
Citation: Hussain, M. YOLO-v1 to

YOLO-v8, the Rise of YOLO and Its

Complementary Nature toward

Digital Manufacturing and Industrial

Defect Detection. Machines 2023, 11,

677. https://doi.org/10.3390/

machines11070677

Academic Editor: Sang Do Noh

Received: 30 May 2023

Revised: 15 June 2023

Accepted: 21 June 2023

Published: 23 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Review

YOLO-v1 to YOLO-v8, the Rise of YOLO and Its
Complementary Nature toward Digital Manufacturing and
Industrial Defect Detection
Muhammad Hussain

Department of Computer Science, School of Computing and Engineering, University of Huddersfield,
Queensgate, Huddersfield HD1 3DH, UK; m.hussain@hud.ac.uk

Abstract: Since its inception in 2015, the YOLO (You Only Look Once) variant of object detectors has
rapidly grown, with the latest release of YOLO-v8 in January 2023. YOLO variants are underpinned
by the principle of real-time and high-classification performance, based on limited but efficient
computational parameters. This principle has been found within the DNA of all YOLO variants
with increasing intensity, as the variants evolve addressing the requirements of automated quality
inspection within the industrial surface defect detection domain, such as the need for fast detection,
high accuracy, and deployment onto constrained edge devices. This paper is the first to provide an
in-depth review of the YOLO evolution from the original YOLO to the recent release (YOLO-v8) from
the perspective of industrial manufacturing. The review explores the key architectural advancements
proposed at each iteration, followed by examples of industrial deployment for surface defect detection
endorsing its compatibility with industrial requirements.

Keywords: industrial defect detection; object detection; smart manufacturing; quality inspection

1. Introduction

Humans via the visual cortex, a primary cortical region of the brain responsible for
processing visual information [1], are able to observe, recognize [2], and differentiate
between objects instantaneously [3]. Studying the inner workings of the visual cortex and
the brain in general has paved the way for artificial neural networks (ANNs) [4] along
with a myriad of computational architectures residing under the deep learning umbrella.
In the last decade, owing to rapid and revolutionary advancements in the field of deep
learning [5], researchers have exerted their efforts on providing efficient simulation of the
human visual system to computers, i.e., enabling computers to detect objects of interest
within static images and video [6], a field known as computer vision (CV) [7]. CV is
a prevalent research area for deep learning researchers and practitioners in the present
decade. It is composed of subfields consisting of image classification [8], object detection [9],
and object segmentation [10]. All three fields share a common architectural theme, namely,
manipulation of convolutional neural networks (CNNs) [11]. CNNs are accepted as the de
facto when dealing with image data. In comparison with conventional image processing
and artificial defection methods, CNNs utilize multiple convolutional layers coupled with
aggregation, i.e., pooling structures aiming to unearth deep semantic features hidden away
within the pixels of the image [12].

Artificial intelligence (AI) has found opportunities in industries across the spectrum
from renewable energy [13,14] and security to healthcare [15] and the education sector.
However, one industry that is poised for significant automation through CV is the manu-
facturing industry. Quality inspection (QI) is an integral part of any manufacturing domain
providing integrity and confidence to the clients on the quality of the manufactured prod-
ucts [16]. Manufacturing has wide scope for automation; however, when dealing with
surface inspection [17], defects can take sophisticated forms [18], making human-based

Machines 2023, 11, 677. https://doi.org/10.3390/machines11070677 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11070677
https://doi.org/10.3390/machines11070677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines11070677
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11070677?type=check_update&version=1

Machines 2023, 11, 677 2 of 25

quality inspection a cumbersome task with manifold inefficiencies linked to human bias,
fatigue, cost, and downtime [19]. These inefficiencies provide an opportunity for CV-based
solutions to present automated quality inspection that can be integrated within existing
surface defect inspection processes, increasing efficiency whilst overcoming bottlenecks
presented via conventional inspection methodologies [20].

