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Abstract: The vibro-acoustic performance of a fluid-loaded periodic locally resonant (LR) plate was
examined in this research, with a specific focus on the effect of water fluid on the vibration and
sound radiation of the LR structure. The analytical models of the fluid-loaded LR plate’s band gap,
vibration, and acoustic radiation were theoretically derived with closed-form solutions, which can be
used to predict the general vibro-acoustic rules of underwater LR structure. The results show that the
LR band-gap width and Bragg frequency are significantly reduced when water fluid is considered.
Besides, the frequency range that can be tuned to control the vibration and sound radiation for the LR
plate with fluid is much narrower than that without fluid. The reason for inducing the above effects
was also given in this research, which can be physically explained by the attached mass caused by the
water fluid. In addition, the reason for the enhanced radiation efficiency close above the band gap
was also discussed, which is caused by the change of radiation mode from corner or edge radiation
to monopole radiation. Furthermore, adding small damping into the resonator could reduce the
vibration and sound radiation in the frequency range above or close below the band gap, inducing
the attenuation zone to be significantly broadened. Thus, designing the periodic resonators with
proper damping could be an efficient method to make the LR plate more beneficial for vibration and
noise reduction in water-surrounding applications.

Keywords: locally resonant plate; fluid load; band gap; vibro-acoustic reduction; radiation efficiency

1. Introduction

In the past two decades, artificial periodic structures composed of repeated units have
gained more and more attention. The periodicity of the artificial periodic structure makes it
have passbands and forbidden bands, presenting filtering characteristics, thus providing
a new way to control structure vibration and noise radiation [1–3]. As early as 1946,
L. Brillouin systematically reviewed the previous studies and elaborated the basic modeling
theory of the traditional periodic structures [4]. In 1993, M. S. Kushwaha et al. proposed the
concept of phononic crystals for the first time when they were studying periodic composite
materials [5], which objectively inspired and activated the study of periodic band gaps.

The band-gap generation mechanism found in early research is Bragg scattering,
which can only control the propagation of elastic waves or acoustic waves with a wave-
length scale comparable to the lattice constant. However, it is challenging to control low-
frequency vibration or noise. In 2000, Liu et al. first clearly proposed the mechanism of local
resonance [6], the discovery of which provides a low-frequency vibro-acoustic suppression
method in principle, and the controllable wavelength is generally 1–2 orders of magnitude
larger than the lattice constant. In the case of the same cell size, the local resonance mecha-
nism can achieve a lower frequency bandgap than the Bragg scattering mechanism, which
allows the realization of low-frequency vibration attenuation and noise reduction. Because
of its attractive application prospect in vibration attenuation and noise reduction, the local
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resonance mechanism has developed rapidly [1–3,7] in the last two decades. In order
to obtain a comprehensive understanding of the LR structure’s vibrational and acoustic
properties, various aspects have been considered and thoroughly studied, including multi-
ple band gaps formation methods, LR structure type designs, band structure calculation
methods, etc.

In initial studies, LR units were generally designed with a single degree of freedom,
enabling a single complete band gap. With the deepening of research, multi-degree-of-
freedom LR structures have gradually emerged to achieve multiple band-gap characteristics.
Q. Wen et al. studied the bending-vibration band structure of a one-dimensional phononic
crystal beam composed of periodic resonators with two degrees of freedom, resulting in
more abundant and broader band gaps, which is beneficial to multiple-frequency vibration
reduction [8]. J. Wu et al. extended the one-dimensional beam to a more complicated
two-dimensional pate [9], and some other researchers have also conducted related multi-
degree-of-freedom research [10–15]. In addition, nonlinear LR structures [16–20] have also
gained extensive attention, broadening the local resonance mechanism’s research scope.
A variety of methods have also been developed to calculate the band gaps and transmission
characteristics of LR structures, including the transfer matrix method [8], plane wave
expansion method [10], finite-element method [21–23], multiple scattering method [24],
lumped mass method [25], finite-difference time-domain (FDTD) method [26], etc. For the
installation design of LR elements in practical applications, a series of configuration types
have been proposed [9,27], where the resonators were inserted into the plate’s periodic
openings [28–32], mounted at the plate’s surface [12,33,34], or embedded into the inner of
the base structures [35]. Furthermore, the studies of local resonance mechanism were also
extended from discrete lattice structure to continuous elastic structure, from elastic waves
to acoustic waves, and from vibration-control to noise-control purposes.

The LR structure can not only attenuate vibration but can also reduce noise radiation.
With the increasing demand for cabin interior noise reduction, F. Casadei et al. focused on
the structural–acoustic coupling performance of the LR structure with a periodic array of
resistive–inductive shunted piezoelectric patches to reduce cabin noise [36]. By comparing
the in-vacuo and air–fluid-loaded results, it was found that the dispersion relations of
the plate can be computed without introducing an unacceptable error if the air–fluid load
is neglected. Followed by F. Casadei, A. Aladwani et al. also investigated the structural
vibration of the LR plate and the acoustic radiation in an adjacent acoustic cavity to control
the vibration and noise simultaneously [37]. Apart from the interior noise reduction of
the cavity adjacent to the LR structure, the sound radiation performance in the exterior
infinite free space was also examined [38], specifically focusing on the characteristics of
radiation efficiency. The authors of the present research also extended the vibro-acoustic
research to the LR structures with sandwich units [39], periodic multiple resonators [14],
and local lateral resonators [15]. Like the above studies, many works about the flexural-
wave band-gap properties and vibro-acoustic performance of LR structures have been
conducted. However, these studies mainly consider the situation in the vacuum or air,
which mostly ignores the effect of fluid medium on the LR structure or only considers
light-fluid weak coupling between vibration and radiation sound. Thus, the band-gap
properties and vibro-acoustic performance of the LR structure surrounded in heavy fluid
need to be further researched. Therefore, the research topic of this study is focused on
the flexural-wave band gap of a periodic locally resonant plate in heavy fluid medium to
broaden the research domain of locally resonant mechanisms.

