as the particle value for the minimum average error, and the weight value (as
shown in Table 4), threshold value and transition impact factor of the fault-diagnosis model
obtained at this time were as follows.

Table 4. The optimized weight table by CLPSO.

Parameter Weight Parameter Weight Parameter Weight

ω1,1 0.5237 ω2,1 0.4763 ω3,2 0.2457
ω4,2 0.7543 ω5,3 0.2146 ω6,3 0.2577
ω7,3 0.5277 ω7,4 0.6497 ω8,4 0.3503
ω9,5 0.6175 ω10,5 0.3825 ω12,7 0.3397
ω13,7 0.6603 ω18,11 0.2083 ω14,11 0.7917
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The remaining weights were set as 1, according to the fuzzy Petri net theory.
H = (0.2689, 0.3174, 0.5972, 0.1839, 0.8000, 0.1619, 0.6541, 0.4163, 0.2243, 0.5121, 0.0821,

0.1101).
B = (0.0254, 0.2060, 0, 0.1358, 0.4891, 0.1715, 0.0883, 0.0585, 0, 0.1016, 0, 0, 0).
The comparison of the diagnosis results and the algorithm are shown in Table 5. Table 5

shows that compared with the fuzzy Petri net fault-diagnosis method, the fault-diagnosis
method optimized by the artificial intelligence algorithm had considerably improved fault-
diagnosis accuracy. Among them, BP-FPN had excellent local optimization ability but poor
global optimization ability, which easily demonstrated the missing judgement phenomenon.
The PSO-FPN method has a strong global optimization capability, but it has the problem of
insufficient local optimization capability for complex system fault diagnosis. Compared
with the other three fault-diagnosis methods, the CLPSO-FPN method proposed in this
paper has excellent global and local optimization capabilities, which can accurately predict
bearings, prevent the failure of fault diagnosis and meet the requirements of fault-diagnosis
accuracy for complex motor systems.

Table 5. The table of fault-diagnosis results. (a) The table of fault causes and diagnosis results; (b) the
table of failure probability and accuracy.

(a)

Diagnosis Way Cause of the
Problem Results of Diagnosis Terminal Malfunction

FPN p6, p7, p8
p9, p10, p11

p14, p15, p20
p16, p17, p20, p17

p20
p20
p20

BP-FPN p6, p7, p8
p9, p10, p11

p15, p20, p16
p17, p20, nothing

p20
p20
p20

PSO-FPN p6, p7, p8
p9, p10, p11

p14, p15, p20
p16, p17, p20, p17

p20
p20
p20

CLPSO-FPN p6, p7, p8
p9, p10, p11

p14, p15, p19, p20
p16, p17, p20, p17, p20

p20
p20
p20

(b)

Diagnosis Way Actual Failure
Probability

Diagnostic Fault
Probability Accuracy Computation

Time

FPN
0.790 0.611 77.4%

1.5924S0.769 0.536 69.7%
0.590 0.182 30.9%

BP-FPN
0.790 0.790 100%

1.7049S0.769 0.601 78.2%
0.590 0 0

PSO-FPN
0.790 0.771 97.6%

1.7918S0.769 0.625 81.3%
0.590 0.6075 97.0%

CLPSO-FPN
0.790 0.790 100%

1.4832S0.769 0.768 99.9%
0.590 0.583 98.8%

6. Conclusions

Aiming at the problems of the traditional Petri net fault-diagnosis method with a
single input signal and the lack of integrity and timeliness of the traditional motor-bearing
fault-diagnosis method, a motor-bearing fault-diagnosis method based on CLPSO-FPN
was proposed, and the following conclusions were drawn:
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(1) The EMD method is used to effectively process the acquired fault signals, and discrete
fault classification signals are obtained to activate the discrete signal processing system.
This addresses the problem that occurs when the traditional quantitative analysis
method lacks integrity in fault diagnosis and the qualitative analysis method lacks
timeliness in fault diagnosis.

(2) The concept of the transition influence factor is defined, the structure of the fault-
diagnosis model is optimized and the space explosion of the fault-diagnosis model of
a complex system is restrained. A comprehensive learning particle swarm optimized
fuzzy Petri net algorithm is proposed to optimize the parameters of the fault-diagnosis
model, improve the adaptability of the fault-diagnosis model, reduce the influence of
human subjective factors on the fault-diagnosis results and improve the accuracy of
fault identification.
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