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Abstract: A significant number of people in the world suffer from limb losses, while prosthesis is the
hopeful way to help the amputees back to normal life. Recently, the most popular control method
used in intelligent prosthesis is FSM-IC (finite state machine with impedance control), which requires
a significant amount of manual parameter adjustments to achieve a good model compensation in a
discrete way. Taking the lower-limb prosthesis as the research object, this paper applies an LWPR
(locally weighted projection regression) model to learn the dynamic model of a prosthesis in real
time in order to achieve a better model compensation in a continuous way and propose scientific
experimental schemes to verify the control method. First, the basic control framework of lower-limb
prosthesis is given. Then, the control law is derived on the basis of model building and LWPR’s
addition. Finally, the proper experimental schemes are designed to carry out the control method
effectively in a safe way. The experimental results show that the control law with the LWPR model can
greatly improve the tracking performance during the swing phase and obtain rather good compliance
during the stance phase. Moreover, the results also indicate that the LWPR model can approximate
the dynamic model online. This method is hoped to be extended to more applications and fields.

Keywords: prosthesis; locally weighted projection regression; control law; compliance; tracking
performance; real time

1. Introduction

Amputation of the lower limbs is becoming more and more common due to traffic
accidents, diabetes, congenital diseases, tumors [1], etc. Lower-limb losses will lead to
limited mobility and psychological burden. In order to restore the mobility and return to
normal life, the prosthetic technique is the option of most amputees. Most commercial
prostheses are passive because they are cheap and simple in structure. However, walking
with a passive prothesis will consume more energy [2] than the able-bodied and the asym-
metry may cause secondary damage [3]. Therefore, the research on intelligent prosthesis
has become more popular due to its potential in speed switch and adaptation in different
terrains.

The general control frameworks of intelligent lower-limb prosthesis are hierarchical
into high-level controller, mid-level controller, and low-level controller [4]. The high-level
controller aims at human intention recognition including locomotion mode classification,
gait parameter determination, and gait phase determination. The low-level controller
makes the actuators output the desired torques. The mid-level controller pays attention to
intent-to-state conversion and achieves a good interaction between human and prosthesis.
For now, a significant amount of control methods have been proposed. Some (e.g., CLME
(complementary limb motion estimation) [5] and echo control [6]) collect the kinematic
data of the sound leg to complete the auxiliary control of the prosthesis. Model-based
methods [7,8] build the dynamic model or human neuromuscular system to generate the
joint torques. Phase-based methods introduce continuous gait phase variable to calculate
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joint trajectory which is followed by the controller. Refs. [9,10] adopt the COP as a me-
chanical representation of the gait cycle phase, while [11] extracts proper phase variables
from the motion information of the thigh. Ref. [12] uses discrete Fourier transform (DFT) to
characterize the desired periodic joint trajectories as functions of gait phase. Refs. [13–15]
apply FSM–IC (finite state machine with impedance control), which divides a complete
gait into several gait stages. In each gait stage, virtual spring damping systems are used to
model the impedance of different joints and a significant amount of impedance parameters
need to be adjusted for a good model compensation. Furthermore, [16] automatically tunes
the impedance parameters by the ADP (approximate dynamic programming) approach.
The above control methods mainly consider the tracking performance of joints’ trajectories
while the performance of compliance is not well considered. To achieve both good com-
pliance and tracking performance for intelligent lower-limb prosthesis, this paper mainly
focuses on the mid-level controller to compute the desired torques of knee and ankle.

For an intelligent lower-limb prosthesis, its control goal is improving the tracking
performance during the swing phase and compliance during the support phase, which
conforms to the human motion mechanism. In order to achieve the above goal, we need to
compute the model compensation as a feedforward item by adjusting impedance parame-
ters or modeling. FSM-IC methods adjust impedance parameters and model compensation
in a discrete way. Due to uncertain joint friction, model error, and other possible factors,
modeling methods can achieve good results in simulation but face the problems of distur-
bance estimation and real-time model compensation in the real world. Ref. [17] enhances
compliance by using the LWPR method [18] to fit the dynamic model. However, the control
strategy in [17] is only validated on a simulated biped walker rather than a real human–
machine system. Here, we have achieved the migration process from a simulation of the
real world by combining the LWPR model and PD controller. The contributions of this
paper are listed below: (1) Through theoretical analysis, the control law is obtained and
the training method is determined (the LWPR model is only trained in the swing phase);
(2) According to the complexity of the model from simple to complex, four experiments
are designed to gradually verify the feasibility of the proposed control method and ensure
the safety of people; (3) As for prosthesis application, the LWPR model has the ability to
rapidly fit the dynamic model in real time, which is input into the controller as a real-time
model compensation; (4) Compared with previous works, there are less parameters to be
adjusted. (5) The real-time learning of the LWPR model can adapt to the model change.