However, for success, CV-based architectures must conform to a stringent set of
deployment requirements that can vary from one manufacturing sector to another [21]. In
the majority of applications, the focus is not only on the determination of the defect, but also
on multiple defects along with the locality details of each [22]. Therefore, object detection
is preferred over image classification since the latter only focuses on determination of
object within the image without providing any locality information. Architectures within
the object detection domain can be classified into single-stage or two-stage detectors [23].
Two-stage detectors split the detection process into two stages: Feature extraction/proposal
followed by regression and classification for acquiring the output [24]. Although this can
provide high accuracy, it comes with a high computational demand making it inefficient for
real-time deployment onto constrained edge devices. Single-stage detectors, on the other
hand, merge the two processes into one, enabling the classification and regression via a
single pass, significantly reduce the computational demand, and provide a more compelling
case for production-based deployment [25]. Although many single-stage detectors have
been introduced, such as single shot detector (SSD) [26], deconvolutional single shot
detector (D-SSD) [27], and RetinaNet [28], the YOLO (You Only Look Once) [29] family of
architectures seems to be gaining high traction due to its high compatibility with industrial
requirements, such as accuracy, lightweight, and edge-friendly deployment conditions.
The last half-a-decade has been dominated by the introduction of YOLO variants, with the
most recent variant introduced in 2022 as YOLO-v8.

To the best of our knowledge, there is no cohesive review of the advancing YOLO
variants, benchmarking technical advancements, and their implications on industrial
deployment. This paper reviews the YOLO variants released to the present date, focusing
on presenting the key technical contributions of each YOLO iteration and its impact on key
industrial metrics required for deployment, such as accuracy, speed, and computational
efficacy. As a result, the aim is to provide researchers and practitioners with a better
understanding of the inner workings of each variant, enabling them to select the most
relevant architecture based on their industrial requirements. Additionally, literature on
the deployment of YOLO architectures for various industrial surface defect detection
applications is presented.

The subsequent structure of the review is as follows. The first section provides an
introduction to single- and two-stage detectors and the anatomy for single-stage object
detectors. Next, the evolution of YOLO variants is presented, detailing the key contributions
from YOLO-v1 to YOLO-v8, followed by a review of the literature focused on YOLO-based
implementation of industrial surface defect detection. Finally, the discussion section
focuses on summarizing the reviewed literature, followed by extracted conclusions, future
directions, and challenges are presented.

Object Detection

CNNs can be categorized as convolution-based feed forward neural networks for
classification purposes [30]. The input layer is followed by multiple convolutional layers
to acquire an increased set of smaller-scale feature maps. These feature maps post further
manipulation are transformed into one-dimensional feature vectors before being used as
input to the fully connected layer(s). The process of feature extraction and feature map
manipulation is vital to the overall accuracy of the network; therefore, this can involve the
stacking of multiple convolutional and pooling layers for richer feature maps. Popular
architectures for feature extraction include AlexNet [31], VGGNet [32], GoogleNet [33], and
ResNet [34]. AlexNet is proposed in 2012 and consists of five convolutional, three pooling,
and three fully connected layers primarily utilized for image classification tasks. VGGNet

Machines 2023, 11, 677 3 of 25

focused on performance enhancement by increasing the internal depth of the architecture,
introducing several variants with increased layers, VGG-16/19. GoogleNet introduced the
cascading concept by cascading multiple ‘inception’ modules, whilst ResNet introduced
the concept of skip-connections for preserving information and making it available from
the earlier to the later layers of the architecture.

The motive for an object detector is to infer whether the object(s) of interest are
residing in the image or present the frame of a video. If the object(s) of interest are
present, the detector returns the respective class and locality, i.e., location dimensions
of the object(s). Object detection can be further divided into two sub-categories: Two-
stage methods and one-stage methods as shown in Figure 1. The former initiates the
first stage with the selection of numerous proposals, then in the second stage, performs
prediction on the proposed regions. Examples of two-stage detectors include the famous
R-CNN [35] variants, such as Fast R-CNN [36] and Faster R-CNN [37], boasting high
accuracies but low computational efficiency. The latter transforms the task into a regression
problem, eliminating the need for an initial stage dedicated to selecting candidate regions;
therefore, the candidate selection and prediction is achieved in a single pass. As a result,
architectures falling into this category are computationally less demanding, generating
higher FPS and detection speed, but in general the accuracy tends to be inferior with respect
to two-stage detectors.

