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Abstract: With the continuous improvement of the imaging quality requirement of the space optical
system, the large-aperture mirror becomes the research focus. However, the increase of the aperture
will increase the whole weight which results in high launch cost and degrades the mirror surface figure
accuracy. Therefore, the lightweight design method of the mirror structure is of great importance. In
recent years, many space telescope system schemes have demonstrated the progress of the structural
lightweight design of mirrors, such as Spitzer, SOFIA, JWST, etc. This article reviews the main content
and innovations of the research on the structural designs of mirrors including conventional machining
designs and topology optimization structures. Meanwhile, some emerging designs (e.g., lattices
and Voronoi structures) considering additive manufacturing (AM) are also introduced. Several
key elements of different structural design approaches for lightweight mirrors are discussed and
compared, such as material, lightweight ratio, design methods, surface figure, etc. Finally, future
challenges, trends, and prospects of lightweight design for mirrors are discussed. This article provides
a reference for further related research and engineering applications.

Keywords: lightweight structure; mirror; topology optimization; additive manufacturing technology;
Voronoi diagram

1. Introduction

With the increasingly important applications of modern space optical technology in
civilian, military, and commercial fields, there is a demand for optical systems with the
improvement of resolution [1]. As we know, the larger the aperture of the telescope, the
longer the focal length, and the better to obtain a stronger light collection ability and higher
resolution [2]. It’s noteworthy that mirrors, as the core component of the telescope, are
critical elements that directly affect the resolution and other optical systems’ characteristics.
Meanwhile, the increase of the aperture of the space mirror will enlarge the weight of the
whole structural system, thus raising the launch cost. Consequently, to reduce the cost, and
to control the rigid body motion and surface figure error of the mirror under the gravity
load, the space mirror must be lightweight [3]. The design and optimization of lightweight
mirrors have become a major challenge for optical scientists and engineers [4].

Over the last decades, multifarious lightweight design methods have been proposed,
among which contoured-back solid mirrors, open-back mirrors, and sandwich mirrors are
the most representatively and widely used in engineering (Figure 1a–c) [5]. These conven-
tional designs are convenient to be designed and processed, and many researchers designed
the mirror assembly by experience. However, with increasing requirements of the mass
and precision requirement of optical-space systems, the mirrors must be further optimized.
Topology optimization has been developed as a mainstream structural design technique for
lightweight design. On the one hand, the mirror’s structures with a conventional design
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could be optimized as a starting point to obtain ameliorated structure (Figure 1d) [6]. On
the other hand, due to the development of manufacturing technology, complex structures
obtained by topology optimization can be directly processed. Subsequently, with the
use of 3D printing in opto-mechanical manufacturing, newly unconventional structures
are adopted gradually in recent years, which opens a special spectrum of creativity for
mirror design. The work of design and optimization of lattices and Voronoi structures of
lightweight mirror have been brought forward and the prototypes printed in metals also
show excellent performance [7]. Figure 1e,f highlight some examples of how lattices and
Voronoi cells were implemented in lightweight design [8,9].
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will reduce stiffness, increase self-weight deflection, and increase susceptibility to accel-
eration forces. Hence, a better way to reduce the weight of mirrors is to contour the second 
(back) surface. Seven models were shown in Figure 2, in which the mirror diameters, 
thicknesses, radii of curvature of the reflecting surfaces, and material types were identical, 
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Figure 1. (a) Model of a contoured-back solid mirror, (b) Model of an open-back mirror, (c) Model
of a sandwich mirror, (d) Topology optimization result of a space mirror, (e) The sectional view of
lattice arrangement in a mirror’s closed cavity, (f) An open 3D Voronoi structure.

This paper aims to review the recent advances in lightweight mirror designs and
provide future trends. Firstly, the summary and comparison among conventional de-
signs have been made in Section 2. Some research progress and innovations on topology
optimization for reduced-weight mirrors are listed in Section 3. Then, Section 4 intro-
duces non-conventional designs, especially lattices and Voronoi structures for mirrors.
Lightweight mirrors’ current process and future trends are discussed in Section 5. Finally,
Section 6 illustrates the conclusion.