2. Materials and Methods

The control framework used in this paper is shown in Figure 1, and relevant variables
are shown in Figure 2. Under this control framework, [17] completes a simulation experi-
ment and finds a good result. In order to achieve the subjects’ walking experiment on the
treadmill safely and successfully, there are still significant amounts of analysis and tests to
conduct. Each part of the control framework will be introduced below.

2.1. Phase Variable Selection

We install the IMU (inertial measurement unit) on the part where the prosthesis is
fixedly connected with the injured thigh of the transfemoral amputee. On the one hand,
the motions of the injured thigh can reflect the amputees’ motion intention. On the other
hand, the sensors are required to be on-board (installed on the prosthesis rather than on the
people), which can reduce system complexity and improve convenience. The installed IMU
can detect the movement of the thigh in real time with a frequency of 100 Hz (sampling
time ts = 0.01 s). The real-time gait phase is obtained through thigh movement [11] when
the amputees walk with periodic gaits (e.g., level walking, stair ascent, stair descent, ramp
ascent, ramp descent). The real-time gait phase is computed as

ϕ(t) =
atan2[

.
θ
′
t(t), θ′t(t)] + 180◦

360◦
(1)
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where
.
θt(t) and θt(t) are thigh angular velocity and thigh angle, respectively, and

.
θ
′
t(t)

and θ′t(t) are the filtered and normalized thigh angular velocity and thigh angle, respec-
tively [15].
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Figure 1. The control framework of intelligent lower-limb prosthesis. The blue parts are the high-level
and mid-level controller, which aims at human intention recognition and joint trajectory planning.
The purple parts are the main research subjects in this paper.
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Figure 2. The simplified lower-limb prosthesis model.

2.2. Motion Mode Recognizer

Different motion modes have different joint reference trajectories. This module aims at
classifying the locomotion mode according to the sensors’ information. However, the focus
of this paper is not on the high-level controller. Therefore, we set our locomotion mode as
level walking for the convenience of narration.

2.3. Reference Trajectory Generation

For level walking, which corresponds to periodic motion, we use Fourier series to
describe the reference trajectory.

qref
i (t) =

3

∑
j=0

Aj cos[2πjϕ(t) + Bj] (2)

where i ∈ {k, a} represents the controlled joint, Bj is the offset term, and Aj is the amplitude
of the j-th cosine harmonic component. Aj and Bj are obtained by discrete Fourier transform
of the collected joint angle data set off-line.
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2.4. Controller Design

We simplify the lower-limb prosthesis to a three-joint manipulator with a floating base
(Figure 2). Then, its dynamic equation can be written as

uG = MG
..
xG + CG

.
xG + GG + JT

s Fr (3)

where MG ∈ R6×6 is the inertia matrix, CG ∈ R6×6 is the centrifugal and Coriolis force
term, GG ∈ R6×1 is the gravity term and JT

s Fr is the projection of ground reaction force
(GRF) acting on the foot into forces acting in the degrees of freedom (DOFs). uG and xG are
defined as

uG ≡ [ fx fy τb u]T, xG ≡ [xb yb qb q]T (4)

where fx, fy, and τb are forces and torque on the sagittal plane of floating base. xb, yb,
and qb are the three DOFs of floating base. q = [qh qk qa]T is the joint angle vector and
u = [τh τk τa]T is the torque input vector. For knee and ankle, their dynamic equations are[

τk
τa

]
=

[
Mk
Ma

]
..
xG +

[
Ck
Ca

]
.
xG +

[
Gk
Ga

]
+

[
τk

d
τa

d

]
(5)

where τk
d and τa

d are the projection of GRF acting on the foot into forces acting in the knee
and ankle.

