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Abstract: Intelligent lower-limb prosthesis appears in the public view due to its attractive and
potential functions, which can help amputees restore mobility and return to normal life. To realize
the natural transition of locomotion modes, locomotion mode classification is the top priority. There
are mainly five steady-state and periodic motions, including LW (level walking), SA (stair ascent), SD
(stair descent), RA (ramp ascent), and RD (ramp descent), while ST (standing) can also be regarded as
one locomotion mode (at the start or end of walking). This paper mainly proposes four novel features,
including TPDS (thigh phase diagram shape), KAT (knee angle trajectory), CPO (center position offset)
and GRFPV (ground reaction force peak value) and designs ST classifier and artificial neural network
(ANN) classifier by using a user-dependent dataset to classify six locomotion modes. Gaussian
distributions are applied in those features to simulate the uncertainty and change of human gaits. An
angular velocity threshold and GRFPV feature are used in the ST classifier, and the artificial neural
network (ANN) classifier explores the mapping relation between our features and the locomotion
modes. The results show that the proposed method can reach a high accuracy of 99.16% ± 0.38%.
The proposed method can provide accurate motion intent of amputees to the controller and greatly
improve the safety performance of intelligent lower-limb prostheses. The simple structure of ANN
applied in this paper makes adaptive online learning algorithms possible in the future.

Keywords: phase variable; prosthesis; mode classification; feature; steady states; accuracy

1. Introduction

According to the statistics of the World Health Organization (WHO), about 15%
(975 million) of the world’s population have physical disabilities to varying degrees [1].
Some of them suffer from lower-limb amputation (LLA). For people with LLA, lower limb
prosthesis is an important tool to help them restore mobility and live a better life. However,
at present, the majority of commercial prosthetic legs are passive, and walking with them
will consume 20~30% more energy than healthy individuals [2]. Moreover, the obvious
asymmetry between the sound side and the affected side will lead to secondary damage.
When people with LLA are in a complex walking environment, even stability will become
a luxury [3]. Research on intelligent lower-limb prostheses has been performed recently
due to their adaptation in different terrains.

The common control framework of intelligent lower-limb prostheses is a hierarchical
control system [4] shown in Figure 1. The high-level controller focuses on human intent
recognition to distinguish locomotion modes in real time and obtain gait parameters and
gait phase, which will be sent to the middle-level controller to compute desired joint angles
and torques. The low-level controller aims at making the actuators output the desired
torques. In this paper, we focus on locomotion mode classification, which belongs to the
high-level controller of the prosthesis control system.
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Figure 1. The hierarchical control system [4] of intelligent powered low limb prosthesis based on the
gait phase.

Pattern recognition (PR), machine learning (ML), and statistical methods have been
widely applied to classify locomotion modes from surface electromyogram (sEMG) sig-
nals [5] to mechanical sensors. Ref. [6] collects sEMG signals to interpret motion modes. J
A Spanias et al. developed an adaptive PR system to adapt to changes in the user’s neural
information during ambulation and consistently identify the user’s intent over multiple
days with a classification accuracy of 96.31%± 0.91% [7]. Zhang et al. present a robust envi-
ronmental feature recognition system (EFRS) to predict the locomotion modes of amputees
and estimate environmental features with the depth camera [8]. Ref. [9] combines EMG
and mechanical sensors, using linear discriminant analysis (LDA) to reach 86% accuracy.
Quadratic discriminant analysis (QDA) in [10] gets a similar result with EMG only. Ref. [11]
infers the user’s intent with the Gaussian mixture model (GMM). They combine foot force
and EMG to distinguish intent to stand, sit and walk. Ref. [12] combines all sensors to
recognize six locomotion modes and five mode transitions by support vector machine
(SVM) and gets a high accuracy of 95%. Ref. [13] adopts dynamic Bayesian network (DBN)
to recognize level walking (LW), stair ascent (SA), stair descent (SD), ramp ascent (RA)
and ramp descent (RD) with a load cell and a six-axis inertial measurement unit (IMU).
Ref. [14] depends only on ground reaction force (GRF) to distinguish LW and SD by an
artificial neural network (ANN). Recently, [15] encodes data from IMUs into picture format
and inputs this 2D image into a convolutional neural network (CNN). The CNN outputs
the probability of five steady states and eight transition states. They successfully improve
the accuracy to 95.8%. Similarly, Kang et al. developed a DL-based (deep learning-based)
classifier for five steady states, which is user-independent and achieved an overall accuracy
of 98.84% ± 0.47% [16]. Ref. [17] uses ML methods to compare the user-independent and
dependent intent recognition systems for powered prostheses. The results show that the
user-dependent method has better accuracy. The previous works have achieved good
results in locomotion mode classification. However, the traditional extracted features are
generally the average, maximum, minimum, median and variance of sensors’ data, which
lack a physical explanation. The DL methods need big data collection, which is unfriendly
to the amputees.