2. Conventional Design
2.1. Contoured-Back Solid Mirrors

Thinning the baseline substrate is a rapid and convenient way to lightweight solid
mirrors with concave, flat, and convex first (reflecting) surfaces. However, this method will
reduce stiffness, increase self-weight deflection, and increase susceptibility to acceleration
forces. Hence, a better way to reduce the weight of mirrors is to contour the second (back)
surface. Seven models were shown in Figure 2, in which the mirror diameters, thicknesses,
radii of curvature of the reflecting surfaces, and material types were identical, but their
R2 surfaces were contoured in diverse ways. Yoder discussed them comprehensively and
obtained Table 1 to show the volumes, weights, and other relevant parameters for these
optically equivalent mirrors [10]. The KAO (Korea Astronomy Observatory) telescope
used a Zerodur primary mirror which has a double arch back contour shape [11]. The
Spitzer space telescope was launched on 25 August 2003, which is a typical example of an
ultra-lightweight single arch mirror [12].
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1. The lightweight rate is (the loss weight of optimized mirror)/(the weight of original mirror) in this 
review. 2. Pearson suggested that the ratio (surface area)1.5/(mirror volume) > 7, the mirror could be 
defined as a lightweight mirror [14]. 

2.2. Open-Back Cellular Mirrors 
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Figure 2. (a) Baseline with flat rear surface, (b) Tapered (conical) rear surface, (c) Concentric spherical
front and rear surfaces with R2 = R1 + tA, (d) Spherical rear surface with R2 < R1, (e) Single-arch
configuration, (f) Double-arch configuration, (g) Double-concave configuration (not lightweighted)
for comparison [13].

Table 1. Comparison of Volumes and Weights of Contoured-Back Mirrors [13]. DG = 457.2 mm
(18.0 in.), tA = 76.2 mm (3.0 in.), R1 = 1828.8 mm (72.0 in.), Corning ULE.

Configuration Figure View Volume Weight Lightweight
Rate 1

Pearson’s
Ratio 2

Flat back (baseline) Figure 2a 13,686.4 cm3 30.2 kg 0% 4.9

Tapered back Figure 2b 7472.5 cm3 16.5 kg 45.5% 8.9

Concentric meniscus Figure 2c 12,557.3 cm3 27.7 kg 8.3% 5.3

Meniscus (R2 < R1) Figure 2d 7542.9 cm3 16.6 kg 44.9% 8.8

Single-arch (Y-axis parabolic) Figure 2e 4218.0 cm3 9.3 kg 69.2% 15.8

Single-arch (X-axis parabolic) Figure 2e 3923.0 cm3 8.7 kg 71.3% 16.9

Double-arch Figure 2f 6377.8 cm3 14.1 kg 53.5% 10.4

Double concave (not lightweighted) Figure 2g 14,861.4 cm3 32.8 kg N/A 4.5
1 The lightweight rate is (the loss weight of optimized mirror)/(the weight of original mirror) in this review.
2 Pearson suggested that the ratio (surface area)1.5/(mirror volume) > 7, the mirror could be defined as a
lightweight mirror [14].

2.2. Open-Back Cellular Mirrors

A mirror lightweighted with a cellular section is usually structurally more efficient
than its equivalent-sized solid version. This type of design could be divided into two types,
open-back, and sandwich mirrors, according to whether a back sheet exists. Open-back
mirrors consist of a thin face sheet stiffened or reinforced with a regular arrangement
of perpendicular ribs forming open pockets or cells in the back of the mirror, as shown
in Figure 3. So the fabrication is usually less difficult than the more complex sandwich
structure and the application is also more general [10,15].
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Five common polygon core configurations are shown in the Figure 4 [16]. Trapezoidal
pockets are generally used for circular mirrors with a central hole. Circular holes which
have low lightweight ability could be regarded as the simplification of hexagonal pockets;
however, the uneven spacings between circular cells negatively affect the structural stiffness
of the mirror [17,18].
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Considering the complexity of design and processing, triangular and hexagonal pock-
ets are widely adopted in the lightweight design of mirrors. Here are two examples, below.
Chen ya et al. designed the triangular cells scheme based on the oval planar reflector,
and the lightweight rate of the lightweight reflector is 33% (Figure 5a) [15]. The team
from Corning fabricated a small mirror with honeycombed lightweight structure by DMLS
(Direct Metal Laser Sintering) in 2015 in Figure 5b [19]. There are multiple instructive
studies about which of the two kinds of designs, triangular or hexagonal pockets, has
better performance. So typical research and conclusions for this issue were listed to provide
information on the relative merits of designs in Table 2.

Table 2. Typical research for “Hexagonal vs. Triangular”.