Here, we intend to use the LWPR model to fit the lower-limb prosthesis model. The
LWPR model is of multi-input and single output. For each joint i ∈ {k, a}

f i{x}+ τi
d = τi (6)

where x is (
..
q,

.
q, q, qb,

.
qb,

..
qb,

.
xb,

.
yb,

..
xb,

..
yb)

T according to the dynamic model in Table A1 of
Appendix A and f i(x) = Mi

..
xG + Ci

.
xG + Gi. We use LWPR models [2] to approximate f i

f i(x) = f i(
..
q,

.
q, q, qb,

.
qb,

..
qb,

.
xb,

.
yb,

..
xb,

..
yb)

= f̂ i(x) + εi =
Ni

∑
n=1

ωi
n f̂ i

n(x)/
Ni

∑
n=1

ωi
n + εi

(7)

where x = (
.
θt,

.
θ

l
t, θt, qk,

.
qk,

.
ql

k, qa,
.
qa,

.
ql

a)
T is the input vector of the LWPR model (variables

in x can be obtained from the thigh IMU and joint encoders). When x is given, every linear
model f̂ i

n calculates a predicted value f̂ i
n(x), and the normalized weighted mean of all

Ni linear models f̂ i(x) are the output of the LWPR model.
.
θ

l
t,

.
ql

k, and
.
ql

a are the angular
velocity of thigh IMU, knee, and ankle at the last moment. ωn are Gaussian functions called
RFs (receptive fields) which are computed as seen in Equation (8), N is the number of local
linear models, and ε is the error between the real dynamic model and the LWPR model.

ωi
n= exp(− 1

2
(x− ci

n)
T

Di
n(x− ci

n)) (8)

where Dn is the distance metric and cn are the centers of RFs.
Is the given input x sufficient for the fitting? We record the coordinates of motion

capture markers (Figure 3) [19] and thigh IMU data when the subject walks on the treadmill
with a 3 km/h speed and computes related variables by OpenSim [20].

We can obtain the gait phase ϕ from
.
θt and θt, and it can be concluded from the plots

in Figure 4 that qh,
.
xb, and

.
yb are the functions of gait phase ϕ when the subject is walking

at a constant speed, which means that

qh = g1(ϕ),
.
xb = g2(ϕ),

.
yb = g3(ϕ) (9)
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, ẋb, and ẏ
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(φ)  ẋb = g2

(φ)  ẏ
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According to relationships shown in Figure 2 and speed calculation formula, we have

qb = 90− θt − qh = 90− θt − g1(ϕ),
..
qk = (

.
qk −

.
ql

k)/ts,
..
qa = (

.
qa −

.
ql

a)/ts (10)

where qb,
..
qk, and

..
qa can be computed by x. The derivatives of qh,

.
xb,

.
yb, and qb also are the

functions of gait phase ϕ according to Equation (11).

.
qh =

.
g1(ϕ)

.
ϕ,

..
xb =

.
g2(ϕ)

.
ϕ,

..
yb =

.
g3(ϕ)

.
ϕ

..
qh =

..
g1(ϕ)

.
ϕ

2
+

.
g1(ϕ)

..
ϕ

.
qb = −

.
θt −

.
qh,

..
qb = −

..
θt −

..
qh

(11)

where
..
θt = (

.
θt −

.
θ

l
t)/ts. When the subject walks with a constant speed,

.
ϕ can be regarded

as a constant and
..
ϕ = 0.

Thus, it is proved that x can be determined by x when the subject moves at a constant
speed.

The control laws adopted are as follows:

τi = f̂ i(x) + Ki
pei + Ki

d
.
ei (12)
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where ei = qi − qref
i , and Kp and Kd are the stiffness coefficient and damping coefficient,

respectively.
Let us combine Equations (6), (7), and (12):

Ki
pei + Ki

d
.
ei = τi

d + εi (13)

(1) During swing phase

When the lower limb is in the swing phase, there is no contact between the foot and
the ground, so the GRF is zero. Therefore, it can be assumed that

τi
d = 0 (14)

Therefore, Equation (13) can be simplified as

Ki
pei + Ki

d
.
ei = εi (15)

The solution of the differential Equation (15) is

ei(t) = Ci
1e
−

Ki
p

Ki
d

t
+ Ci

2εi (16)

where Ki
p, Ki

d > 0. When t→ ∞ , ei(t)→ Ci
2εi . The author of [17] shows that the LWPR

model can converge to a low error ε with proper model parameters as well as applied
and continuous real-time learning. Equation (16) indicates that high stiffness Kp and low
damping Kd can improve convergence speed.