Based on 2 IMUs (Placed on the thigh and shank of amputees’ sound leg, respectively)
and a GRF insole (Placed in the amputees’ sound leg’s shoe), shown in Figure 2, which
are used to collect a user-dependent dataset, this paper extracts four novel features and
design classifiers to recognize locomotion modes. The main contributions of this paper are
as follows: (1) based on the processed sensor data, four novel features are extracted; (2) the
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fluctuation of gait data is expressed by Gaussian distributions to simulate the fluctuation
of human motion trajectory; (3) The designed classifiers achieve a higher accuracy of
99.16% ± 0.38% compared with previous works.
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Figure 2. Sensor installation positions and variable descriptions. Θt is the thigh IMU angle in the
sagittal plane, θs is the shank IMU angle in the sagittal plane and θk is the knee angle. Gh and Gt are
the raw force sensor data of the heel and toe.

2. Materials and Methods
2.1. Data Acquisition and Processing
2.1.1. Data Collection

Eight able-bodied subjects agreed to participate in the data acquisition experiments,
including six males (varies in height (1.63–1.81 m) and weight (58–76 kg)) and two females
(varies in height (1.65–1.7 m) and weight (50–55 kg)). They are required to equip with an
intelligent prosthesis in Figure 3a. The intelligent lower-limb prosthesis is designed for
healthy individuals in which the knee and ankle are active joints that provide power in the
sagittal plane. The finite state machine impedance control [18] is applied for the intelligent
prosthesis, and the joint torques τi are determined according to Equation (1)

τi = ki(θi − θeqi) + bi
.
θi (1)

where i denotes the prosthesis knee or ankle, θ is the joint angle and
.
θ is the joint angular

velocity. K, b and θe are the stiffness, damping and equilibrium positions, respectively, and
are assigned different values under different states and locomotion modes. The impedance
parameters are set to make the subject walk comfortably.

Moreover, data acquisition sensors, including IMUs and GRF insoles, are set, as shown
in Figure 3b. IMU data consist of angle and angular velocity in the x, y, and z-axis directions,
respectively, with a sampling frequency of 100 Hz. The GRF insoles measure pressure in
the vertical direction with a frequency of 100 Hz.

This paper aims to classify 6 locomotion modes, shown in Figure 4, and the locomotion
settings, including an incline-adjustable treadmill and 2 stairs of different heights, are
shown in Figure 5. The ramp inclines are set to ±3.6◦, ±5.8◦ and ±9.5◦. Under each incline,
subjects walk for 30 s with low, normal and fast speeds (0.56 m/s, 0.83 m/s and 1.11 m/s).
To keep the data sizes in different modes almost the same, each subject walks on the level
ground (LG) for 90 s at each speed. As for SA and SD, subjects completed 10 trials under
different stair heights of 11.8 cm and 14.5 cm. Finally, subjects maintain a relaxing standing
posture on level ground for 60 s.
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Figure 3. (a) Intelligent lower-limb prosthesis designed for able-bodied subjects. (b) The able-bodied
subject equipped with a prosthesis and data acquisition sensors.
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ramp ascent (RA), ramp descent (RD), and standing (ST).
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Figure 5. (a) Incline adjustable treadmill. (b) Stairs with 14.5 cm stair height. (c) Stairs with 11.8 cm
stair height.
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Our final dataset includes data from 3 sensors: 2 IMUs placed at the thigh and the
shank of the sound leg and a GRF insole put in the shoe on the same side (Figure 2). We
only used IMU data in the sagittal plane direction. The raw sensor dataset under ωm mode
is recorded as follows:

Draw
ωm = {( θt,

.
θt, θs, Gh, Gt)|ωm} (2)

For clarity, we list some parameters in Table 1 below and some abbreviations in
Table A1 of Appendix A.