Researcher Hexagonal vs. Triangular Comment

Barnes, W.P. [20]
The hexagonal structure is superior, substantially

stiffer (about 20%), showing less deflection
overall.

The superiority of the hexagonal core
mirror might be 5% instead of 20%

[21,22].

Richard, R.M.; Malvick, A.J. [23]
Both structural deformation and deviation are

shown to be dependent upon cell-wall thickness
and generally independent of cell shape.

The element used for this research
might not have been accurate enough

to produce satisfactory results [22].

Simon, C.; Sheng, F. [24]
The stiffness of following core geometries

decreases in order: the triangular core, square
core, and hexagonal core.

Torsion loading makes the hexagonal
cell configuration much weaker for
open-back mirror structures [24,25].

Yu, k.; et al. [26]
One kind of triangular hole element array shows
best overall performance in the comparison of

multiple graphic structures.
N/A

Udit, B.; Shah, R.; Kapania, K. [27]
The triangular cores outperform hexagonal cores

for applications where in-plane loading is
dominant.

N/A
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2.3. Sandwich Cellular Mirrors

The sandwich mirror adds a back sheet compared to the open-back mirror, consisting
of a core intercalated between two solid layers. The typical sections of sandwich mirrors
are shown in Figure 6. They are traditionally produced by bonding plate material to
a honeycomb core or using reaction-bonded technology in the mirror manufacturing
industry [28]. Symmetry for a sandwich mirror means that the thickness of the face and
back sheets are the same and that the inscribed circle diameter and rib thickness are
constant. However, mirror performance is not improved with a non-symmetric design
(Figure 6b), which is normally used to allow for more material removal during the grinding
and polishing of the optical surface [10].
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Wang Xiaoyong et al. [29] adopted the arch back thick honeycomb sandwich structure
according to the technical requirements of the 1.3 m-caliber space mirror, as shown in
Figure 7. The sandwich structure consists of a reflector, a base plate, and a sandwich
layer. After optimizing optical processing and other processes, the developed reflector
components have been analyzed by FEA (Finite Element Analysis), tested in a lab, and
reached the technical requirements.
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Figure 7. The honeycomb sandwich mirror.

Carolyn Atkins et al. [30,31] aimed to investigate different AM materials and methods
toward lightweight mirrors for space. The mirror lightweighted in the form of arches
(Figure 8a) was printed commercially using metal laser sintering (MLS) in the aluminum
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alloy AlSi10Mg and was lightweighted to 44% of a solid equivalent. They compared the
properties of a mechanical manufacturing honeycomb design with a 3D-printed lightweight
design (arches) by FEA. The arch design was stiffer and showed fewer node displacements
than the honeycomb design [32]. Accounting for the actual process properties of CFRP
(Carbon Fiber Reinforced Plastic), Ding Jiaoteng et al. [33] formed mirror panels laminated
based on thermal stability design for a Φ 300 mm CFRP mirror. Then, the honeycomb
sandwich structure was fabricated using one innovative inlaying-grafting design method
as shown in Figure 8b,c.
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Figure 8. (a) The arch design model, (b,c) The production of lightweight CFRP sandwich mirror.

In the study of Enrico Hilpert et al. [34], a series of different mirror designs were
investigated, including a full solid mirror, an empty shell model, and three different
designs. Figure 9a shows the model which contains holes in a cross-directional pattern
along the neutral plane and represents a lightweight design manufacturable by cutting
techniques. The “honeycomb” mirror was developed (Figure 9c), which could only be
manufacturable by AM. The inner part of the mirror consists of a hexagon (honeycomb)
structure, with additional holes on all faces. Although the mass reduction of this design,
63.5%, is less than the honeycomb mirror (Figure 9b), it has a higher stiffness compared to
other designs tested by FEA.
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2.4. Summary

Table 3 summarizes typical conventional designs. The manufacture and installation of
contoured-back solid mirrors are relatively easy; however, the weight reduction effect and
deformation cannot be outstanding at the same time [10,35]. Mirrors lightweighted with
a cellular section are usually structurally more efficient than their equivalent-sized solid
version. Open-back lightweight mirrors display high effective weight loss, which is also
more common because fabrication is always less difficult than the more complex sandwich
structure. However, better structural performance is obtained with a sandwich scheme [18].
With the rapid development of AM technologies, it is possible to fabricate a closed-back
sandwich mirror with a complex internal structure [36].
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Table 3. Technical parameters of typical research on conventional design.