Vibration attenuation and noise reduction are of great concern for water-surrounding
complex equipment [40], where excessive vibration and noise will affect the performance of
precision instruments, passenger comfort, and even the safety of underwater vehicles. With
the development of noise reduction technology, the vibration and noise in the middle- or
high-frequency range can be reduced by using the methods of vibration isolation, damping
treatment, sound absorption, sound insulation, etc. However, reducing low-frequency
vibration and noise is still challenging for water-surrounding structures, especially for large
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equipment. Thus, the LR structure has great potential in water-surrounding applications
because of its sub-wavelength tunable band gap. For the published underwater local-
resonance research, most studies are mainly related to sound absorption [29,41] or sound
insulation [42]. However, the properties of flexural-wave-induced sound radiation of
underwater LR structures remain unknown, and the effect of heavy water fluid on flexural-
wave vibro-acoustic performance needs to be revealed. In the above vibro-acoustic research
related to exterior infinite free space [14,15,38,39], the uncoupled vibro-acoustic models
were used with the coupling between structure and fluid neglected. The physical models
are only appropriate for air-surrounding applications but are inappropriate for water-
surrounding applications because of strong structure–fluid coupling. Therefore, the vibro-
acoustic performance of the fluid-loaded LR structure needs to be further researched.

In this research, the vibro-acoustic performance of a fluid-loaded periodic LR plate
was examined. The coupling of structure and water fluid was considered to meet the
requirements in underwater applications. The analytical models of the band gap, vibration,
and acoustic radiation of fluid-loaded LR plate were theoretically derived with closed-form
solutions, which can be used to predict the general vibro-acoustic rules of underwater LR
structure. The effects of water–fluid load on the band structure, vibration response, and
sound radiation were thoroughly studied, and the corresponding physical mechanism
was also analyzed. The findings in this research could provide helpful guidance for
vibration attenuation and noise reduction using local resonance mechanisms in underwater
applications.

2. Theoretical Models
2.1. Structure Model and Basic Governing Equations

A periodic LR plate with one side submerged in a heavy fluid is considered in this
research. The periodic LR plate comprises a uniform base plate and periodic LR units,
where a unit element is shown in Figure 1a. The resonator consists of a mass block with
mass mR and a linear spring with spring stiffness kR. The linear spring connects the mass
block and the uniform base plate. The LR plate’s unit element has the dimensions of length
a0, width b0, and thickness h. Figure 1b shows the first Brillouin zone of the unit element,
which can be used to calculate the band structure.
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In the following theoretical model, a harmonic motion with a time-dependence term
ejωt is considered in the model. For simplicity, the time-dependence term is not given
throughout the study. The differential equation of motion of the LR plate single-side
submerged in water can be given as

D∇4w(x, y)− ρshω2w(x, y) = fe(x, y) + fR(x, y)− pf(x, y) (1)
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where ∇4 = ∂4/∂x4 + 2∂4/∂x2∂y2 + ∂4/∂y4, w is transverse displacement, ρs is den-
sity, h is thickness, and ω is angular frequency. The bending rigidity is expressed as
D = Eh3/12

(
1− υ2), where E and υ are the uniform plate’s Young’s modulus and Pois-

son’s ratio, respectively. The force term fe(x, y) in Equation (1) represents the external
force applied on the surface of the plate. In the band-gap calculation model, this part
is neglected.

The force term fR(x, y) in Equation (1) represents the force from the resonator and can
be written as fR(x, y) = fR0δ(x− xR)δ(y− yR), in which fR0 is the force amplitude applied
at the resonator position (xR, yR) and δ(·) is the Dirac delta function. The force analysis on
a resonator coupling with a uniform plate unit shows that{

− fR0 = mR
..
wR0 = −ω2mRwR0

fR0 = −kR[w(xR, yR)− wR0]
(2)

where w(xR, yR) and wR0 are the transverse displacement of the plate at position (xR, yR)
and the displacement of the resonator’s mass block, respectively.

The force term pf(x, y) in Equation (1) represents the acting force induced by the
motion of the water fluid. In the overall fluid domain, the Helmholtz wave equation in a
Cartesian coordinate system can be expressed as

∂2 p(x, y, z)
∂2x

+
∂2 p(x, y, z)

∂2y
+

∂2 p(x, y, z)
∂2z

− k2
ac p(x, y, z) = 0 (3)

where kac = ω/cf is the acoustic wave number and cf is the fluid medium’s sound velocity.
The continuity condition for the normal velocity at the interface between the plate surface
and fluid medium states that

v(x, y) = − 1
jωρf

∂p(x, y, z)
∂z

∣∣∣∣
z=0

(4)

where ρf is the density of the fluid medium and v(x, y) = −jωw(x, y) is the normal velocity
of the plate.