Table 1. Variable descriptions.

Symbol Quantity

M Total number of modes except for ST (M = 5)
.
θt Thigh IMU angular velocity in the sagittal plane

ωm Locomotion mode. ωm ∈ {LW, SA, SD, RA, RD, ST}
ts The sampling period and ts = 0.01s

Ltw The length of the time window.

2.1.2. Gait Phase Variable

There are experiments using motion capture systems that prove that the human thigh
motion can uniquely and continuously represent the gait cycle [19]. The continuous gait
phase variable is defined by the atan2 function:

ϕ(t) = atan2(
.
θt, θt) + π (3)

However, there are noises and ground impact in thigh angular velocity
.
θt. The linear

polynomial fitting method is adopted to smooth the
.
θt(t) curve, as shown in Figure 6a.

.
θt_s(t) = (1− r)

.
θt(t) + r · [a(t)·t + b(t)] (4)

where a(t) and b(t) are linear fitting parameters calculated by the least square method
online according to Equation (5), and r is the smoothing coefficient. In Equation (5), n is the
sample number. Here, n = 40 and r = 0.9.

a(t) = [
n
∑

k=1
(t− k·ts)·

.
θt(t− k·ts)− nxy]/[

n
∑

k=1
(t− k·ts)

2 − nx2]

x =
n
∑

k=1
(t− k·ts)/n, y =

n
∑

k=1

.
θt(t− k·ts)/n

b(t) = y− a(t)·x

(5)
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Figure 6. (a) Smoothing effect on the normalized thigh Angular velocity. (b) The new gait phase
variable shows better monotonicity at the time axis.
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By translation, the phase diagram trajectory can wrap the origin and make the phase
variable vary circularly. By normalization, we can obtain a similar phase diagram trajectory
under the same locomotion mode with different walking speeds. The transformation
formulas [19] are as follows:

θt_tn(t) = αx(t)[θt(t) + βx(t)]γ
.
θt_stn(t) = αy(t)[

.
θt_s(t) + βy(t)]γ (6)

where γ = 180 is the scale factor, α(t) is the normalization factor, and β(t) is the translation
factor which can be calculated by:

αx(t) = 1
|max[θt(t)]−min[θt(t)]| , αy(t) = 1∣∣∣max[

.
θt_s(t)]−min[

.
θt_s(t)]

∣∣∣ ,
βx(t) =

−|max[θt(t)]+min[θt(t)]|
2 , βy(t) =

−
∣∣∣max[

.
θt_s(t)]+min[

.
θt_s(t)]

∣∣∣
2 .

(7)

Data of the previous gait cycle from moment t are taken to calculate the maximum and
minimum in real time. The new continuous gait phase variable (Figure 6b) is defined as

ϕnew(t) = atan2
[ .
θt_stn(t), θt_tn(t)

]
+ π (8)

2.1.3. Knee Angle and GRF value

The knee angle is calculated as:

θk = θs − θt (9)

The smoothing method in Equation (4) (n = 20 and r = 0.9) is applied at the knee
angle to get a smoother curve θk_s(t). To obtain similar knee trajectory under the same
locomotion mode with different walking speeds, θk_s(t) is normalized to θk_sn(t).

The GRF of the heel and toe are recorded as Gh(t) and Gt(t) respectively. Their latest
peak values are recorded as Ghp(t) and Gtp(t) during one gait cycle before.

Then, the processed dataset Dωm is

Dωm =
{
(θt_tn,

.
θt_stn, ϕnew, θk_sn, βx, βy, Gtp, Ghp)

∣∣∣ωm

}
(10)

[0, 2π) is discretized into fp parts of the same length according to Equation (11).

ϕj = [
2π j
fp

,
2π(j + 1)

fp
)(j = 0, 1, 2, . . . , fp − 1) (11)

Dωm is divided into Dωm ,ϕj according to which part ϕnew belongs to. The divided
datasets are used to calculate feature distributions under different modes. The workflow of
offline data processing and feature distribution calculation are shown in Figure 7.