(2) During stance phase

GRF acts on the prosthesis when the lower limb is in the stance phase, and we have

τi
ext = τi

d = (JT
s Fr)i (17)

where τext is the external torque on joint. Therefore, we have

τi
ext + εi = Ki

pei + Ki
d

.
e (18)

Equation (18) shows that when εi → 0 , the joint i is of the dynamic characteristics of
the spring damping system. It can help to adjust the relationship between external torque
and joint motion, which is called compliance control.

2.5. Learning Policy of LWPR Model
2.5.1. LWPR Model Configuration

A significant number of parameters in the LWPR model need to be adjusted to improve
the fitting accuracy and speed. init_D is the initial value of Dk (set initial distance metric
Dk = init_D ∗ In where In is n-dimensional identity matrix and n is the number of the
LWPR model’s input variables); init_alpha is the learning rate of updating Dk; w_gen is
a threshold to determine when to create a new receptive filed. More detailed setup and
initialization of parameters can be found in the library [21]. Table 1 reports some of the
model parameters’ values in this paper.

Table 1. Model parameters of LWPR set in the paper.

Parameters Value (Knee) Value (Knee)

init_D 50 50
w_gen 0.2 0.2

init_alpha 250 150



Machines 2023, 11, 186 7 of 14

2.5.2. Model Learning Policy

According to Equation (7), the LWPR model is intended to fit the internal dynamic
model f i(x) = Mi

..
xG + Ci

.
xG + Gi of the i joint. The internal dynamic model does not

include the external torque (external torque mainly comes from the GRF during walking).
Therefore, the LWPR model only trains itself when there are not any external forces while
its training input is real-time measurable states of the internal dynamic model and its
training output is the real-time motor output torque. Before the LWPR model is added to
the control law as a model compensation, it should be trained for a while to approach the
internal dynamic model when there are no external forces.

The experiments in this paper all follow the learning policy of the LWPR model above.

3. Results

According to the complexity of the model from simple to complex, four experiments
are designed to gradually verify the feasibility of the proposed control method and ensure
the safety of people. The single motor (dynamic model of one-dimension) experiment
aims at testing the LWPR model’s astringency. Considering more complex situations (the
centrifugal and Coriolis force term, the gravity term, and higher dimension inputs are
added into the dynamic model), a hanging up experiment is intended for further testing the
capability of LWPR. After wearing the prosthesis, the real dynamic model will change due
to human’s involvement. By the leg swinging experiment, the LWPR model is closer to the
changed model. When subjects walk on the treadmill, the GRF will appear. The walking
experiment is the final test to verify the whole prosthesis control system’s performance
including tracking performance and compliance.

All the motors used in above four experiments are the same. The motors’ reduction
ratio is 1:50 and their angle and angular speed are sampled with a frequency of 100 Hz.
Except the single motor experiment, the thigh angle and angular velocity in the sagittal
plane are recorded with a frequency of 100 Hz.

3.1. Single Motor Experiment

The control method is tested with one motor which is laid flat on the table. In the first
30 s, the PD controller is applied and the LWPR model is only learning while the motor
input torque τmotor = τpd. The training inputs of the LWPR model are the angle and angular
speed of the motor, and the model’s training output is τmotor. After 30 s, the LWPR model’s
output is added into the motor input torque τmotor = τpd + τpred. We calculate the RMSE to
assess the tracking performance.