Designer Material Dimensions Lightweight
Design

Lightweight
Rate

Surface
Accuracy

Moon, I.K. et al. [11] Zerodur ∅ 1000 mm double arch back 30% 63.3 nm (RMS)

Chen ya et al. [15] Glass-ceramic
Ellipse Triangular hole,

open-back 33%
32.96 nm (PV)

730 × 525 mm 8.68 nm (RMS)

Carolyn Atkins et al.
[30,31] AlSi10Mg ∅ 40 mm Arches,

sandwich 44% 16 nm (RMS)

Zhang Dandan et al. [37] Zerodur ∅ 280 mm Single arch back 51.7%
48.34 nm (PV)

15.56 nm (RMS)

Zhang Dandan et al. [37] Zerodur ∅ 280 mm
Hexagonal hole,

open-back 52.9%
34.08 nm (PV)

10.29 nm (RMS)

Enrico Hilpert et al. [34] AlSi12 ∅ 200 mm Hexagonal hole,
sandwich 63.5% 12.5 nm (RMS)

Zhou Hao et al. [38] C/SiC
Ellipse Hexagonal hole,

open-back 65% 38.27 nm (PV)225 × 165 mm

Ch. Wührer [39,40] Glass
Ellipse Triangular hole,

open-back close to 90% 50 nm (RMS)732 × 690 mm

Polina A. Abdula et al. [41] have verified the above conclusion by comparing the
performance of different designs. The team achieved a simulation and comparative study
of the typical structures by diverse sorts of models as shown in Table 4. The parameters of
the initial model are as follows:

Table 4. Summary table for typical designs.

Design Mass Lightweight Rate Maximum
Deformation

Contoured-back solid
mirrors

Single arch 160.53 kg 66% 1.088 µm

Double arch 246.38 kg 48% 0.112 µm

Open-back mirrors

Holes 174.95 kg 63% 0.485 µm

Trapezoidal pockets 151 kg 68% 0.375 µm

Triangular pockets 174.7 kg 63% 0.264 µm

Hexagonal pockets 227.4 kg 52% 0.429 µm

Sandwich 185.77 kg 61% 0.236 µm

Solid 478.48 kg 0% 0.191 µm

Diameter, 1 m; Thickness, 0.15 m; Central screening, 20%; Material, Titanium; Surface
type, Spherica.

3. Topology Optimization

Topology optimization technology is an advanced structural design method which can
obtain the optimal structure configuration via reasonable material distribution satisfying
specified load conditions, performance, and constraints [42]. Since the theoretical back-
ground of topology optimization was set by Bendsøe and Kikuchi in 1988, this technology
has been developed rapidly [43]. With the increasing improvement of the lightweight ratio
and performance of modern space optical systems, the traditional cellular designs gradu-
ally could not satisfy engineering requirements. The technology of topology optimization
has played an important role and gained popularity in lightweight design studies with a
conventional open-back or sandwich design as a baseline. With the advance of technology
in AM, topologically optimized structures with complex geometric configurations could
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also be directly processed, which provides more possibilities for the non-conventional
lightweight designs of space optical mirrors [44–46].

3.1. Topology Optimization with a Baseline

Liu Fengchang et al. [47] proposed a topology optimization method by using triangular
polygon core configurations as the initial design. The lightweight ribs are grouped accord-
ing to the optimal material distribution obtained from topology optimization (Figure 10).
They used the compromise programming method to find a compromise solution because
this design is a multi-objective optimization problem, such as the RMS value of the surface
shape error, the total mass, and the eigen-frequency. The FEA results show that this design
method is relatively effective.
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Qu Yanjun et al. [48] optimized the horizontally placed mirror using six-point pe-
ripheral supports under the effect of gravity by OptiStruct. According to the topology
optimization results in Figure 11a, they modified the initial structure and established a 3D
model in Figure 11b. Through the above calculation and analysis, the ratio of lightweight,
structure stiffness, and surface accuracy of the optimized rectangular mirror was superior
to that of the traditional triangular lightening mirror.
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Li Yewen et al. [49] used the topology optimization method with variable density
to obtain the mirror topology models with maximum stiffness and maximum first-order
frequency respectively (Figure 12). The integrated design scheme of the mirror was obtained
by synthesizing the two topology models. The result of FEA showed that the surface figure
of the mirror after optimization has been significantly improved.
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3.2. Direct Topology Optimization and Design