2.2. Feature Distributions and Extractions
2.2.1. Thigh Phase Diagram Shape (TPDS)

The thigh phase diagram consists of processed thigh IMU angle θt_sn in the x-axis and
processed thigh IMU angular velocity

.
θt_stn in y-axis. The trajectory of (θ t_tn,

.
θt_stn

)
during

walking is named TDPS, and TDPS varies from each other under different locomotion
modes. Here, Gaussian distributions are used to record the standard TDPS of different
locomotion modes. For example, the TPDS under LW mode is shown in Figure 8a.
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Figure 8. (a) TPDS of LW mode. Pink points belong to the dataset DLW . Points in the green circle are
in the dataset DLW,ϕ0 . (b) The distributions of x-coordinates and y-coordinates of points in the green
circle are near to normal according to the histograms.

From Figure 8b, it is known that
(

θt_tn,
.
θt_stn

)
∈ Dωm ,ϕj correspond to a two-dimensional

Gaussian distribution Nt|ωm ,ϕj
(µ, Σ). For each Nt|ωm ,ϕj

(µ, Σ), it can be calculated as:

µ = [
µ1
µ2
], Σ = [

Cov(X1, X1) Cov(X1, X2)
Cov(X2, X1) Cov(X2, X2)

]

µ1 = ( ∑
Dωm ,ϕj

θt_tn)/|Dωm ,ϕj |, µ2 = ( ∑
Dωm ,ϕj

.
θt_stn)/|Dωm ,ϕj |

Cov(X1, X1) = ∑
Dωm ,ϕj

(θt_tn − µ1)
2/ (

∣∣∣Dωm ,ϕj

∣∣∣−1 )

Cov(X2, X2) = ∑
Dωm ,ϕj

(
.
θt_stn − µ2)

2
/ (
∣∣∣Dωm ,ϕj

∣∣∣−1 )

Cov(X1, X2) = Cov(X2, X1) = ∑
Dωm ,ϕj

(θt_tn − µ1)(
.
θt_stn − µ2)/ (

∣∣∣Dωm ,ϕj

∣∣∣−1 )

(12)
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fp Gaussian distributions from Nt|ωm ,ϕ0
(µ, Σ) to Nt |ωm ,ϕ fp−1

(µ, Σ) together represent

the TPDS under ωm mode. TPDSs in different locomotion modes are shown in Figure 9a.
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Figure 9. (a) TPDSs in different locomotion modes. The solid line is the mean trajectory, and the
transparent area is ±1 standard deviation. (b) The red part is the standard TPDS of LW mode. Blue
points form the real-time thigh phase diagram trajectory, and the blue points are collected under
LW mode.

The overlap degree between real-time thigh phase diagram trajectory and standard
TPDSs of different modes shown in Figure 9b is an index of similarity to classify locomotion
modes. The summation of the probability density of each sample point is used to evaluate
the overlap degree:

sumt|ωm(t) =
Ltw−1

∑
k=0

ft|ωm ,ϕj
(θt_tn(t− k·ts),

.
θt_stn(t− k·ts)) (13)

where ft|ωm ,ϕj
(x, y) is the probability density function of Nt|ωm ,ϕj

(µ, Σ). Then we can figure
out the conditional probability, P(ωm|TPDS(t)), of each mode:

P(ωm

∣∣∣∣∣TPDS(t)) = sumt|ωm(t)/
M

∑
i=1

sumt|ωi
(t) (14)

where TPDS(t) represents the TPDS feature at time t.

2.2.2. Knee Angle Trajectory (KAT)

KAT is the normalized knee angle trajectory at the gait phase axis. Similarly to
TPDS, θk_sn ∈ Dωm ,ϕj correspond to a one-dimensional normal distribution Nk|ωm ,ϕj

(µ, Σ).
Standard KATs in different locomotion modes are shown in Figure 10.