Machines 2023, 11, x FOR PEER REVIEW 3 of 26

and ResNet [34]. AlexNet is proposed in 2012 and consists of five convolutional, three
pooling, and three fully connected layers primarily utilized for image classification tasks.
VGGNet focused on performance enhancement by increasing the internal depth of the
architecture, introducing several variants with increased layers, VGG-16/19. GoogleNet
introduced the cascading concept by cascading multiple ‘inception’ modules, whilst Res-
Net introduced the concept of skip-connections for preserving information and making it
available from the earlier to the later layers of the architecture.

The motive for an object detector is to infer whether the object(s) of interest are resid-
ing in the image or present the frame of a video. If the object(s) of interest are present, the
detector returns the respective class and locality, i.e., location dimensions of the object(s).
Object detection can be further divided into two sub-categories: Two-stage methods and
one-stage methods as shown in Figure 1. The former initiates the first stage with the se-
lection of numerous proposals, then in the second stage, performs prediction on the pro-
posed regions. Examples of two-stage detectors include the famous R-CNN [35] variants,
such as Fast R-CNN [36] and Faster R-CNN [37], boasting high accuracies but low com-
putational efficiency. The latter transforms the task into a regression problem, eliminating
the need for an initial stage dedicated to selecting candidate regions; therefore, the candi-
date selection and prediction is achieved in a single pass. As a result, architectures falling
into this category are computationally less demanding, generating higher FPS and detec-
tion speed, but in general the accuracy tends to be inferior with respect to two-stage de-
tectors.

Figure 1. Object detector anatomy.

2. Original YOLO Algorithm
YOLO was introduced to the computer vision community via a paper release in 2015

by Joseph Redmon et al. [29] titled ‘You Only Look Once: Unified, Real-Time Object De-
tection’. The paper reframed object detection, presenting it essentially as a single pass re-
gression problem, initiating with image pixels and moving to bounding box and class
probabilities. The proposed approach based on the ‘unified’ concept enabled the simulta-
neous prediction of multiple bounding boxes and class probabilities, improving both
speed and accuracy.

Since its inception in 2016 until the present year (2023), the YOLO family has contin-
ued to evolve at a rapid pace. Although the initial author (Joseph Redmon) halted further
work within the computer vision domain at YOLO-v3 [38], the effectiveness and potential
of the core ‘unified’ concept have been further developed by several authors, with the
latest addition to the YOLO family coming in the form of YOLO-v8. Figure 2 presents the
YOLO evolution timeline.

Figure 1. Object detector anatomy.

2. Original YOLO Algorithm

YOLO was introduced to the computer vision community via a paper release in 2015 by
Joseph Redmon et al. [29] titled ‘You Only Look Once: Unified, Real-Time Object Detection’.
The paper reframed object detection, presenting it essentially as a single pass regression
problem, initiating with image pixels and moving to bounding box and class probabilities.
The proposed approach based on the ‘unified’ concept enabled the simultaneous prediction
of multiple bounding boxes and class probabilities, improving both speed and accuracy.

Since its inception in 2016 until the present year (2023), the YOLO family has continued
to evolve at a rapid pace. Although the initial author (Joseph Redmon) halted further work
within the computer vision domain at YOLO-v3 [38], the effectiveness and potential of
the core ‘unified’ concept have been further developed by several authors, with the latest
addition to the YOLO family coming in the form of YOLO-v8. Figure 2 presents the YOLO
evolution timeline.

