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Abstract: The rotating ultrasonic-assisted grinding (RUAG) experiment of the conical grinding wheel
generated the intermittent pit-shaped micro-texture on the surface of the workpiece, reducing thermal
damage and improving the lubrication characteristics compared with conventional grinding (CG). To
further optimize the surface properties, this paper studied the formation mechanism of micro-texture.
This study used as basis the theory that micro-debris volume equals the macroscopic material removal
one to establish the mathematical equation of grinding depth. Thereafter, formulas of micro-texture
feature parameters, including pit length, pit depth, and texture spacing were deduced. The solved
microscopic grinding depth was alternatingly positive and negative, indicating that the alternating
separation between the grinding grain and workpiece caused intermittent pits in the grinding.
Through response surface analysis (RSA), this paper analyzed the relationships among macroscopic
grinding depth, micro-texture feature parameters, and machining parameters (i.e., amplitude, feed
rate, and rotational speed). Single-factor experiments of machining parameters, with finite element
simulation and experiment methods, were performed to verify the theoretical micro-texture features.
The simulated program formed three-dimensional surfaces with micro-textures. Their measurement
results were consistent with the theoretical ones. Experimental results proved that the range of
pit length covers the theoretical ones, further verifying the accuracy of the grinding depth model.
For this grinding wheel, the 8–10 µm amplitude was optimal for better roughness, lubrication, and
thermal damage. Roughness was improved when increasing the rotational speed or reducing the
feed rate based on the experiment. If the rotational speed and feed rate exceed the limiting values,
then continuous grinding will break down the abrasive grains and even damage the cubic boron
nitride (CBN) coating. Experimental results likewise showed that the pit shape was closely related to
the surface properties, which deserves further investigation.

Keywords: rotary ultrasonic assisted grinding; conical grinding wheel; grinding depth; micro-texture;
simulation method

1. Introduction

The conical grinding wheel is adopted to grind spiral bevel and worm gears, among
others, which are applied to the movement of intersecting axes, particularly in cases of high
transmission efficiency, stable transmission, and low noise. Gear manufacturing technology
is undergoing focus transformation from high dimensional precision [1,2] to improved sur-
face properties, mainly including thermal damage, lubrication, and roughness. Therefore,
the ultrasonic-assisted grinding (UAG) method was applied in the gear manufacture.

Ultrasonic assisted technology has been widely recognized for its influence on mor-
phology. In 1998, Uhlmann et al. analyzed the kinematic model of slow feed grinding
with ultrasonic vibration on the surface, proving that RUAGcan significantly improve
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material removal rate and will not cause surface damage [3]. From 1998 to 2013, most
researchers made ultrasonic assisted devices to verify the advantages of RUAG metals
through experimental measurements and analyses, which mainly include improving rough-
ness, decreasing grinding forces, reducing thermal cracks of surfaces, and high material
rates. Zhao et al. completed an experimental research on surface characteristics in ultrasonic
ductile-regime honing ZrO2 engineering ceramics with a new type of ultrasonic honing
machine [4,5]. Tawakoli adopted ultrasonic assisted technology in dry grinding [6]. The
results obtained showed that grinding forces decreased significantly. Mohsen Ghahramani
Nik et al. proved the effect of ultrasonic vibration on the grinding of Ti6Al4V alloy [7].
W. M. Zeng et al. studied RUAG of advanced ceramics and discussed tool wear and cutting
forces [8]. The Wu team [9–11] investigated elliptical ultrasonic-assisted grinding (EUAG)
technologies. Most of the experiment results showed the feasibility of UAG in improving
surface properties. Since 2014, the field of hard and brittle materials has found the appli-
cation of UAG technologies [12,13] and carbon fiber-reinforced plastic [14], among others,
other than special alloys. Research methods were transferred from qualitative to quantita-
tive analyses. Past research has established mathematical models of cutting force [15,16],
material removal rate [17,18], roughness [19], morphology [20], and cavitation bubble [21];
and further discussed the relationship between grinding parameters and ground surface.

Surface morphology is a critical influencing factor for surface performance. Recently,
it has attracted considerable attention in the UAG field. Past research has investigated three
types of ultrasonic vibration: longitudinal, tangential, and radial ultrasonic vibrations.