The summation of probability density is used to evaluate the overlap degree of real-
time KAT and the standard KAT under ωm mode:

sumk|ωm(t) =
Ltw−1

∑
k=0

fk|ωm ,ϕj
(θk_sn(t− k·ts)) (15)

where fk|ωm ,ϕj
(x) is the probability density function of Nk|ωm ,ϕj

(µ, Σ). The conditional
probability P(ωm|KAT (t)) of each mode is:

P(ωm

∣∣∣∣∣KAT(t)) = sumk|ωm(t)/
M

∑
i=1

sumk|ωi
(t) (16)
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where KAT(t) represents the KAT feature at time t.
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Figure 10. KATs in different locomotion modes. The x-axis is the continuous thigh phase variable
ϕnew(t) which represents a whole gait cycle, and the y-axis is the normalized knee angle θk_sn(t). The
solid line is the mean trajectory, and the transparent area is ±1 standard deviation.

2.2.3. Center Position Offset (CPO)

During the translation of the thigh phase diagram in Equation (7), the translation
vector (β x, βy

)
can reflect the range of thigh motion. The translation vector is called CPO.

In different locomotion modes, the distributions of (β x, βy
)
∈ Dωm are shown in Figure 11a.

The two-dimensional normal distribution function Nc|ωm(µ, Σ) is used to describe CPO
under ωm mode. The probability density function of Nc|ωm(µ, Σ) is fc|ωm(x, y), and the
conditional probability under CPO is

P(ωm|CPO(t)) = fc|ωm(βx(t), βy(t))/
M

∑
i=1

fc|ωi
(βx(t), βy(t)) (17)

where CPO(t) represents the CPO feature at time t.

Machines 2023, 11, x FOR PEER REVIEW 10 of 16 
 

 

  
(a) (b) 

Figure 11. (a) CPO distributions in different modes. Ellipses represent probability density contours, 

and the points represent the translation vector (β
x
, β

y
) in different modes. (b) GRFPV feature distri-

butions in different modes. Points represent parts of sample points (Ghp Gtp). The line segment is 

fitted by points of DLW. The circles contain all sample points of one mode with the smallest radius. 

2.2.4. Ground Reaction Force Peak Value (GRFPV) 

The peak values of the force and heel force have different distributions in different 

locomotion modes, as shown in Figure 11b. We assume that the GRFPV of LW are assem-

bling near a line segment and GRFPV of other modes are gathering in a circle. 

The line segment AB is fitted by the least square method: 

aωm
x + bωm

y + cωm
= 0, xA ≤ x ≤ xB, ωm = LW (18) 

The coordinate of each circle center of each mode is 

Cωm
(xωm

 y
ωm
)  ωm ≠ LW (19) 

Then Euclidean distance is used to compute the relative probability RPωm
: 

)100exp(*21

3

d
RP

m +
=

 
(20) 

where d is 

















=

+

++





=

LW                                                   

LW

         
)()(

°90                              ||

°90                              ||

22

m

m

tphp

m

mm

mmm

pC

else
ba

ctGbtGa

pBApB

pABpA

d











 

(21) 

where p(Ghp(t) Gtp(t))  is the GRFPV point in real time. The conditional probability 

P(ωm GRFPV (t)) is: 


=

=
M

i

m mm
RPRPtGRFPVP

1

))(|( 
 

(22) 

where GRFPV(t) represents the GRFPV feature at time t. 
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Figure 11. (a) CPO distributions in different modes. Ellipses represent probability density contours,

and the points represent the translation vector (β x, βy

)
in different modes. (b) GRFPV feature

distributions in different modes. Points represent parts of sample points
(

Ghp, Gtp

)
. The line

segment is fitted by points of DLW . The circles contain all sample points of one mode with the
smallest radius.



Machines 2023, 11, 235 10 of 15

2.2.4. Ground Reaction Force Peak Value (GRFPV)

The peak values of the force and heel force have different distributions in different lo-
comotion modes, as shown in Figure 11b. We assume that the GRFPV of LW are assembling
near a line segment and GRFPV of other modes are gathering in a circle.