2.2. Band-Gap Formulations of an Infinite LR Plate

The plane wave expansion method was used to acquire the dispersion curves of the
single-side submerged infinite LR plate. For the considered structure, infinite resonators
are periodically located along the x- and y-directions, and the total force generated by the
periodic resonators on the uniform base plate can be given as

fR(x, y) =
∞

∑
s=−∞

∞

∑
t=−∞

fRstδ(x− xs)δ(y− yt) (5)

where (xs = sa0, yt = tb0) is the location of the st resonator and fRst is the force applied on
the uniform plate by the st resonator. According to Equation (2), the vibrational governing
equation of the st resonator can be written as

− kRw(xs, yt) + kRwRst −ω2mRwRst = 0 (6)

where w(xs, yt) is the transverse displacement of the plate at location (xs, yt) and wRst is
the displacement of the st resonator. The force fRst can be expressed as

fRst = −kRw(xs, yt) + kRwRst (7)

According to the plane wave expansion method, the transverse displacement of the
LR plate can be written as
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w(x, y) =
∞

∑
m=−∞

∞

∑
n=−∞

Wmne−jkmxe−jkny (8)

where km = Gm + α, kn = Gn + β, (α, β) is the specified Bloch wave vector, and
Gmn = (Gm, Gn) is the reciprocal-lattice vector of the mn plane wave, in which Gm = 2mπ/a0
and Gn = 2nπ/b0.

According to the Bloch theorem, it can be obtained that{
w(xs, yt) = w(0, 0)e−jαxs e−jβyt

wRst = wR0e−jαxs e−jβyt
(9)

where w(0, 0) is the transverse displacement of the plate at location (0, 0) and wR0 is the
displacement of the resonator located in position (0, 0). Substituting Equations (7) and (9)
into Equation (5) yields

fR(x, y) = [−kRw(0, 0) + kRwR0]
∞

∑
s=−∞

∞

∑
t=−∞

e−jαxs e−jβytδ(x− xs)δ(y− yt) (10)

According to the characteristics of the Dirac delta function g(x0)δ(x− x0) = g(x)δ(x− x0),
Equation (10) can be further expressed as

fR(x, y) = [−kRw(0, 0) + kRwR0]e−jαxe−jβy
∞

∑
s=−∞

∞

∑
t=−∞

δ(x− xs)δ(y− yt) (11)

As f (x, y) =
∞
∑

s=−∞

∞
∑

t=−∞
δ(x− xs)δ(y− yt) is a periodic function in a continuous peri-

odic system, it can be expressed in the form of Fourier series

f (x, y) =
∞

∑
m=−∞

∞

∑
n=−∞

f mne−jGmxe−jGny (12)

Multiplying ejGmxejGny at both sides of Equation (12) and integrating over the area
of (x, y) ∈ ([−a0/2, a0/2]× [−b0/2, b0/2]) gives that f mn = 1/A, where A = a0b0. Thus,
Equation (11) is simplified as

fR(x, y) =
1
A
[−kRw(0, 0) + kRwR0]

∞

∑
m=−∞

∞

∑
n=−∞

e−jkmxe−jkny (13)

According to Equation (8), the displacement w(0, 0) can be expressed as

w(0, 0) =
∞

∑
p=−∞

∞

∑
q=−∞

Wpq (14)

In the infinite fluid domain, the acoustic pressure solution of Equation (3) can be
assumed as

p(x, y, z) =
∞

∑
m=−∞

∞

∑
n=−∞

pmne−jkmxe−jknye−jkzmnz (15)

Substitution of Equation (15) into Equation (3) yields

k2
m + k2

n + k2
zmn = k2

ac (16)

Thus, the wavenumber along the z-direction can be given as{
kzmn =

√
k2

ac − k2
m − k2

n kac ≥
√

k2
m + k2

n
kzmn = −j

√
k2

m + k2
n − k2

ac kac <
√

k2
m + k2

n
(17)
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By substituting Equation (15) into Equation (4), it can be obtained that

v(x, y) =
1

ωρf

∞

∑
m=−∞

∞

∑
n=−∞

kzmn pmne−jkmxe−jkny (18)

As the surface velocity can be represented by the transverse displacement with the
equation of v(x, y) = jωw(x, y), Equation (18) can be further expressed as

w(x, y) = − j
ω2ρf

∞

∑
m=−∞

∞

∑
n=−∞

kzmn pmne−jkmxe−jkny (19)

By substituting Equation (8) into Equation (19), the expansion coefficients of acoustic
pressure pmn can be given as

pmn = jωρfcf
kac

kzmn
Wmn (20)

Thus, the acoustic pressure in the infinite fluid can be given by substituting Equation (20)
into Equation (15), which can be expressed as

p(x, y, z) =
∞

∑
m=−∞

∞

∑
n=−∞

(
jωρfcf

kac

kzmn

)
Wmne−jkmxe−jknye−jkzmnz (21)

The pressure applied on the plate generated by the fluid medium can be given as

pf(x, y) = p(x, y, z)|z=0 =
∞

∑
m=−∞

∞

∑
n=−∞

(
jωρfcf

kac

kzmn

)
Wmne−jkmxe−jkny (22)

By substituting Equations (8), (9), (13), (14) and (22) into Equations (1) and (6), it can
be obtained that

∞
∑

m=−∞

∞
∑

n=−∞


[

D
(
k4

m + 2k2
mk2

n + k4
n
)
− ρshω2 + jωρfcf

kac
kzmn

]
Wmn

+ kR
A

∞
∑

p=−∞

∞
∑

q=−∞
Wpq − kR

A wR0

e−jkmxe−jkny = 0

−kR
∞
∑

p=−∞

∞
∑

q=−∞
Wpq + kRwR0 −ω2mRwR0 = 0

(23)

By multiplying ejGmxejGny at both sides of the first equation in Equation (23), integrating
over the area of (x, y) ∈ ([−a0/2, a0/2]× [−b0/2, b0/2]), replacing subscripts m and n with
m and n for convenience, and making the infinite series in Equation (23) be truncated to
−M ≤ m, p ≤ M and −N ≤ n, q ≤ N, Equation (23) can be further expressed as