Early research has mainly focused on longitudinal UAG, in which ultrasonic vibration
transfers to the tool head along the rotation axis. Wdowik et al. presented the results of mea-
surements of surface micro-structure parameters after UAG and CG of ZrO2-based ceramic
material [22]. Guo et al. investigated the influences of ultrasonic vibration parameters and
tilt angle on the ground quality of micro-structured surfaces [23]. Zheng et al. built surface
micro-texture models based on multi-grains motion equations [24]. Wen et al. proposed
an improved model of a rough surface profile to find the microscopic feature parameters,
such as the curvature radius of the grain, which are suitable for contact analysis and calcu-
lation [25,26]. One-dimensional longitudinal vibration often adopts a slender horn with
a small tool head. Longitudinal ultrasonic vibration produces sinusoidal micro-texture,
which changes the linear micro-texture of CG. Interference action of multiple abrasive
grains subdivides the surface further. Compared with CG, micro-texture reduces surface
roughness and thermal damage and improves lubrication characteristics.

Tangential ultrasonic assistant vibration has the same direction as the tangential
one of the grinding wheel. In general, ultrasonic vibration is along the workpiece axis.
Its advantage is that the circumnutation of abrasive particles forms a separation between
abrasive particles and workpiece surface, which helps to decrease the grinding temperature,
further reducing thermal damage. Jiang et al. established the surface micro-structure
formation mechanism model by considering the continuous cutting process of grains [27].
Wang et al. developed the surface model and realized the optimized microstructure and
high-precision surface ground through theory calculation [28]. Zhao et al. proposed a novel
processing of ultrasonic vibration-assisted forming grinding gear [29]. For this vibration,
ultrasonic vibration can only be applied in a specified workpiece, the dimensions of which
are limited by the ultrasonic generator’s frequency.

Radial ultrasonic vibration is often combined with one of the other two vibrations to
function. One case is the longitudinal radial ultrasonic vibration in the large disc grinding
wheel. Radial amplitude is over 10% of the longitudinal one. The actual disc grinding wheel
changes the longitudinal vibration of the transducer into a combination of longitudinal
and radial. Compared with one-dimensional longitudinal ultrasonic, this case can form
deeper micro-pits and also discontinuously separate abrasive particles and workpiece,
thereby reducing thermal damage on the surface. Zhou et al. developed a comprehensive
analytical model of MPD and micro-topography [30]. In this case, radial amplitude is
determined by the dimension of the grinding wheel related to frequency; therefore, it
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is difficult to adjust. The other tangential radial ultrasonic vibration case was realized
by elliptical vibration. Wang et al. [31] analyzed the topography-generation mechanism
of a workpiece surface evolved using EUAG, with axial and radial ultrasonic vibration
applied on the workpiece. Accordingly, they found the discontinuous motion by the radial
ultrasonic vibration. Current theoretical research has focused on the trajectory interference
mechanism of multiple abrasive grains, disregarding the influence of grinding depth and
removal volume of abrasive grains.

The conical tool head studied in this paper decomposes the one-dimensional longitu-
dinal vibration into two vibrations along the conical surface and vertical conical surface,
which is equivalent to the longitudinal radial vibration. The longitudinal ultrasonic vi-
bration and rotation motion of the grinding wheel can produce a sine wave trajectory.
Moreover, radial ultrasonic vibration discontinuously hammers the workpiece surface,
resulting in an intermittent grinding process and micro-pit textures. Compared with other
radial vibrations, radial amplitude is more convenient to realize by the conical angle.

2. RUAG Kinematic Model
2.1. Experimental Setup

The RUAG device includes a CBN grinding wheel, amplitude horn, transducer, and
electric slip ring, as shown in Figure 1. The machine tool spindle is bored to insert the
device. The device is fixed and positioned by the cover and positioning journal, respectively.
In the grinding process, the transducer generates the axial vibration and transmits it to the
horn and grinding wheel. The grinding wheel simultaneously vibrates and rotates with the
spindle, thereby forming the RUAG movement.
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Figure 1. RUAG setup and experiment: (a) RUAG setup and (b) grinding experiment.

2.2. Theoretical Kinematic Model

Figure 2a shows the cylindrical coordinate system O(R, Z), where O is the central
point of the grinding wheel top surface. The grinding wheel’s dimensions are presented in
Table 1. An abrasive grain is regarded as the frustum, located at a distance u from the top
surface along the outside edge. Its motion comprises three components: (1) rotational speed
n around the Z-axis with initial rotational angle ϕ0; (2) ultrasonic vibration along the Z-axis
with amplitude A, frequency f, and initial ultrasonic phase angle θ0; and (3) feed speed Vs
along the Z-axis. The subsequent theoretical and simulated calculations are based on the
assumption that grains have the same shape and evenly distributed on the ground surface.
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Table 1. Grinding wheel’s dimensions.