Harrison Herzog et al. [50] optimized the mirror using Altair Hyperworks with
minimal surface displacement as a merit function. As shown in Figure 13a,b, two different
models obtained, top mount and side mount, were optimized, processed, and tested in
both aluminum and titanium, then, both of them can meet the needs of practical optical
applications. Dong Deyi et al. [51] fabricated the lightweight 3D model established directly
according to the topology optimization results, then, they used the method of density
filtering to solve the problem of unsmooth structure. As shown in Figure 13c is the radial
structure manufactured by selective laser melting (SLM) technology. The surface density
and the mirror deformation under the self-weight of the mirror all met the requirements
after tests in a lab.
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Figure 13. (a) Model of top mount, (b) Model of side mount, (c) The optimized mirror manufactured
by SLM.

Carolyn Atkins et al. [30,31] designed the non-conventional lightweight mirror designs
by the FEA tool topology optimization. Figure 14 shows the process of the design and after
some detailed adjustments, the final optimized samples depicted in Figure 14e,f are a series
of co-axial tapered rings radiating from a central pillar. The design did show better PV and
RMS; however, the expected surface roughness figure was not achieved.

Table 5 summarizes typical topological optimization designs for space mirrors.
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Table 5. Summary table for typical topological optimization designs.

Design Material Dimensions Optimization Methods and Software Lightweight
Rate

Surface
Accuracy

Liu
Fengchang
et al. [47]

SiC ∅ 800 mm

The parametric
design, The
compromise

programming
method

• Consider the RMS
values of the
surface shape error,
the eigen-frequency,
and the mass

8.6% 1 N/A

Qu Yanjun
et al. [48] SiC Rectangular

700 × 280 mm

OptiStruct, The
mathematical
programming

method

• Maintain the high
surface accuracy
and structure
stiffness

• Reduce the weight

62.05%
26.59 nm (PV)

5.82 nm
(RMS)

Li Yewen et al.
[49] SiC Rectangular

800 × 230 mm

SIMP, The
integrated

optimization
method

• Maintain the PV
values and weight

• Maximize stiffness
and first-order
frequency

80.9%
23.70 nm (PV)

4.54 nm
(RMS)

Harrison
Herzog et al.

[50]

Ti6Al4V,
AlSi10Mg

∅ 101.6 mm
(4 in) Altair Hyperworks

• Maximize the
stiffness and
lightweight rate

• Maintain natural
frequency

N/A
255 nm (PV)
22 nm (RMS)
(AlSi10Mg)

Dong Deyi
et al. [51] Al alloy ∅ 600 mm SIMP, The density

filtering method

• Minimize the
structural flexibility

• Consider the
self-weight load
condition

81.2% 25.91 nm
(RMS)

Guo Liang
et al. [52] SiC ∅ 676 mm

SIMP, The
orthogonal arrays

method

• Maintain the high
surface shape error
and high dynamic
stiffness

• Reduce the mass

About 78% 2.39 nm
(RMS)

1 This lightweight rate is obtained by comparing the optimized mirror and the initial cellular mirror.

4. Non-Conventional Design
4.1. Foam Cores

For conventional lightweight mirrors (Section 2), the core mesh must be separated
by distances large relative to their thickness, thereby allowing the mirror face sheet to
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sag between the webs during polishing forces or under the gravitational load. Mirrors
with foam cores significantly improve these problems in several aspects. Due to the
fact that a large percentage of open space (typically 90%) within the foam structure, a
high lightweight ratio could also be realized. Goodman and Jacoby compared some
characteristics of conventional webs and foam cores for mirrors, as indicated in Table 6 [53].

Table 6. Advantages of foam core mirrors relative to conventional web core mirrors.