The line segment AB is fitted by the least square method:

aωm x + bωm y + cωm
= 0, xA ≤ x ≤ xB, ωm = LW (18)

The coordinate of each circle center of each mode is

Cωm

(
xωm , yωm

)
, ωm 6= LW (19)

Then Euclidean distance is used to compute the relative probability RPωm :

RPωm =
3

1 + 2 ∗ exp(d/100)
(20)

where d is

d =


|pA| ∠pAB > 90◦

|pB| ∠pBA > 90◦ ωm = LW
|aωm Ghp(t)+bωm Gtp(t)+cωm |√

a2
ωm+b2

ωm
else

|pCωm | ωm 6= LW

(21)

where p(G hp(t), Gtp(t)) is the GRFPV point in real time. The conditional probability
P(ωm|GRFPV(t)) is:

P(ωm

∣∣∣∣∣GRFPV(t)) = RPωm /
M

∑
i=1

RPωm (22)

where GRFPV(t) represents the GRFPV feature at time t.
It should be noted that ST is not periodic movement and does not have a stable phase

variable. The TPDS, KAT, and CPO features of ST are not calculated.

3. Results

The workflow of real-time feature extraction and classification is shown in Figure 12.
This paper designs two classifiers: the standing (ST) classifier is used to identify the ST
mode, and the artificial neural network (ANN) classifier is used to classify the other five
locomotion modes.
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Figure 12. Real-time feature extraction and classification. C1 is the standing (ST) classifier, and C2 is
the artificial neural network (ANN) classifier. The blue points are real-time feature points under LW.
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3.1. ST Classifier

An angular velocity threshold and GRFPV feature are used at the ST classifier, as
shown in Figure 12. The threshold Th satisfies

DT =
Ltw

∑
k=0

∣∣∣ .
θt(t− k·ts)

∣∣∣/Ltw < Th (23)

where DT is the dynamic trend. When the subject is standing, the DT curve is shown
in Figure 13a, and the maximum DT is smaller than 2. Then, 10,000 sample points are
randomly sampled in other modes, and their DT distribution is shown in Figure 13b. The
minimum DT under other modes is greater than 7. Here, we take Th = 5.
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Figure 13. (a) The dynamic trend under ST mode. (b) Ten thousand sample points are randomly
sampled in other modes, and their DT distribution is shown above.

The threshold ensures that there won’t be much movement, while the GRFPV feature
inequality ensures that the subject is standing on the ground. The ST classifier has an
accuracy of 100% in the test because standing has an obvious static feature which is
different from periodic locomotion modes.

3.2. ANN Classifier

At the ANN classifier, the conditional probabilities of each mode under each feature are
input into a fully connected neural network with one hidden layer, as shown in Figure 14,
and the final outputs are the probabilities of each locomotion mode. The calculations of the
hidden layer and output layer are shown in Equation (24).

yj = g(
4M

∑
i=1

ωl1
ij ·xi + bl1

j ), zj = g(
H

∑
i=1

ωl2
ij ·yi + bl2

j ) (24)

where ωl1
ij and bl1

j are the weight matrix and bias between input and hidden layer. ωl2
ij

and bl2
j are the weight matrix and bias between the hidden and output layers. g is the

tansig function. During the training process, the training dataset and validation dataset are
strictly separated.

The data was trained on a particular subject, and the ANN classifier was evaluated by
a five-fold cross-validation. The testing results of eight subjects are listed in Table 2 below,
and the confusion matrix of eight subjects is shown in Table 3. The ANN classifier has an
average accuracy across all subjects of 99.16% ± 0.38%.
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Table 2. Classification results for 8 Subjects.

Testing Accuracy
Locomotion Modes

LW SA SD RA RD Total

Subjects
M = Man

W = Woman

M1 100.0 99.89 99.08 99.10 98.71 99.36

M2 100.0 99.67 99.90 97.55 97.59 98.94

M3 100.0 99.71 99.11 98.88 98.65 99.27

M4 100.0 99.15 99.19 97.73 97.32 98.68

M5 99.99 99.89 99.39 97.36 96.90 98.71

M6 100.0 100.0 99.59 99.33 99.58 99.70

W1 100.0 98.69 99.53 100.0 99.63 99.57

W2 99.94 98.48 98.85 99.16 98.75 99.04

Table 3. The confusion matrix of the accuracy tests.