Parameters Values

Wheel diameter (mm) 60.00
Outside pressure angle (◦) 17.92
Inside pressure angle (◦) 22.08

Point width (mm) 0.73
Outside edge radius (mm) 0.50
Inside edge radius (mm) 0.50

Mean radius (mm) 23.14

Axial amplitude of RUAG is composed of two components. Normal amplitude, which
is perpendicular to the grinding edge, hammers on the workpiece surface once a cycle.
Tangential amplitude, which is parallel to the grinding edge, is combined with rotational
motion to form a wave path. The motion trajectory of the abrasive grain is presented as
Equation (1), as shown in Figure 2a:

R(u) = r + usin α

ϕ = 2πn
60 t + ϕ0

Z(t) = Vst + Asin(θ0 + 2π f t)
(1)



Machines 2023, 11, 428 5 of 16

where αe is the outside pressure angle and can be changed into the negative inside pressure
angle −αi. Velocity of the abrasive grain is deduced as Equation (2):{

Vw(t) = 2πn
60 r(u)

Vz(t) = Vs + 2π f A cos(θ0 + 2π f t)
(2)

3. Micro-Texture Feature Models
3.1. Pit Model

The grinding path length of an abrasive grain lp in an ultrasonic vibration cycle
is as follows:

lp =
∫ 1/ f

0

√
V2

w + V2
z (3)

when A = 0, and the curve length of the grinding path for CG is as follows:

lc =
∫ 1/ f

0

√
4π2n2

3600
(r + usin(αe))

2 + V2
s . (4)

According to the traditional definition, macroscopic grinding depth hp is the interfer-
ence height between the grinding wheel and workpiece, often a positive constant. In RUAG,
depth hp is considered a distance between the grinding wheel and workpiece. Therefore,
the microscopic grinding depth of grain ha between the grain and workpiece changes with
time or phase angle in the grinding, as shown in Figure 2c,d.

ha = hp + Ansin(2π f t + θ0) (5)

The condition of intermittent grinding is hp < An, in which depth ha is alternating
positive and negative. In one ultrasonic cycle, when height ha is positive, grinding time t

is in the range of
[
− 1

2ßf (sin
−1( hp

An

)
+θ0), 1

2 f +
1

2ßf (sin
−1

(
hp
An

)
+θ0)] s. Therefore, the pit

length is as follows:

ls = 2
∫ 1

4 f

− 1
2ßf (sin

−1
(

hp
An )+θ0)

√
V2

w + V2
z (6)

The three-dimensional model of the pit is the interference geometry between the
sweeping body of abrasive grain moving along the trajectory and workpiece body, as
shown in Figure 2d. Microscopic grinding depth ha is a variable. Therefore, the cross-
sectional area of the interference part is described as follows:

Sp = (m− 2htanβ + hatanβ)ha. (7)

Micro-debris volume V of abrasive grain in one cycle of RUAG is as follows:

V = 2
∫ 1

4f

− 1
2πf sin

−1
(

hp
An )

Sp

√
V2

w + V2
z dt (8)

3.2. Grinding Depth Equation
3.2.1. Effective Abrasive Gains Number

Abrasive grains are assumed to be distributed uniformly on the surface of the grinding
wheel. The distance L between adjacent abrasive grains is as follows:

L = dg

(√
π

4Vg
− 1

)
, (9)
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where Vg is the volume of abrasive grain and dg is the average diameter of abrasive grains.
The proportion of abrasive grains P involved in grinding is as follows:

P =
1√
2π

∫ +∞

p
e
−x2

2 , (10)

where p is the lower limit of integration and its expression is as follows:

P =

(
dmax − dmin

2
− ap

)
× 4.4

δ/2
, (11)

where dmax and dmin are the maximum and minimum diameters, respectively, of abrasive grain.
In time ∆t of the grinding wheel, the grinding wheel rotational angle ∆ϕ is as follows:

∆ϕ=
2πn
60
·∆t. (12)

The corresponding circumferential length of grinding wheel S(u) is as follows:

S(u)= ∆ϕ·(r + usin(αe)). (13)

Thereafter, dynamic effective abrasive gains number N of the grinding wheel is
as follows:

N = P
∫ u2

u1

S(u)/
(
dg + l

)2du, (14)

where l is the average distance between two adjacent grains.