Roles/Requirements Foam Webs

Self-weight deflection (varies with pocket width) Pockets typically 10 µm Pockets typically 10 to 100 mm

Micrometeoroid susceptibility Natural bumper material and ripstop Little or no protection

Support against polishing pressure Distributed load paths under mirror
surface, easier to support axially

Concentrated load paths leading to
print-through of web outlines

Dynamics/stability/stiffness/vibrational mode
frequency

Higher stiffness, higher resonance
frequency

More mass for the same stiffness and
resonant frequency

Reliability/redundancy Many alternate load paths,
moregraceful failure

Structural failure effect, greater,
catastrophic failure

Goodman et al. [54–57] used silicon foam which can be machined to any shape (sphere,
asphere, etc.) to manufacture the silicon lightweight mirror (SLM). The basic structure for a
silicon foam composite optic is shown in Figure 15a and the basic elements of it are two
silicon faceplates that are bonded to an open-cell silicon foam core. Then, they developed
silicon and silicon carbide lightweight mirror systems (SLMSTM and SiC-SLMSTM). The
manufacturing process of the SLMSTM described above is shown in Figure 16.
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4.2. Lattices

For conventional methods of fabricating metallic cellular materials which allow for
some control over pore shape and size, they remain limited to producing randomly orga-
nized structures. Additive manufacturing (AM), also known as 3D printing, manufactures
parts via joining the material layer-by-layer. The layer-upon-layer methodology dramati-
cally increases the design possibilities of non-conventional structures that exhibit complex
structural configurations and the ease and speed by which fabrication occurs. This con-
trasts with AM which enables the creation of non-conventional structures with a predefined
external geometry and internal architecture. In recent years, AM has shown an effective
way of fabricating components with complex configurations, opening the possibility to
manufacture complex lightweight structures for mirrors, especially for lattice and foam
structures [58–60].

In the context of modeling for AM, a lattice is a set of points and line segments
between the points embedded in the 3-dimensional space of the mirrors [61]. Lattice unit
cells can be constructed using (a) strut-based members which are more widely used in
optical mirror manufacturing or (b) surface-based representation. The nomenclature for the
library of strut-based unit cells presented in Figure 17 are as follows: BCC is Body Cantered
Cubic; BCCz is BCC with ‘z’ direction reinforcement; FCC is Face Centered Cubic; FBCC
results from the union of FCC and BCC; names with ‘S’ prefix are self-supporting variants
which have no members that lay parallel to the x-y plane [62]. From the existing research,
the BCC lattice is adopted most concerning the stability of the space truss structure and
design difficulty.
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In 2021, Zhang Muyao et al. [63] introduced the BCC lattice structure into a small-
diameter aluminum alloy mirror structure design, as shown in Figure 18. They topologically
optimized the lattice structure based on the MIST method, and the cross-sectional area of
the rod is taken as the optimization object. It is verified by FEA that the lightweight rate
and surface accuracy requirements of the optimized reflector are better than those of the
traditional lightweight form reflector.

Carolyn Atkins et al. [64] selected three lattice structures which are Star (BCCz),
Icosahedron, and Tetra, shown in Figure 19 for further study. The two plots in Figure 20
show that the star lattice exhibits the minimum change in displacement with cell length
and presents a clear reduction in weight for given displacement in relation to the other
lattices. Then, they optimized the Star lattice by two properties, the length of the unit cell
and the threshold value of the optimization, in NetFabb. Figure 19d depicts the optimum
Star lattice.
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4.3. Voronoi Cells

Over millions of years of natural evolution, nature has developed extensive high-
performance structures, and Voronoi structure or Voronoi media exists widely in nature
(Figure 21a–c) [5,65]. For example, Voronoi scaffolds shown in Figure 21d are inspired by
bone. Ref. [66] Voronoi tessellation is a space division technique developed by mathemati-
cian G.F.Voronoi in 1905. This method produces regions called “cells” from a set of points
called “seeds”, and it has the characteristic property that any point within a cell will be
closer to the cell’s seed than any other point in the space [67,68]. Voronoi cells offer an
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element of randomization in the structure which is the primary difference between the lat-
tices and Voronoi cells. If the seeds were distributed in a regular pattern, a Voronoi pattern
would be a regular grid structure. However, a random Voronoi structure can be obtained
by adding a random component to the seed placement, which has unique advantages and
characteristics different from other structures.
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Previous scholars have found that Voronoi structures perform excellently in mirror
design. As shown in Table 7, in the research of Joni Mici et al. [61], Voronoi designs achieved
the greatest volume loss among eight schemes. Meanwhile, Voronoi mirrors showed
significant improvements, compared with the traditional design, in thermal displacement,
thermal strain, and displacement under pressure. Furthermore, Voronoi structures provide
more degrees of freedom for structural optimization so the optimized design can achieve
better performance [34].

Table 7. Volume comparison among different structures.