RMSE =

√
∑n

i=1(Xobs,i − Xref ,i)2

n
(19)

In this paper, n = 100. The experiment result is shown in Figure 5. In pure PD mode,
the single motor cannot keep up with the sinusoidal curve (in fact, [22] shows that the PID
controller cannot track a sine signal with zero error) When the LWPR model is used, the
tracking error decreases by about four times and almost reaches a stable value.
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3.2. Hanging Up Experiment

The control framework shown in Figure 1 is used in the experiment. We hung the
lower-limb prosthesis on a fixed frame (Figure 6). We simulated human thigh movement
by swinging the handle to generate phase firstly. Then, we use Fourier series to compute
the reference trajectory.
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Figure 6. (a) Lower-limb prosthesis designed for healthy subjects. (b) Mechanical structure diagram
of lower-limb prosthesis.

In the first 30 s. Step 1: only the PD controller is applied, while the LWPR model is
trained but not applied during this time. The training input of the LWPR model is the
vector x, and the training output is τpd.

After 30 s. Step 2: we add the predicted value of the LWPR model τpred to the motor
input torques. At this stage, the training input of the LWPR model is the vector x, and the
training output is the τpd + τpred. Then, the value of Kp and Kd will be decreased to K′p and
K′d. {

τi(t) = τi
pd(t) = Ki

pei(t) + Ki
d

.
ei(t) 0 ≤ t ≤ 30

τi(t) = τi
pred(t) + τi

pd(t) = f̂ i(x(t)) + K′ ipei(t) + K′ id
.
ei(t) t > 30

(20)
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Figure 7 reports our results. The results show that under LWPR+PD mode, the RMSE
of knee angle reduced by five times and the RMSE of ankle angle remain almost unchanged.
We hypothesize that the reason for this is that during the experiment, the ankle torque is
small and the error of the LWPR model are at the same level, which leads to no improvement
of tracking performance.
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Figure 7. (a) Knee and ankle position tracking under different modes. (b) Tracking performance of
knee and ankle.

In this experiment, Kp and Kd of knee and ankle are, respectively,

Kk
p = 6, Kk

p
′ = 3; Kk

d = 0.15, Kk
d
′ = 0.08;

Ka
p = 4.25, Ka

p
′ = 2; Ka

d = 0.12, Ka
d
′ = 0.06.

(21)

The decrease in the knee’s RMSE indicates that the LWPR model provides model
compensation but there is still some which is not compensated for. After model compensa-
tion, the PD controller can focus more on the error control rather than the uncertain model
compensation.

3.3. Leg Swinging Experiment

In this experiment, the subject is required to wear the lower-limb prosthesis, which
will change the dynamic model indeed. In order to ensure the subjects’ safety, we need to
further train our LWPR model to approach the changed model. The experiment is set as
follows: The healthy leg stands still and the other leg swings in the air to train the LWPR
model for a few minutes (Figure 8a) until the tracking performance is better (Figure 8b).
The trained LWPR model in the hanging up experiment is used as the initial model here.
Only step 2 in the hanging up experiment is applied in the training process.
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Figure 8. (a) The platform of leg swinging experiment. (b) Leg swinging experiment results.

3.4. Walking Experiment

Based on the LWPR model trained in 3.3 as the initial LWPR model, the subjects are
required to walk on the treadmill with a comfortable velocity (3 km/h in our experiment).
Only step 2 in the hanging up experiment is applied in the training process.

From the experimental results in Figure 9, during the swing phase, we have a rather
good tracking performance on knee and ankle position. During the stance phase, the
tracking errors of knee and ankle increase because the external torques appear, which
proves that the model compensation of LWPR is effective and that the proposed method
can bring high compliance to the prosthesis. However, at the beginning of the stance phase,
the tracking errors have not been increased immediately, which indicates that there are still
errors between the LWPR model and the real dynamic model.
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Figure 9. The results of walking experiment on treadmill. Force is the value of GRF and the downward
direction is positive. The stance phase is marked with purple horizontal bars while the swing phase
is marked with blueish green bars.

According to Equation (18), the smaller εi is, the better the compliance and the LWPR
model. The good tracking performance and high compliance prove that the LWPR model
can fit the real dynamic model in real time.

We capture a one-minute Video S1 of a walking experiment and upload it. According
to the subjects’ feeling, the impact force between prosthesis and ground is similar to the
healthy side, and there is little lag in the swing of the lower-limb prosthesis. Due to the
influence of the shank which is on the fixator, the upper body needs to be forward to
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keep balance. Moreover, the height of the knee joints of both legs is also different due to
the difference between healthy people and disabled people. Next, we will improve the
mechanical structure and invite the transfemoral amputees to participate in the experiment.