[
D
(
k4

m + 2k2
mk2

n + k4
n
)
− ρshω2 + jωρfcf

kac
kzmn

]
Wmn +

kR
A

M
∑

p=−M

N
∑

q=−N
Wpq − kR

A wR0 = 0

−kR
M
∑

p=−M

N
∑

q=−N
Wpq + kRwR0 −ω2mRwR0 = 0

(24)

After further manipulations, Equation (24) can be written in the matrix form as

[K(α, β, ω)]Φ = 0 (25)

where Φ =
[
W wR0

]T and W = [Wmn]1×[(2M+1)×(2N+1)]. For each given Bloch wave
vector k = (α, β), the characteristic frequencies can be determined by Equation (25). By
sweeping k in the directions of ΓX ( α : 0→ π/a0 , β : 0), XM (α : π/a0, β : 0→ π/b0 ), and
MΓ ( α : π/a0 → 0 , β : π/b0 → 0) in the first Brillouin zone (see Figure 1b), the dispersion
relationship between wave number and frequency can be obtained, from which the band
gap is then identified.
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2.3. Vibration and Radiation Formulations of a Finite LR Plate

A finite LR plate subjected to a harmonic point force with simply supported boundary
condition is placed in an infinite rigid baffle and single-side submerged in the infinite water
fluid, as shown in Figure 2. The calculation model of vibration and sound radiation of this
coupling system is established with consideration of the effects of fluid load.
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For the finite LR plate with a simply supported boundary, the flexural displacement
can be assumed as

w(x, y) =
∞

∑
m=1

∞

∑
n=1

Wmn sin
(

kmx
)

sin
(

kny
)

(26)

where km = mπ/a and kn = nπ/b.
For a point force applied at position (x0, y0), the external force in Equation (1) can be

expressed as fe(x, y) = Feδ(x− x0)δ(y− y0), where Fe is the force amplitude. The force
term fe(x, y) can also be expressed in the form of the Fourier series

fe(x, y) =
∞

∑
m=1

∞

∑
n=1

Fmn sin
(

kmx
)

sin
(

kny
)

(27)

where Fmn = 4Fe
ab sin

(
kmx0

)
sin
(

kny0

)
.

For the considered structure, the resonators are periodically located along the x- and
y-directions, with the number of resonators labeled as S and T, respectively. Thus, the force
generated by the periodic resonators on the uniform base plate fR(x, y) in Equation (1) can
be given as

fR(x, y) =
S

∑
s=1

T

∑
t=1

fRstδ(x− xs)δ(y− yt) (28)

where (xs = sa0, yt = tb0) is the location of the st resonator and fRst is the force applied on
the uniform plate by the st resonator, which can be expressed in Equation (7). Equation (28)
can also be expressed as the form of the Fourier series

fR(x, y) =
S

∑
s=1

T

∑
t=1

fRst

[
∞

∑
m=1

∞

∑
n=1

FRmnst sin
(

kmx
)

sin
(

kny
)]

(29)
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where FRmnst =
4
ab sin

(
kmxs

)
sin
(

knyt

)
. Substituting Equation (26) into Equation (7) yields

fRst = −kR

∞

∑
p=1

∞

∑
q=1

Wpq sin
(

kpxs

)
sin
(

kqyt

)
+ kRwRst (30)

Following that, by substituting Equation (30) into Equation (29), it can be obtained that

fR(x, y) =
4kR

ab

∞

∑
m=1

∞

∑
n=1

S

∑
s=1

T

∑
t=1


[
−

∞
∑

p=1

∞
∑

q=1
Wpq sin

(
kpxs

)
sin
(

kqyt

)
+ wRst

]
×
[
sin
(

kmxs

)
sin
(

knyt

)
sin
(

kmx
)

sin
(

kny
)]

 (31)

According to the Rayleigh integral method, the acting force induced by the motion of
fluid pf(x, y) in Equation (1) can be given as

pf(x, y) =
jωρf
2π

a∫
0

b∫
0

v(x̃, ỹ)
e−jkacr

r
dỹdx̃ (32)

where r =
√
(x− x̃)2 + (y− ỹ)2, v(x̃, ỹ) is the surface velocity of the plate and can be

expressed as

v(x̃, ỹ) =
∞

∑
m=1

∞

∑
n=1

jωWmn sin
(

km x̃
)

sin
(

knỹ
)

(33)

Thus, Equation (32) can be further expressed as

pf(x, y) =
∞

∑
m=1

∞

∑
n=1
−ω2ρf

2π

 a∫
0

b∫
0

sin
(

km x̃
)

sin
(

knỹ
)e−jkacr

r
dỹdx̃

Wmn (34)

The force terms fe(x, y), fR(x, y), and pf(x, y) on the right side of Equation (1) have
been expressed in the Fourier series, as shown in Equations (27), (29) and (34). By substitut-
ing these equations and Equation (26) into Equation (1), it can be obtained that

∞
∑

m=1

∞
∑

n=1

[
D
(

k
4
m + 2k

2
mk

2
n + k

4
n

)
− ρshω2

]
Wmn sin

(
kmx

)
sin
(

kny
)
=

∞
∑

m=1

∞
∑

n=1
Fmn sin

(
kmx

)
sin
(

kny
)

+
∞
∑

m=1

∞
∑

n=1

S
∑

s=1

T
∑

t=1


4kR
ab

[
−

∞
∑

p=1

∞
∑

q=1
Wpq sin

(
kpxs

)
sin
(

kqyt

)
+ wRst

]
×
[
sin
(

kmxs

)
sin
(

knyt

)
sin
(

kmx
)

sin
(

kny
)]


−

∞
∑

m=1

∞
∑

n=1
−ω2ρf

2π

[
a∫

0

b∫
0

sin
(

km x̃
)

sin
(

knỹ
)

e−jkacr

r dỹdx̃

]
Wmn

(35)