3.2.2. Calculation of Grinding Depth

In RUAG, one part of the grinding wheel participates in the grinding, relative to the
workpiece dimensions. Therefore, grinding time is less than the rotational time of the
grinding wheel. If the rotational angle of grinding is ∆ϕb, then the circumferential length
of grinding wheel Sb(u) is as follows:

Sb(u)= ∆ϕb(r + usin(αe)), (15)

and the effective vibration period number of abrasive grain nt is as follows:

nt =
∆ϕb
2πn
60
· f (16)

The micro-debris volume of dynamic effective abrasive grains is as follows:

Vr = VNnt. (17)

Macroscopically, the total grinding depth of the grinding wheel is as follows:

ap = Vs∆tsinα. (18)

The macroscopic volume of material removal is as follows:

VR = ap

∫ u2

u1

Sb(u)du. (19)

The macroscopic material removal volume equals the microscopic grinding debris:

VR = Vr, (20)

in which macroscopic grinding depth hp of the abrasive grain is solved.
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Furthermore, depth of the micro-texture is as follows:

Ap = An + hp. (21)

3.3. Calculation of Texture Spacing

As shown in Figure 2d, two grinding paths generated by the adjacent abrasive grains i
and j have the phase angles θi and θj, respectively:.

di = l +
(
h− hp − Ansinθi

)
tanβ + Aτsinθi, (22)

dj = −
(
h− hp − Ansinθj

)
tanβ + Aτsinθj. (23)

Texture spacing between them is as follows:

∆d = di − dj. (24)

In intermittent grinding, if θi = −sin−1
(

hp
An

)
and θj =

π
2 , then texture spacing ∆d has

the minimum value ∆dmin. When ∆dmin ≤ 0, an interference exists, but no interference
occurs when ∆dmin > 0.

In continuous or conventional grinding, if θi = θ j =
π
2 , then ∆d is minimum. When

A = 0 in traditional grinding, ∆d is constant as follows:

∆d = l +
(
h− hp

)
tanβ. (25)

3.4. RSA of the Theoretical Model

Intermittent ultrasonic grinding facilitates the reduction of surface grinding tempera-
ture and avoidance of thermal damage. To achieve the proper parameters of intermittent
grinding, RSA was used to analyze the influence of the machining parameters (i.e., feed
speed, rotational speed, and amplitude) on grinding depth and micro-texture feature.

3.4.1. Experimental Design and Result

According to spiral bevel gear grinding conditions, the grinding wheel electroplates
CBN of 400# grain dimension and 100% concentration. The workpiece material is 45# steel.
Ultrasonic vibration frequency is about 19.82 KHz. The Box–Behnken module is used to
carry out orthogonal experiments with the influencing factors: feed speed is 0–30 µm/s,
rotational speed is 2000–3000 rpm, and amplitude is 6–12 µm. Response values include hp,
ls,∆d, and Ap. The RSA results are shown in Figure 3.

3.4.2. Discussion of RSA

Macroscopic grinding depth hp ranges from −0.348 µm to −4.800 µm. That is, in-
termittent grinding condition is satisfied in this range. Grinding height hp is positively
correlated with feed speed Vs and negatively correlated with other factors. Amplitude A
has the most significant influence among the factors.

Texture spacing ∆d is 0.023–0.032 mm, as shown in Figure 3d, indicating that no
interference appears in the adjacent paths. Texture spacing ∆d has a positive correlation to
rotational speed n and a negative correlation with the others. The influence of feed speed is
most remarkable.

Pit length ls and depth Ap in Figure 3e,f are 0.018–0.120 mm and 0.004–1.95 µm,
respectively. Length ls has negative and positive relations to amplitude and the others,
respectively. Pit depth Ap is negatively and positively correlated with rotational speed and
the others, respectively. Influence of feed speed is most significant for both.
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4. RUAG Progress Simulation
4.1. Finite Element Simulation Preprocessing

Figure 4 shows the finite element models of the grinding wheel and workpiece. Grains
on the outside surface of the grinding wheel grind the concave of the workpiece. In
Abaqus2020 software, grinding wheel’s meshes are tetrahedral, unit type is C3D4, and
mesh size is 0.5 mm. The workpiece’s meshes are hexahedral, unit type is C3D8R, and
mesh size is 0.001 mm.
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The simulation program selected the Johnson–Cook plastic constitutive model for
the workpiece to calculate the constitutive relationship. The Johnson–Cook shear failure
criterion was applied to describe the separation of grinding debris and the workpiece. The
relative parameters are presented in Table 2.

Table 2. Material properties.