4. Discussion

Through theoretical derivation, the control law is given and the LWPR model is
applied. In order to verify the LWPR model’s effectiveness (whether model compensation
can be achieved) and test the performance of the prosthesis control system, we plan
our experiments step by step in a scientific way. The results of the walking experiment
show that our method can improve tracking performance during swing phase and bring
good compliance during the stance phase, while these two performances are exactly what
the lower-limb prosthesis control system is seeking. This paper’s contribution can be
summarized as follows.

First, this paper proposes the control law of lower-limb prosthesis by theoretical
derivation. According to the control law, we need to train the LWPR model only during
the swing phase to obtain the performances we want. If we train the LWPR model during
the stance phase, the external force torque will be included in the LWPR model and the
compliance will not be shown during the stance phase.

Second, a scientific experimental scheme is proposed to initialize the LWPR model.
From simulation to experiment is a difficult process, especially when people are involved.
A series of experiments seems a little redundant, but they help establish the confidence
of the subjects and ensure safety. In human–computer interaction, it is crucial to consider
human factors both physically and psychologically.

Finally, good performances in the walking experiment prove that the proposed control
method is good in use and that the LWPR model can learn the dynamic model in real-time
to achieve a good model compensation.

5. Conclusions

This paper’s control method preliminarily shows that the LWPR model is an effective
tool for prosthesis application. In high-dimensional space, LWPR greatly improves its
computational efficiency by performing linear approximate fitting locally [18]. Due to
measurement error and limited measurement information, the fitting error still exists. In
the future, the follow points need to be studied further. (1) How to measure the error of
the LWPR model and control it? (2) When real dynamic model changes (such as speed
changes), how long does it take to for the LWPR model to learn and how to improve
learning efficiency? (3) How to use prior knowledge in the LWPR model? (4) Are more
sensors necessary? If necessary, which sensors are added? To improve the performance of
lower-limb prosthesis, those problems above are what we will study next.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines11020186/s1, Video S1: Walking Experiment.
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Appendix A

The simplified model of lower-limb prosthesis has been built before. Its dynamic
equation is shown in Equation (3). We define

S1= sin(qb+qh), C1= cos(qb+qh)
S2= sin(qk−qb−qh), C2= cos(qk−qb−qh)

S3= sin(qa+qb+qh−qk), C3= cos(qa+qb+qh−qk)
(A1)

The values of parameters in the dynamic equation are given in Table A1. mb, mt, ms,
and m f are the masses of floating base, thigh, shank, and foot, respectively; Ib, It, Is, and
I f are the moment of inertia of floating base, thigh, shank, and foot, respectively; Lt and
Ls are the length of thigh and shank, respectively; Ltc is the length from hip joint to mass
center of thigh; Lsc is the length from knee joint to mass center of shank; Lfc is the length
from ankle joint to mass center of foot, and the definitions of the rest of the variables are
shown in Figure 2.

Table A1. The values of parameters in dynamic equation.

Parameters Value

MG(1, 1), MG(2, 2) mb+m f +ms+mt
MG(1, 2), MG(2, 1) 0

MG(1, 3), MG(1, 4), MG(3, 1), MG(4, 1) mtLtcC1 + ms(LtC1+LscC2) + m f (LtC1 + LsC2 + LfcC3)

MG(1, 5), MG(5, 1) −msLscC2 − m f (LsC2 + LfcC3)

MG(1, 6), MG(6, 1) m f LfcC3
MG(2, 3), MG(2, 4), MG(3, 2), MG(4, 2) mtLtcS1 + ms(LtS1 − LscS2) + m f (LtS1 − LsS2 + LfcS3)

MG(2, 5), MG(5, 2) msLscS2 + m f (LsS2 − LfcS3)