2.1. Original YOLO

The core principle proposed by YOLO-v1 was the imposing of a grid cell with dimen-
sions of s×s onto the image. In the case of the center of the object of interest falling into one
of the grid cells, that particular grid cell would be responsible for the detection of that object.
This permitted other cells to disregard that object in the case of multiple appearances.

Machines 2023, 11, 677 4 of 25Machines 2023, 11, x FOR PEER REVIEW 4 of 26

Figure 2. YOLO evolution timeline.

2.1. Original YOLO
The core principle proposed by YOLO-v1 was the imposing of a grid cell with di-

mensions of s×s onto the image. In the case of the center of the object of interest falling
into one of the grid cells, that particular grid cell would be responsible for the detection
of that object. This permitted other cells to disregard that object in the case of multiple
appearances.

For implementation of object detection, each grid cell would predict B bounding
boxes along with the dimensions and confidence scores. The confidence score was indic-
ative of the absence or presence of an object within the bounding box. Therefore, the con-
fidence score can be expressed as Equation (1): 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 = 𝑝(𝑜𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈ௗ௧௨௧ (1)

where 𝑝(𝑜𝑏𝑗𝑒𝑐𝑡) signified the probability of the object being present, with a range of 0–1
with 0 indicating that the object is not present and 𝐼𝑜𝑈ௗ௧௨௧ represented the intersection-
over-union with the predicted bounding box with respect to the ground truth bounding
box.

Each bounding box consisted of five components (x, y, w, h, and the confidence score)
with the first four components corresponding to center coordinates (x, y, width, and height)
of the respective bounding box as shown in Figure 3.

Figure 2. YOLO evolution timeline.

For implementation of object detection, each grid cell would predict B bounding boxes
along with the dimensions and confidence scores. The confidence score was indicative of
the absence or presence of an object within the bounding box. Therefore, the confidence
score can be expressed as Equation (1):

con f idence score = p(object) ∗ IoUtruth
pred (1)

where p(object) signified the probability of the object being present, with a range of 0–1 with
0 indicating that the object is not present and IoUtruth

pred represented the intersection-over-
union with the predicted bounding box with respect to the ground truth bounding box.

Each bounding box consisted of five components (x, y, w, h, and the confidence score)
with the first four components corresponding to center coordinates (x, y, width, and height)
of the respective bounding box as shown in Figure 3.

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with
each cell predicting B bounding boxes, each containing five parameters and sharing pre-
diction probabilities of classes (C). Therefore, the parameter output would take the fol-
lowing form, expressed in (2): 𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction
set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-
eter output would be given as expressed in (3): 7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-
tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are
required, i.e., vector y is the representative of ground truth and vector 𝑦ሶ is the predicted
vector. To address multiple bounding boxes containing no object or the same object,
YOLO opts for non-maximum suppression (NMS). By defining a threshold value for
NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS
value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.
The first architecture comprised of 24 convolutional layers with the final layer providing
a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-
iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the
inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-
mented for reducing the resultant feature space from the preceding layers. The prelimi-
nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-
dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from
bounding boxes containing objects (𝛾ௗ = 5) and the lowest penalization for prediction
containing no object (𝛾 = 0.5). The authors calculated the loss function by taking the
sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-
ability). As a result, the first part of the equation computes the loss of the bounding box
prediction with respect to the ground truth bounding box based on the coordinates 𝑥௧, 𝑦௧. 𝕝

 is set as 1 in the case of the object residing within 𝑗௧ bounding box
prediction in 𝑖௧ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box
would be tasked with predicting an object with the greatest IoU, as expressed in (4): 𝛾ௗ ∑ ∑ 𝕝[(𝑥 − 𝑥పෝ)ଶ + (𝑦 − 𝑦పෝ)ଶ]ୀௌమୀ (4)

The next component of the loss function computes the prediction error in width and
height of the bounding box, similar to the preceding component. However, the scale of
error in the large boxes has lesser impact compared to the small boxes. The normalization
of width and height between the range 0 and 1 indicates that their square roots increase

Figure 3. YOLO-v1 preliminary architecture.