By multiplying sin
(

kmx
)

sin
(

kny
)

at both sides of Equation (35), integrating over the
area of (x, y) ∈ ([0, a]× [0, b]), replacing subscripts m and n with m and n for convenience,
and making the infinite series in Equation (35) be truncated to −M ≤ m, p ≤ M and
−N ≤ n, q ≤ N, Equation (35) can be further expressed as[

D
(

k
4
m + 2k

2
mk

2
n + k

4
n

)
− ρshω2

]
Wmn + jωρfcf

∞
∑

p=1

∞
∑

q=1
ZmnpqWpq

+ 4kR
ab

M
∑

p=1

N
∑

q=1

[
S
∑

s=1

T
∑

t=1
sin
(

kpxs

)
sin
(

kqyt

)
sin
(

kmxs

)
sin
(

knyt

)]
Wpq

− 4kR
ab

S
∑

s=1

T
∑

t=1
sin
(

kmxs

)
sin
(

knyt

)
wRst = Fmn

(36)
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where Zmnpq = ζmnpq + jχmnpq, in which ζmnpq is the radiation resistance and χmnpq is the
radiation reactance. The radiation resistance and reactance can be expressed as ζmnpq = 2kac

πab

∫ a
0

∫ b
0

∫ a
0

∫ b
0

[
sin
(

kp x̃
)

sin
(

kqỹ
)

sin
(

kmx
)

sin
(

kny
)

sin(kacr)
r

]
dỹdx̃dydx

χmnpq = 2kac
πab

∫ a
0

∫ b
0

∫ a
0

∫ b
0

[
sin
(

kp x̃
)

sin
(

kqỹ
)

sin
(

kmx
)

sin
(

kny
)

cos(kacr)
r

]
dỹdx̃dydx

(37)

Substituting Equation (26) into Equation (6) and making the infinite series truncated
to −M ≤ p ≤ M and −N ≤ q ≤ N gives

− kR

M

∑
p=1

N

∑
q=1

sin
(

kpxs

)
sin
(

kqyt

)
Wpq + kRwRst −ω2mRwRst = 0 (38)

Equations (36) and (38) can be rearranged in the matrix form as[
¯
K(ω)

]
¯
Φ =

¯
F (39)

where
¯
Φ =

[
¯
W

¯
WR

]T
,

¯
W =

[
Wmn

]
1×(M×N), and

¯
F = [Fmn]1×(M×N).

The coefficient
¯
Φ can be determined by giving the frequency ω and the force ampli-

tude Fe. After
¯
Φ becoming known, the LR plate’s displacement response can finally be

determined using Equation (26), from which the transverse velocity can be obtained as

v(x, y) =
M
∑

m=1

N
∑

n=1
Vmn sin

(
kmx

)
sin
(

kny
)

, where Vmn = −jωWmn. The spatially averaged

mean square velocity can be calculated as

〈
v̂2
〉
=

M

∑
m=1

N

∑
n=1

1
8

VmnV∗mn (40)

where the superscript asterisk denotes the complex conjugate of a variable. The total
acoustic radiation power from the finite LR plate can be given as [43]

Π =
1
8

abρfcfω
2

M

∑
m=1

N

∑
n=1

M

∑
p=1

N

∑
q=1

WmnζmnpqW∗pq (41)

from which the acoustic radiation power can finally be determined to illustrate the radiation
performance caused by the coupling effect among the resonators, plate, and fluid. The
average radiation efficiency of the LR plate can then be given by

σ =
Π

1
2 ρfcfab

〈
v̂2
〉 (42)

3. Results and Discussion

The dimensions of a unit element in the calculated LR plate are set as a0 = b0 = 50 mm
and h = 2 mm. The base plate is made of steel with Young’s modulus E = 210 GPa, density
ρ = 7800 kg/m3, and Poisson’s ratio υ = 0.3. The mass of the resonator mR is set as
0.0078 kg, which is 20% of the mass of a base plate element. The resonator is tuned to
514.0 Hz with the spring stiffness set as kR = 8.1354× 104 N/m. The density and sound
velocity of the water fluid medium were set as ρf = 1000 kg/m3 and cf = 1500 m/s,
respectively. For air medium, the density and sound velocity were set as ρf = 1.225 kg/m3

and cf = 344 m/s, respectively. The above parameters were kept unchanged in the
following analysis unless otherwise stated.
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3.1. Band-Gap Properties

The dispersion curves of an infinite water-loaded LR plate with the parameters given
above were calculated using the theory derived in Section 2.2. In order to validate the
theoretical formulations, a finite-element-method (FEM) model was also established with
COMSOL Multiphysics software. The dispersion curves from the analytical and FEM
models are shown together in Figure 3.
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Figure 3. Dispersion curves of the water-loaded locally resonant plate and corresponding band gap (BG).

It can be seen from Figure 3 that the dispersion curves calculated by the present model
agree very well with the results from the FEM model. The band-gap frequency ranges
calculated from the two models are compared in Table 1, which shows that the band-gap
start frequency, cut-off frequency, and bandwidth of the analytical results are pretty close
to the FEM results.

Table 1. Band gap comparison between the present model and the FEM model.

Band-Gap Start Frequency Band-Gap Cut-off Frequency Band-Gap Width

Present model 510.1 Hz 512.8 Hz 2.7 Hz
FEM model 510.0 Hz 512.8 Hz 2.8 Hz

In order to examine the effect of water fluid on the band-gap properties of the LR plate,
the dispersion curves and band-gap frequency ranges of the LR plate without fluid load
and with air load were also calculated and are shown in Figure 4 and Table 2.
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Figure 4. Dispersion curves of the locally resonant plate (a) with air load and without load, and
(b) with water load and without load (w.o.: without, BG: band gap).
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Table 2. Band gaps of the locally resonant plate with air/water load and without load.