MG(2, 6), MG(6, 2) m f LfcS3

MG(3, 3)
Ib + It + Is + I f + 2m f L2

fc + m f L2
s + m f L2

t + 2msL2
sc + msL2

t + 2mtL2
tc

+ 2m f LsLfccos(qa) + 2m f LtLscos(qk) + 2msLtLsccos(qk) +

2m f LtLfccos(qa − qk)
MG(3, 4), MG(4, 3), MG(4, 4) MG(3, 3) − Ib

MG(3, 5), MG(4, 5), MG(5, 3), MG(5, 4)
−Is − I f − 2msL2

sc − msLtLsccos(qk) − 2m f L2
fc − m f L2

s

− 2m f LsLfccos(qa) − m f LtLscos(qk) − m f LtLfccos(qa − qk)

MG(3, 6), MG(4, 6), MG(6, 3), MG(6, 4) I f + 2m f L2
fc + m f LsLfccos(qa) + m f LtLfccos(qa − qk)

MG(5, 5) Is + I f + 2msL2
sc + m f L2

s + 2m f L2
fc + 2m f LsLfccos(qa)

MG(5, 6), MG(6, 5) −I f − 2m f L2
fc − m f LsLfccos(qa)

MG(6, 6) I f + 2m f L2
fc

CG(1, 1), CG(1, 2), CG(2, 1), CG(2, 2), CG(3, 1),
CG(3, 2), CG(4, 1), CG(4, 2), CG(5, 1), CG(5, 2),

CG(6, 1), CG(6, 2), CG(6, 6)
0

CG(1, 3), CG(1, 4)
[m f (LfcS3 − LsS2) − msLscS2]

.
qk − m f LfcS3

.
qa− [m f (LfcS3 − LsS2 +

LtS1) + ms(LtS1 − LscS2) + mtLtcS1](
.
qh +

.
qb)

CG(1, 5) [m f (LfcS3 − LsS2) − msLscS2](
.
qh +

.
qb −

.
qk) + m f LfcS3

.
qa

CG(1, 6) −m f LfcS3(
.
qh +

.
qb −

.
qk +

.
qa)

CG(2, 3), CG(2, 4)
−[m f (LfcC3 + LsC2) + msLscC2]

.
qk + m f LfcC3

.
qa

+[m f (LfcC3 + LsC2 + LtC1) + ms(LtC1 + LscC2) + mtLtcC1](
.
qh +

.
qb)

CG(2, 5) [m f (LfcC3+LsC2) + msLscC2](
.
qk −

.
qh −

.
qb) − m f LfcC3

.
qa

CG(2, 6) m f LfcC3(
.
qh+

.
qb −

.
qk +

.
qa)

CG(3, 3), CG(3, 4), CG(4, 3), CG(4, 4)
[m f LsLfcsin(qa) + m f LtLfcsin(qa − qk)]

.
qa

−[m f LtLssin(qk) + msLtLscsin(qk)−m f LtLfcsin(qa − qk)]
.
qk

CG(3, 5), CG(4, 5)
[m f LsLfcsin(qa) + m f LtLfcsin(qa − qk)]

.
qa +

[m f LtLssin(qk) + msLtLscsin(qk)−m f LtLfcsin(qa − qk)](
.
qk −

.
qh −

.
qb)

CG(3, 6), CG(4, 5) −[m f LsLfcsin(qa) + m f LtLfcsin(qa − qk)](
.
qh +

.
qb −

.
qk +

.
qa)

CG(5, 3), CG(5, 4)
m f LsLfcsin(qa)

.
qa + [m f LtLssin(qk) + msLtLscsin(qk)−m f LtLfcsin(qa −

qk)](
.
qh +

.
qb)
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Table A1. Cont.

Parameters Value

CG(5, 5) −m f LsLfcsin(qa)
.
qa

CG(5, 6) m f LsLfcsin(qa)(
.
qh +

.
qb −

.
qk +

.
qa)

CG(6, 3), CG(6, 4) [m f LsLfcsin(qa) + m f LtLfcsin(qa − qk)](
.
qh +

.
qb)−m f LsLfcsin(qa)

.
qk

CG(6, 5) m f LsLfcsin(qa)(
.
qh +

.
qb −

.
qk)

GG(1, 1) 0
GG(2, 1) (mb + m f + ms + mt)g

GG(3, 1), GG(4, 1) (LtS1 − LscS2)msg + (LtS1 − LsS2 + LfcS3)m f g + LtcS1mtg
GG(5, 1) (LfcS3 − LsS2)m f g + LscS2msg
GG(6, 1) LfcS3m f g
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