Machines 2023, 11, 677 5 of 25

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7),
with each cell predicting B bounding boxes, each containing five parameters and sharing
prediction probabilities of classes (C). Therefore, the parameter output would take the
following form, expressed in (2):

s× s× (5 ∗ B + C) (2)

Considering the example of YOLO network with each cell bounding box prediction
set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the parameter
output would be given as expressed in (3):

7× 7× (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detection
and localization via bounding boxes. Therefore, two sets of bounding box vectors are
required, i.e., vector y is the representative of ground truth and vector

.
y is the predicted

vector. To address multiple bounding boxes containing no object or the same object, YOLO
opts for non-maximum suppression (NMS). By defining a threshold value for NMS, all
overlapping predicted bounding boxes with an IoU lower than the defined NMS value
are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.
The first architecture comprised of 24 convolutional layers with the final layer providing
a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’
variant consisted of only nine convolutional layers hosting fewer filters each. Inspired
by the inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was
implemented for reducing the resultant feature space from the preceding layers. The
preliminary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-
dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from
bounding boxes containing objects (γcoord = 5) and the lowest penalization for prediction
containing no object (γnoobj = 0.5). The authors calculated the loss function by taking
the sum of all bounding box parameters (x, y, width, height, confidence score, and class
probability). As a result, the first part of the equation computes the loss of the bounding box
prediction with respect to the ground truth bounding box based on the coordinates xcenter,
ycenter.

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with

each cell predicting B bounding boxes, each containing five parameters and sharing pre-

diction probabilities of classes (C). Therefore, the parameter output would take the fol-

lowing form, expressed in (2):

𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction

set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-

eter output would be given as expressed in (3):

7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-

tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are

required, i.e., vector y is the representative of ground truth and vector �̇� is the predicted

vector. To address multiple bounding boxes containing no object or the same object,

YOLO opts for non-maximum suppression (NMS). By defining a threshold value for

NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS

value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.

The first architecture comprised of 24 convolutional layers with the final layer providing

a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-

iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the

inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-

mented for reducing the resultant feature space from the preceding layers. The prelimi-

nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-

dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from

bounding boxes containing objects (𝛾𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest penalization for prediction

containing no object (𝛾𝑛𝑜𝑜𝑏𝑗 = 0.5). The authors calculated the loss function by taking the

sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-

ability). As a result, the first part of the equation computes the loss of the bounding box

prediction with respect to the ground truth bounding box based on the coordinates

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝕝𝑖𝑗

𝑜𝑏𝑗
 is set as 1 in the case of the object residing within 𝑗𝑡ℎ bounding box

prediction in 𝑖𝑡ℎ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box

would be tasked with predicting an object with the greatest IoU, as expressed in (4):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 − 𝑦�̂�)

2]𝐵
𝑗=0

𝑆2

𝑖=0 (4)

The next component of the loss function computes the prediction error in width and

height of the bounding box, similar to the preceding component. However, the scale of

error in the large boxes has lesser impact compared to the small boxes. The normalization

of width and height between the range 0 and 1 indicates that their square roots increase

obj
ij is set as 1 in the case of the object residing within jth bounding box prediction in

ith cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box would be tasked
with predicting an object with the greatest IoU, as expressed in (4):

γcoord∑S2

i=0 ∑B
j=0

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with

each cell predicting B bounding boxes, each containing five parameters and sharing pre-

diction probabilities of classes (C). Therefore, the parameter output would take the fol-

lowing form, expressed in (2):

𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction

set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-

eter output would be given as expressed in (3):

7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-

tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are

required, i.e., vector y is the representative of ground truth and vector �̇� is the predicted

vector. To address multiple bounding boxes containing no object or the same object,

YOLO opts for non-maximum suppression (NMS). By defining a threshold value for

NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS

value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.