Band-Gap Start Frequency Band-Gap Cut-off Frequency Band-Gap Width

without fluid load 510.1 Hz 561.6 Hz 51.5 Hz
with air load 510.1 Hz 561.6 Hz 51.5 Hz

with water load 510.1 Hz 512.8 Hz 2.7 Hz

As shown in Figure 4a and Table 2, the air-loaded LR plate’s dispersion curves and band-
gap frequency range nearly coincide with the results of the unloaded plate. It indicates that
the effect of air load on the band-gap properties can be neglected due to weak structure–fluid
coupling. It can also be observed from Figure 4b and Table 2 that, unlike air load, the water
load significantly affects the band-gap properties. The band-gap start frequency of the
water-loaded LR plate keeps the same as that of the unloaded plate, while the band-gap
cut-off frequency is significantly reduced when water load is considered, resulting in the
band-gap width of the water-loaded LR plate decreasing to 2.7 Hz from 51.5 Hz.

The above results show that the band-gap property of LR structure in the underwater
environment is quite different from that in the air. More specifically, the vibration–reduction
effect will be significantly reduced, and band-gap width may decrease to approximately
5% of that in the air environment. Thus, if the purpose is to use LR structure in underwater
applications, the effect of water load must be considered.

In fact, the phenomenon that the water-loaded LR structure provides a narrow band
gap can be physically explained by the attached mass caused by the fluid. Owing to the
strong vibro-acoustic coupling between the plate and surrounding water fluid, the effective
density of the base plate could be increased significantly. From Equation (24), the effective
density of the base plate covered with water fluid can be approximately given as

ρeff = ρs +
ρf
h

1√
k2

P − k2
ac

(43)

where kP is the structural wave number, and can be given as kP =
√

α2 + β2 when a single
plane wave is considered (m = n = 0). For simplicity, the normalized effective density is
used and defined as ρne = ρeff/ρs, where ρs = 7800 kg/m3 is the density of the base plate.
The normalized effective densities of the LR plate with water load and without fluid load
are shown in Figure 5b, and corresponding dispersion curves are given in Figure 5a for
comparison purposes.
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Figure 5. (a) Dispersion curves of the LR plate with water load and without (w.o.) fluid load;
(b) normalized effective density (d.c.: dispersion curve).

As shown in Figure 5b, the normalized effective densities of dispersion curve #1 and
dispersion curve #2 perform with a similar variation trend. The effect of water fluid on
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normalized effective density varies with the wave number and frequency. The curve ρne
decreases rapidly from Γ to X, decreases slightly from X to M, and increases rapidly from
M to Γ. Thus, the water fluid provides a significant attached mass in both dispersion curves
#1 and #2, and the corresponding normalized effective density reaches as much as infinite
at position Γ.

In order to further explain the attached mass’s characteristics, the normalized effec-
tive density of the water-loaded LR plate as a function of frequency is given in Figure 6,
together with the water-loaded homogeneous (HM) plate without LR units for comparison
purposes. As shown in Figure 6, the normalized effective density of the water-loaded
HM plate decreases with increasing frequency, indicating that the water fluid provides
a significant attached mass in the low frequency and a slight attached mass in the high
frequency. The normalized effective density curve of the water-loaded LR plate has the
same variation trend as that of the HM plate, except for the frequencies near the resonant
frequency. In the frequency range of 191.3~510.1 Hz below the band gap, the normal-
ized effective density of the LR plate is slightly smaller than that of the homogeneous
plate. While above the band gap is between 512.8 Hz and 530.0 Hz, the normalized effec-
tive density of the LR plate is significantly increased, induced by both the fluid and the
LR units.
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Figure 6. Normalized effective density with water load as a function of frequency with frequency
range (a) from 0 Hz to 1 kHz and (b) from 460 Hz to 560 Hz (BG: band gap; HM: homogeneous;
LR: locally resonant).

The increased attached mass caused by the water fluid will affect the upper frequency
of the band gap. The study by C. Sugino et al. has shown that the upper frequency
of the band gap can be approximately given as fup = fR

√
1 + mR/mB [44], where mR

is the mass of the resonator and mB is the mass of the base plate in a single LR plate
unit. This expression can be deduced from a single plane wave assumption (m = n = 0)
instead of the superposition of multiple plane waves and thus is only an approximate
estimation. However, it can give us a clear understanding of the band-gap characteristics.
This expression indicates that the upper frequency fup decreases with the increase of mB.
For the LR plate with water–fluid load, the upper frequency can be approximately given as
fup = fR

√
1 + mR/mBρne. For the parameters given in the first part of Section 3, the upper

frequency fup as a function of ρne is shown in Figure 7.
As shown in Figure 7, the upper frequency of the band gap decreases with the increase

of normalized effective density. When ρne = 1, the estimated frequency is 563.1 Hz, which
is quite close to the accurate results of the unloaded LR plate shown in Table 2 (561.6 Hz).
When ρne exceeds 30, fup tends to the resonator’s resonant frequency (514.0 Hz) and is
close to the upper frequency calculated in Table 2 (512.8 Hz).

As illustrated above, the water fluid introduces an attached mass on the base plate,
resulting in a significant increase of the effective density in the frequency range near the
resonant frequency, which decreases the upper frequency significantly. However, the



Machines 2023, 11, 590 13 of 21

lower frequency of the band gap stays almost unchanged when water fluid is introduced,
as shown in Table 2. Therefore, the band-gap width of the water-loaded LR plate is
significantly decreased compared with the unloaded LR plate.
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Figure 7. The upper frequency of the band gap as a function of normalized effective density.