Material
Properties

Workpiece
(45# Steel) Grain (CBN)

Density (kg/m3) 7850 15,700
Elastic modulus (GPa) 210 705

Poisson’s ratio 0.33 0.23
Specific heat capacity (J/(kg·◦C)) 526.3 178
Thermal conductivity (w/(m·◦C)) 6.7 24

Linear expansion coefficient (10−6/◦C) 9 5

The program adopted the hard contact and penalty functions to carry out the normal
and tangential contact calculations between abrasive grain and workpiece, respectively,
with the latter having a friction factor of 0.3. Rigid and coupling constraints were set
between the grinding wheel and the coordinate system. The workpiece was set as fixed,
while rotational speed and axial ultrasonic motion were imposed on the grinding wheel.
Simulation time is 0.003 s.

4.2. Micro-Texture Characteristic Analysis

The single-factor experiments of machining parameters comprise three groups, as
shown in Table 3. In the grinding simulation, macroscopic grinding depth hp was set
according to the theoretical calculation. The results are listed in Tables 4–6, where the
depths of the micro-pit are all 1 µm because the depths are less than the mesh size.

Table 3. Machining parameters of the experiment.

Groups Amplitude
(µm)

Feed Speed
(µm/s)

Rotational Speed
(rpm)

1 0/8/10/12 1 3000
2 8 1/10/20/30 2000
3 8 1/10/20/30 3000

Table 4. Micro-pit dimension comparison of Group 1.

Amplitude A
(µm)

Theoretical
Length
ls(µm)

Theoretical
Depth Ap

(µm)

Theoretical
Spacing ∆d

(µm)

Simulated
Length ls

(µm)

Grinding
Depth hp

(µm)

0 - 0.006 31.787 - 0.006
8 35.215 0.098 31.359 39.51 −2.363
10 32.663 0.106 31.325 36.153 −2.971
12 30.717 0.112 31.296 33.186 −3.580

Table 5. Micro-pit dimension comparison of Group 2.

Feed Speed
Vs

(µm/s)

Theoretical
Length
ls(µm)

Theoretical
Depth Ap

(µm)

Theoretical
Spacing ∆d

(µm)

Simulated
Length ls

(µm)

Grinding
Depth hp

(µm)

1 26.850 0.128 31.224 32.260 −2.333
10 57.038 0.559 29.275 62.500 −1.902
20 71.307 0.853 27.949 78.620 −1.609
30 81.210 1.084 26.904 85.680 −1.378
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Table 6. Micro-pit dimension comparison of Group 3.

Feed Speed
Vs

(µm/s)

Theoretical
Length
ls(µm)

Theoretical
Depth Ap

(µm)

Theoretical
Spacing ∆d

(µm)

Simulated
Length ls

(µm)

Grinding
Depth hp

(µm)

1 35.215 0.098 46.660 46.660 −2.363
10 74.951 0.435 82.060 82.060 −2.027
20 93.371 0.668 100.790 100.790 −1.794
30 106.772 0.854 114.170 114.170 −1.608

Figure 5 shows the micro-texture of group 1. With the amplitude increasing, pit length
decreases, depth increases, and texture spacing does not decrease significantly. Figure 6
shows the comparison of the micro-texture of groups 2 and 3. Figure 6a,c,e,g show the
micro-texture of group 2. Note that with feed speed increasing, pit length and depth
increase and texture spacing decreases. Compared with group 2, Figure 6b,d,f,h show that
group 3 has an increased pit length and decreased depth. Texture spacing increment is not
remarkable. The results of the three groups are consistent with the theoretical ones.
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5. Experiment Results and Discussion
5.1. Influence of Amplitude

Figure 7 shows the surface texture comparisons in the different amplitudes, as mea-
sured using the Olympus DSX510 microscopic image analysis system. CG shown in
Figure 7a has more thermal damage than the other surfaces. Compared to Figure 7b,c,
Figure 7d has more thermal damage, which will increase with the amplitude increasing if it
exceeds 8 µm. Therefore, the 8–10 µm amplitude is optimum to reduce thermal damage.
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Figure 7. Surface texture comparison of group 1: (a) A = 0, (b) A = 8 µm, (c) A = 10 µm, and
(d) A = 12 µm.

Contact angles of this group, as measured using the Kruss DSA30s contact angle
measuring instrument, are 68.52◦, 56.23◦, 57.32◦, and 57.39◦, respectively. The 8 µm
amplitude had optimal lubrication effect. When amplitude exceeds 8 µm, lubrication effect
will descend with amplitude ascending.