Model Volume Volume Reduction

Titanium Solid 299.23 cm3 0%

Titanium Skin 53.18 cm3 82%

Regular Voronoi—1000 pts 110.65 cm3 63%

Delaunay—1000 pts 231.97 cm3 22%

BCC A (0.75 mm center—1.5 mm ring) 206.69 cm3 31%

BCC B (1.5 mm center—0.75 mm ring) 152.30 cm3 49%

Voronoi A (0.75 mm center—1.5 mm ring) 141.50 cm3 53%

Voronoi B (1.5 mm center—0.75 mm ring) 99.96 cm3 67%

Voronoi can be divided into 2D and 3D manufacturing types according to the spatial
distribution. A 3D-Voronoi structure, which could be regarded as a similar foam core
structure (Section 4.1), could own similar advantages. At the same time, a 3D-Voronoi
structure can be controlled and adjusted by algorithms instead of completely random foam
so it’s more suitable for engineering applications.

Enrico Hilpert et al. [69–71] from Fraunhofer Institute, systematically studied the
mirrors filled with a stochastic 2D-Voronoi foam. As shown in Figure 22a,b the density
distribution of the foam is based on static load cases. As shown in Figure 22c Voronoi
cells from Poisson disk sampling for the nearest-neighbor distance, which assumes smaller
minimal values than in the surrounding area in the three areas. As a result, the mass could
be reduced significantly, meanwhile, the stiffness is increased, resulting in a significant
increase in the specific stiffness.
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Figure 23a shows an open 3D-Voronoi structure with 1000 points generated using
Lloyd’s algorithm [72] inside of the topology-optimized mirror shape [61]. Changing the
number of cells (structural members) as well as the size of the structural members will affect
stiffness under load. Thermal variations under operational loads during processing could
also alter structural properties. The follow-up research on these 3D-Voronoi structures
ought to be continued, which will promote the innovation of the mirror design.

Machines 2022, 10, 1066 15 of 20 
 

 

 
Figure 23. (a) A Voronoi-based structure for mirrors, (b) Thickness varies from 0.75 mm at the cir-
cumference to 2 mm in the center, (c) Thickness varies from 2 mm at the circumference to 0.75 mm 
in the center. 

5. Future Trends  
As we all know, the designing and manufacturing criteria for space mirrors are light-

weight and high stiffness. The traditional lightweight mirror structures of web and arch 
design have played an important role in the past decades and have been widely used. 
With the development of the aerospace industry and the improvement of relevant tech-
nical requirements of space optical systems, a variety of design and optimization methods 
have been applied to the field of lightweight design for mirror core structures. In recent 
years, especially after the rapid development of metal 3D printing, irregular structures, 
represented by lattice and Voronoi, which show multifaced outstanding performance and 
greatly increase the freedom of mirror design, will play an important role in the future [5]. 
Looking back at the development history of the recent dozens of lightweight design and 
optimization of space mirrors (Figure 24), the design level has been continuously im-
proved while the manufacturing technology has been constantly iterative so that innova-
tive structures have been continuously manufactured with complex surface shapes and 
complex mechanical geometric shapes, which are characterized by lightweight, high 
strength/stiffness relative to weight and aesthetics. 

 
Figure 24. Typical lightweight mirror designs at different development stages in recent decades 
[8,9,40,70,73–76]. 

Therefore, future work and trends of optimizing the design of reduced-weight mir-
rors may focus on the following four topics: 
(1) Explore and develop the application of 3D printing in the field of mirror manufac-

turing, including extending the usable materials, perfecting the printing technology 
to enable the fabrication of more refined bio-inspired structures, etc. With the rapid 

Figure 23. (a) A Voronoi-based structure for mirrors, (b) Thickness varies from 0.75 mm at the
circumference to 2 mm in the center, (c) Thickness varies from 2 mm at the circumference to 0.75 mm
in the center.

5. Future Trends

As we all know, the designing and manufacturing criteria for space mirrors are
lightweight and high stiffness. The traditional lightweight mirror structures of web and
arch design have played an important role in the past decades and have been widely used.
With the development of the aerospace industry and the improvement of relevant technical
requirements of space optical systems, a variety of design and optimization methods have
been applied to the field of lightweight design for mirror core structures. In recent years,
especially after the rapid development of metal 3D printing, irregular structures, repre-
sented by lattice and Voronoi, which show multifaced outstanding performance and greatly
increase the freedom of mirror design, will play an important role in the future [5]. Looking
back at the development history of the recent dozens of lightweight design and optimiza-
tion of space mirrors (Figure 24), the design level has been continuously improved while the
manufacturing technology has been constantly iterative so that innovative structures have
been continuously manufactured with complex surface shapes and complex mechanical
geometric shapes, which are characterized by lightweight, high strength/stiffness relative
to weight and aesthetics.