In fact, the water fluid will also affect the Bragg frequency, which may be the maximum
limit of the upper frequency. The Bragg frequency can be calculated using the formulation
kP = π/a0, corresponding to a half wavelength in a unit length. For the plate without fluid
load, the expression of Bragg frequency can be given as [45]

fBu =
π

2a2
0

√
D

ρsh
(44)

For the parameters given in the first part of Section 3, the Bragg frequency is calculated
as fBu = 1973.2 Hz by using Equation (44). For the water-loaded plate, the dispersion
formulation can be given as

Dk4
P − ρshω2 − ω2ρf√

k2
P − k2

ac

= 0 (45)

This expression can also be written in the following form

Dk4
P − ρeff(ω)hω2 = 0 (46)

By setting kP = π
a0

, the Bragg frequency of the water-loaded plate can be given as

fB1 =
π

2a2
0

√
D

ρeffh
(47)

As ρeff is a function dependent on frequency, the Bragg frequency’s explicit expression
is difficult to acquire. However, we can determine this with numerical calculation by
rearranging Equation (45), which states that

Ω3 −
(

2Dc2
f

ρsh
k4

P + c2
f k2

P −
c2

f ρ2
0

ρ2
s h2

)
Ω2 +

(
D2

ρ2
s h2 k8

P +
2Dc2

f
ρsh

k6
P

)
Ω−

D2c2
f

ρ2
s h2 k10

P = 0 (48)

where Ω = ω2. By setting kP = π/a0 in Equation (48) and calculating the unary cu-
bic equation, the Bragg frequency of the water-loaded plate can finally be acquired. For
the parameters given in the first part of Section 3, the Bragg frequency is calculated as
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fBw = 1386.7 Hz, and the corresponding effective density ρeff is 15,792.5 kg/m3, approxi-
mately twice that of the base plate’s density. As shown above, the introduction of water
fluid decreases the Bragg frequency from 1973.2 Hz to 1386.7 Hz, and this decrease is also
caused by the attached mass. By comparing Equation (44) to (47), a general relation of
Bragg frequency between the plate with water fluid and without fluid can be given as

fBw =
√

ρs/ρeff =
√

ρne fBu (49)

which can be used to estimate the affection degree of water fluid on Bragg frequency.
Figure 8 shows the band-gap frequency and bandwidth of the LR plate with and

without water fluid load as a function of the resonant frequency fR. As shown in Figure 8a,
the lower band-gap frequency flow increases with increasing resonant frequency for the LR
plate without fluid. In contrast, the upper band-gap frequency fup first increases and then
keeps at a constant value of 1973.2 Hz, which is exactly the Bragg frequency fB0. As a result,
the band-gap width of the LR plate without fluid first increases and then decreases with the
increase of fR, reaching the maximum at approximately 1800 Hz. The band-gap frequency
and the band-gap width curves of the LR plate with fluid have the same variation tendency
as that of the plate without fluid, except that its upper band-gap frequency and band-gap
width are significantly reduced. The frequency range that can be tuned to control vibration
for the LR plate with fluid is 0~1500 Hz, which is inferior to that without fluid, providing
the frequency range of 0~2340 Hz.
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Figure 8. (a) Band-gap frequency and (b) band-gap width of the locally resonant plate with and
without (w.o.) water fluid as a function of the resonant frequency.

3.2. Vibration and Sound Radiation Performance

The vibration and sound radiation of a finite LR plate with simply supported boundary
conditions are further studied in this section to examine the vibro-acoustic performance
of the LR plate in underwater surroundings. The considered structure is composed of
10 × 8 units (0.5 m × 0.4 m), with each cell’s parameters keeping the same as those shown
in the first part of Section 3, except that the damping loss factor of the base plate is set as
η = 0.001. A transverse point force with harmonic form is applied at position (0.1 m, 0.1 m).

The root-mean-square velocity averaged over the plate surface was used to examine
the vibration performance and is given in decibel form, where the reference velocity is
vref = 1× 10−6m/s. The radiation power level is also calculated with the reference given
as Wref = 6.67× 10−19 W. Both the average velocity level and radiation power level are
calculated with the theory derived in Section 2.3 and given in Figure 9, together with
the results from FEM. It is shown in the figure that the two curves have a remarkable
coincidence with each other, which has validated the correction of the theoretical model
developed in this research.
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Figure 9. (a) Average velocity level and (b) radiation power level of the water-loaded LR plate
(BG: band-gap).

In order to illustrate the vibration and sound reduction performance of the water-
loaded LR plate, the vibration and sound radiation results of both the LR plate and HM
plate with water fluid are compared in Figure 10. As shown in Figures 3 and 10, the band
gaps calculated in an infinite periodic LR plate coincide with the response valleys of the
vibration velocity and sound radiation power in a finite periodic plate. In the adjacent
frequencies of the band gap (510.1–512.8 Hz), both the vibration and sound radiation of the
LR plate are significantly reduced compared with the HM plate.
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Figure 10. Comparison of (a,b) average velocity level and (c,d) radiation power level between
water-loaded locally resonant (LR) plate and water-loaded homogeneous (HM) plate (BG: band-gap).

The vibration and sound radiation of the LR plate with water fluid are also compared
with the LR plate without fluid in Figure 11. The figure shows that the vibration and sound
radiation can be reduced in a broad frequency range of 510.1~561.6 Hz for the unloaded
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LR plate. However, when the water fluid load is introduced, the vibration and sound
radiation valleys’ bandwidth is significantly reduced to 510.1~512.8 Hz. This phenomenon
is coincident with the band-gap property illustrated in Section 3.1. The comparison in
Figure 11 indicates that an LR plate’s vibration and sound reduction performance in
underwater surroundings is less efficient than in air due to the significantly reduced
band-gap width.
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Figure 11. Comparison of (a,b) average velocity level and (c,d) radiation power level between locally
resonant (LR) plate with fluid and that without fluid (BG: band gap; w.o.: without).