Figure 8 shows the micro-pit comparison of a 50 um microscopic image with the
length distribution results of micro-pits. In the last few seconds of practical grinding, when
retracting the grinding wheel, the distance between abrasive grain and workpiece increases
gradually, causing the length and depth of the micro-pit to decrease correspondingly.
Therefore, longer lengths can reflect those of the micro-pit in the grinding process.
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Figure 8. Micro-texture comparison of group 1: (a) A = 0, (b) A = 8 µm, (c) A = 10 µm, and (d) A = 12 µm.

Selected statistics are 10% of the longer lengths from five different positions on the
surface, compared with the theoretical data calculated in the middle position of distance
u on the grinding wheel and simulated data (see Figure 9a). Experimental pit length is
negatively correlated with the amplitude, which is consistent with the theoretical and
simulated results. Surface roughness initially decreases and increases eventually, as shown
in Figure 9b. Theoretical depth of the pit is negatively related to roughness when amplitude
exceeds the optimum. Therefore, the 8–10 µm amplitude range is the optimum solution for
surface properties–thermal damage, lubrication, and roughness.

5.2. Influence of Feed and Rotational Speed

For group 2, pit length, depth, and roughness increase with feed speed increase,
as shown in Figure 9c,d. The result is consistent with the theory and simulation trend.
Practical length range measured in the uniform pit area covers the theoretical and simulated
values.

Figure 10 shows the micro-texture comparison between groups 2 and 3, as measured
using the Eclipse LV100ND metallographic microscope.
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For group 3, Figure 10b,d show that pit length increases significantly, depth decreases,
and surface roughness decreases with increased rotational speed. When feed rate increases
to 20 µm/s, the CBN coating is thermally damaged and causes direct friction between
the grinding wheel body and workpiece. The presumption is that grinding a longer pit
requires more continuous grinding time and further generates a large amount of heat,
thereby damaging the CBN grains. Therefore, feed speed of 400# grinding grain cannot
exceed 20 µm/s and 3000 rpm. In a grinding process with high feed speed, a large diameter
grain should be selected, which will also result in a different surface performance.

When rotational speed is 2000 rpm, the convex and concave surfaces of the workpiece,
generated by the inside and outside surfaces of the grinding wheel, are compared (see
Figure 10e,f). According to theoretical calculations, pit length is negatively correlated with
pressure angles and positively correlated with the radius. The experimental results showed
that compared with the concave, the pit length of the convex surface descended and depth
ascended because of the larger pressure angle and smaller radius. The results are consistent
with the theoretical trend. The roughness of convex is worse than that of the concave.

6. Conclusions

This paper revealed the formation principle of intermittent grinding in RUAG of the
conical grinding wheel. Radial vibration causes the microscopic grinding depth to change
alternatingly. Therefore, there is an alternating separation between abrasive grain and
workpiece. Grinding starts when grinding depth is positive and stops when grinding
depth is negative to form the micro-pits. Furthermore, this study proposes the intermittent
grinding condition of the conical grinding wheel.

The current paper also designed the equation to solve grinding depth on the basis
of the theory that the volume of micro-debris is equal to that of the macroscopic removal
material. Based on the grinding depth, the paper built the relationship between machining
parameters and the micro-texture feature parameters. According to the RSA results, am-
plitude is the critical influencing factor for grinding depth. Moreover, grinding depth is
reduced with increasing amplitude because increased amplitude will increase the material
removal rate. The micro-pit’s depth increases with increasing feed speed or amplitude.
Lastly, the micro-pit’s length increases with increasing feed speed or rotation speed.

This paper offered a 3D FEM method to simulate the micro-texture formation mecha-
nism in RUAG. The simulation performed a single-factor experiment of machining param-
eters to verify the theoretical micro-texture feature parameters. The results were consistent
with the theoretical ones. Moreover, the simulation of micro-texture provided a three-
dimensional micro-pit structure for further research of surface properties.

The experiment proved that compared with CG, RUAG promoted surface properties,
including thermal damage, lubrication, and roughness. The experimental results of the
three groups showed that 8–10 um amplitude is optimal for roughness, thermal damage,
and lubrication for 400# abrasive gain with decomposed radial amplitude that is 1/3 of the
longitudinal one.

Compared with other radial vibrations, radial amplitude is easily optimized by ad-
justing the conical angle in the conical grinding wheel, which is adaptable for the different
grinding wheels. This method is adaptable in grinding spiral bevel gear, worm gear, and
other grinding surfaces.
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