Machines 2022, 10, 1066 16 of 20

Machines 2022, 10, 1066 15 of 20 
 

 

 
Figure 23. (a) A Voronoi-based structure for mirrors, (b) Thickness varies from 0.75 mm at the cir-
cumference to 2 mm in the center, (c) Thickness varies from 2 mm at the circumference to 0.75 mm 
in the center. 

5. Future Trends  
As we all know, the designing and manufacturing criteria for space mirrors are light-

weight and high stiffness. The traditional lightweight mirror structures of web and arch 
design have played an important role in the past decades and have been widely used. 
With the development of the aerospace industry and the improvement of relevant tech-
nical requirements of space optical systems, a variety of design and optimization methods 
have been applied to the field of lightweight design for mirror core structures. In recent 
years, especially after the rapid development of metal 3D printing, irregular structures, 
represented by lattice and Voronoi, which show multifaced outstanding performance and 
greatly increase the freedom of mirror design, will play an important role in the future [5]. 
Looking back at the development history of the recent dozens of lightweight design and 
optimization of space mirrors (Figure 24), the design level has been continuously im-
proved while the manufacturing technology has been constantly iterative so that innova-
tive structures have been continuously manufactured with complex surface shapes and 
complex mechanical geometric shapes, which are characterized by lightweight, high 
strength/stiffness relative to weight and aesthetics. 

 
Figure 24. Typical lightweight mirror designs at different development stages in recent decades 
[8,9,40,70,73–76]. 

Therefore, future work and trends of optimizing the design of reduced-weight mir-
rors may focus on the following four topics: 
(1) Explore and develop the application of 3D printing in the field of mirror manufac-

turing, including extending the usable materials, perfecting the printing technology 
to enable the fabrication of more refined bio-inspired structures, etc. With the rapid 

Figure 24. Typical lightweight mirror designs at different development stages in recent decades
[8,9,40,70,73–76].

Therefore, future work and trends of optimizing the design of reduced-weight mirrors
may focus on the following four topics:

(1) Explore and develop the application of 3D printing in the field of mirror manufac-
turing, including extending the usable materials, perfecting the printing technology
to enable the fabrication of more refined bio-inspired structures, etc. With the rapid
development of this technology, the mirror with complex geometries could be manu-
factured successfully [77]. The future priorities to introduce AM-made mirrors are
developing a reliable and traceable process chain from design and development via
manufacturing, post-processing, assembly, and integration to verification and final
inspection [78,79].

(2) Topology optimization technology will continue to play an important role in the field
of lightweight mirror design. Especially for mirrors manufactured by AM, they will
be occasionally affected by process parameters, material properties, and structures
during processing. Future related research will endeavor to develop an effective model
to accurately predict product performance and simulate a more accurate polishing, or
diamond turning, environment with the intention to realize the integrated design of
the material, process, structure, and performance [31,44].

(3) Lattice and Voronoi, unconventional structures realized by 3D printing technology,
show excellent weight reduction and mechanical properties, will become a signifi-
cant direction with a good development prospect. It’s a promising idea to use the
combination of topology optimization, lattice, and other methods to improve struc-
tures synergistically, then reasonable tools and indicators should be used to verify
the structural performance. Mirrors with complex structures are limited by some
factors, such as the accuracy of AM, lack of mature structural algorithms, and tough
post-processing, which will be a promising issue and possess extensive engineering
application prospects [79].

(4) Scientific and technological problems can be solved via the investigation of natural
structures and materials. For example, the honeycomb structure, constantly used
in lightweight mirrors, is inspired by the bee honeycomb. Biomimicry can be used
to improve mirror structures by learning naturally excellent structures. Artificial
intelligence (AI) and machine learning could also facilitate the design of bio-inspired
structures [80].
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6. Conclusions

The present review introduces a series of advances in the structural design of space
mirrors mainly including traditional machining structural design, topology optimization,
and special designs such as lattices and Voronoi structures. Meanwhile, the application
and performance of different designs are compared for reference. With the continuous
development of design technologies and AM, more mirrors with innovative structures and
excellent performance will be put into practical engineering applications in the future.
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