The radiation efficiency of a water-loaded LR plate was also calculated using Equation (42)
to further illustrate the vibration and acoustic coupling performance. The corresponding
result is given in Figure 12, together with the result of a water-loaded HM plate for
comparison purposes.
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Figure 12. Comparison of radiation efficiencies between a water-loaded locally resonant (LR) plate
and a water-loaded homogeneous (HM) plate (BG: band gap).
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As shown in Figure 12, in most of the frequency range, the radiation efficiency of the
water-loaded LR plate and that of the water-loaded HM plate are of the same order in
magnitude. However, in the frequency range of 513~525 Hz close above the band gap,
the introduction of periodic resonators significantly increases radiation efficiency. In order
to explain the mechanism behind the interesting and strange radiation phenomenon, the
LR and HM plates’ normalized-displacement spatial distributions at 518 Hz are drawn
in Figure 13.
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Figure 13. Spatial distributions of the normalized displacement (norm. disp.) at 518 Hz in
(a) a homogeneous plate and (b) a locally resonant plate.

Figure 13a shows that the water-loaded HM plate’s vibrational spatial distribution at
518 Hz is dominated by the vibration mode of (2,5) order. As explained in the reference [46],
this mode corresponds to a corner–radiation mode with less radiation efficiency than the
edge–radiation and monopole–radiation modes. After the periodic resonators are attached,
affected by the LR effect, the vibration mode at 518 Hz changes from the corner–radiation
dominated mode to the monopole–radiation dominated mode, as shown in Figure 13b. In
order to make it easier to be understood, the modal radiation efficiencies of mode (2, 5)
and mode (1, 1) in the simply supported plate are given in Figure 14, which correspond to
corner radiation and monopole radiation, respectively. As shown in the figure, below the
coincidence frequency, the radiation efficiency of monopole radiation is much greater than
that of the corner radiation, resulting in significantly increased radiation efficiency at the
frequency close above the band gap.
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Figure 14. Model radiation efficiencies of corner–radiation mode and monopole–radiation mode.

As can be seen in the above results, after water fluid is introduced to the LR plate,
the vibrational and acoustic reduction performance worsens due to the reduced band-gap
width induced by the attached fluid mass. Fortunately, the vibration and noise radiation
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can be further reduced by adding small damping on the resonators. The hysteretic damping
with damping loss factor ηR is added to the spring element of the resonator, with a complex
stiffness expressed as kR = kR(1 + jηR). The average velocity and radiation power levels of
a water-loaded HM plate and a water-loaded LR plate with lightly damped (ηR= 1%) and
undamped periodic resonators are shown in Figure 15. The resonator’s damping parameter
variation results are also given in Figure 16.
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Figure 15. (a) Average velocity level and (b) radiation power level of a water-loaded homoge-
neous (HM) plate and a water-loaded locally resonant (LR) plate with damped and undamped
periodic resonators.
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Figure 16. (a) Average velocity level and (b) radiation power level of a water-loaded locally resonant
plate with various damping parameters of the resonator.

As observed in Figure 15, for the lightly damped situation, the resonator’s damping
had a minor effect on vibration and radiation below 440 Hz and above 600 Hz. As the
resonator’s damping is introduced, the maximal attenuation level decreases in the band-gap
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frequency range. However, in the frequency range close above or below the band-gap, the
vibration and sound radiation were significantly reduced compared with the undamped
LR plate. As shown in Figure 16, with the increase in damping, the vibration and sound
radiation became increasingly smaller above approximately 400 Hz, except in the band-
gap frequency range. It can be concluded from the above analysis that, although the
water-loaded LR plate’s band-gap width is relatively narrow with only several hertz, the
attenuation zone of vibration and sound radiation can be broadened by adding damping
into the resonator. This damping treatment makes the LR plate more beneficial for vibration
or noise reduction in water-surrounding applications.

4. Conclusions

The vibro-acoustic performance of a water-loaded periodic locally resonant (LR) plate
was studied in this research. The analytical models of the structure’s band gap, vibration,
and acoustic radiation were theoretically derived with closed-form solutions, which helped
to examine the effects of water fluid on the vibration and sound radiation of the LR structure
and helped to clarify its effect mechanism.

The water fluid will introduce frequency-dependent attached mass on the LR plate,
resulting in a significant increase of the effective density in the frequency range near the
resonant frequency. Affected by the attached fluid mass, the upper band-gap frequency
noticeably decreased, while the lower band-gap frequency stayed nearly unchanged, which
lead to a significantly decreased band-gap width in a water-loaded LR plate. In addition,
affected by the water fluid, the Bragg frequency is also decreased, resulting in the frequency
range that can be tuned to control vibration and noise for the LR plate with the fluid
being much narrower than that without the fluid. Furthermore, introducing periodic
resonators significantly increases radiation efficiency close above the band-gap. This
phenomenon is caused by the change of radiation mode from corner or edge radiation to
monopole radiation.

The vibration and sound reduction performance of an LR plate covered with water
fluid is inferior to that without fluid due to the extremely narrow band gap, which dis-
advantages the application in water surroundings. Fortunately, the vibration and sound
radiation in the frequency range above or close below the band gap can be reduced by
adding small damping into the resonators, inducing the attenuation zone to be significantly
broadened. This damping treatment could be an efficient method to make the LR plate
more beneficial for vibration or noise reduction in water-surrounding applications.
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