Confusion
Matrix

Predicted Class
LW SA SD RA RD None

LW 99.99 0.01
SA 99.44 0.56
SD 0.67 99.33
RA 0.05 98.64 1.30 0.01

Actual
Class

RD 1.61 98.38 0.01

Compared with the traditional confusion matrix, we add one column of “None” to
represent the unclassified mode when

max(pωk ) < 0.5, k = 1, 2, . . . , M (25)

4. Discussion
4.1. Network Hyperparameters

The performance of ANN is closely related to the network structure. Here, the fol-
lowing hyperparameters are considered: (1) the number of neurons in the hidden layer
(Nhidden); (2) the number of groups of training data for each mode (Ntrain) in the training set.
Nhidden affects network structure and Ntrain may lead to overfitting or underfitting. Based
on M1′s user-dependent dataset, tests are carried out under different parameters, and the
results are shown in Figure 15a. The bigger Ntrain corresponds to higher classification
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accuracy. However, classification accuracy has already reached 95% when Ntrain = 200,
which shows that the proposed method can achieve good results when training with a
small amount of data. When Ntrain = 2000 and Nhidden = 25, we get the best classification
accuracy of M1.
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Figure 15. (a) Classification accuracy under different Nhidden and Ntrain. The error bar represents ±1
standard deviation. (b) Error’s proportion of different slopes under RA and RD.

4.2. Ramp Slope

From Tables 2 and 3, classification errors mainly focus on RA and RD. The proportion
of each error of different slopes in the whole error under RA and RD is shown in Figure 15b.
The result shows that the main error occurs in the low slopes, which indicates that gaits
under low slopes have similarities.

4.3. Time Window Length

Time window size decides how much information we can use when classification is in
progress. However, the bigger time window size will bring higher delay. Based on M1′s
user-dependent dataset, we test the average accuracy under different time window sizes
when Ntrain= 2000 and Nhidden = 25. The result is shown in Figure 16. When the time
window size reaches 50, the classification accuracy increases very slowly.
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5. Conclusions

The high accuracy of locomotion mode classification ensures prosthetic users’ safety
and are the foundation of the natural transition between locomotion modes. In this paper,
four novel features are proposed based on data from two IMUs and one GRF insole.
Gaussian distributions are used to describe the TPDS, KAT and CPO features after using
distribution fitter tools to analyze the data. Euclidean distances in GRFPV diagrams are
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used to compute the relative probabilities of different locomotion modes. To the author’s
knowledge, those features haven’t been proposed and applied yet. ST classifier and
ANN classifier are designed and achieve a high accuracy of 100% and 99.16% ± 0.38%,
respectively.

Moreover, the proposed method is potential for future research. The real-time classified
walking data are used to adjust features’ distribution to adapt amputee’s gaits. The new
extracted feature is convenient to be added to our control framework. The ANN used in
this paper is simple in structure, which makes it possible to train ANN online. Additionally,
human locomotion modes are not limited to the listed. When the predicted class is “None,”
we can collect the unclassified data and apply clustering algorithms to discover new modes.
Those evolutionary and adaptive abilities are what we will study next.

To further our study, the disabled volunteers will be invited to test the proposed
method. Except for locomotion mode classification, more information such as slopes, step
stride and stair height will be predicted by analyzing the walking dataset.

Author Contributions: Conceptualization, Y.L. and H.A.; methodology, Y.L. and H.A.; software, Y.L.;
validation, Y.L., H.A. and H.M.; formal analysis, Y.L.; data curation, Y.L.; writing—original draft
preparation, Y.L.; writing—review and editing, H.A., H.M. and Q.W.; visualization, Y.L.; supervision,
H.A., H.M. and Q.W.; project administration, H.A.; funding acquisition, H.A., H.M. and Q.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the project of the National Key Research and Development
Program of China, grant number (2018YFC2001304).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Abbreviations in this paper are shown in Table A1.

Table A1. Abbreviations in this paper.

Abbreviations Full Names Abbreviations Full Names

LW level walking SA stair ascent
SD stair descent RA ramp ascent
RD ramp descent ST standing

TPDS thigh phase diagram shape KAT knee angle trajectory
CPO center position offset GRFPV ground reaction force peak value
ANN artificial neural network WHO world health organization
LLA lower-limb amputation PR pattern recognition
ML machine learning sEMG surface electromyogram

EFRS environmental feature recognition system LDA linear discriminant analysis
QDA quadratic discriminant analysis GMM Gaussian mixture model
DBN dynamic Bayesian network IMU inertial measurement unit
GRF ground reaction force CNN convolutional neural network

DL-based deep learning based LG level ground
M man W woman
DT dynamic trend
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