The first architecture comprised of 24 convolutional layers with the final layer providing

a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-

iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the

inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-

mented for reducing the resultant feature space from the preceding layers. The prelimi-

nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-

dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from

bounding boxes containing objects (𝛾𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest penalization for prediction

containing no object (𝛾𝑛𝑜𝑜𝑏𝑗 = 0.5). The authors calculated the loss function by taking the

sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-

ability). As a result, the first part of the equation computes the loss of the bounding box

prediction with respect to the ground truth bounding box based on the coordinates

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝕝𝑖𝑗

𝑜𝑏𝑗
 is set as 1 in the case of the object residing within 𝑗𝑡ℎ bounding box

prediction in 𝑖𝑡ℎ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box

would be tasked with predicting an object with the greatest IoU, as expressed in (4):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 − 𝑦�̂�)

2]𝐵
𝑗=0

𝑆2

𝑖=0 (4)

The next component of the loss function computes the prediction error in width and

height of the bounding box, similar to the preceding component. However, the scale of

error in the large boxes has lesser impact compared to the small boxes. The normalization

of width and height between the range 0 and 1 indicates that their square roots increase

obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

(4)

The next component of the loss function computes the prediction error in width and
height of the bounding box, similar to the preceding component. However, the scale of
error in the large boxes has lesser impact compared to the small boxes. The normalization
of width and height between the range 0 and 1 indicates that their square roots increase
the differences for smaller values to a higher degree compared to that of larger values,
expressed as (5):

γcoord∑S2

i=0 ∑B
j=0

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with

each cell predicting B bounding boxes, each containing five parameters and sharing pre-

diction probabilities of classes (C). Therefore, the parameter output would take the fol-

lowing form, expressed in (2):

𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction

set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-

eter output would be given as expressed in (3):

7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-

tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are

required, i.e., vector y is the representative of ground truth and vector �̇� is the predicted

vector. To address multiple bounding boxes containing no object or the same object,

YOLO opts for non-maximum suppression (NMS). By defining a threshold value for

NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS

value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.

The first architecture comprised of 24 convolutional layers with the final layer providing

a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-

iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the

inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-

mented for reducing the resultant feature space from the preceding layers. The prelimi-

nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-

dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from

bounding boxes containing objects (𝛾𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest penalization for prediction

containing no object (𝛾𝑛𝑜𝑜𝑏𝑗 = 0.5). The authors calculated the loss function by taking the

sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-

ability). As a result, the first part of the equation computes the loss of the bounding box

prediction with respect to the ground truth bounding box based on the coordinates

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝕝𝑖𝑗

𝑜𝑏𝑗
 is set as 1 in the case of the object residing within 𝑗𝑡ℎ bounding box

prediction in 𝑖𝑡ℎ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box

would be tasked with predicting an object with the greatest IoU, as expressed in (4):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 − 𝑦�̂�)

2]𝐵
𝑗=0

𝑆2

𝑖=0 (4)

The next component of the loss function computes the prediction error in width and

height of the bounding box, similar to the preceding component. However, the scale of

error in the large boxes has lesser impact compared to the small boxes. The normalization

of width and height between the range 0 and 1 indicates that their square roots increase

obj
ij

[(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

(5)

Next, the loss of the confidence score is computed based on whether the object is
present or absent with respect to the bounding box. Penalization of the object confidence
error is only executed by the loss function if that predictor was responsible for the ground

Machines 2023, 11, 677 6 of 25

truth bounding box.

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with

each cell predicting B bounding boxes, each containing five parameters and sharing pre-

diction probabilities of classes (C). Therefore, the parameter output would take the fol-

lowing form, expressed in (2):

𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction

set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-

eter output would be given as expressed in (3):

7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-

tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are

required, i.e., vector y is the representative of ground truth and vector �̇� is the predicted

vector. To address multiple bounding boxes containing no object or the same object,

YOLO opts for non-maximum suppression (NMS). By defining a threshold value for

NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS

value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.

The first architecture comprised of 24 convolutional layers with the final layer providing

a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-

iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the

inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-

mented for reducing the resultant feature space from the preceding layers. The prelimi-

nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-

dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from

bounding boxes containing objects (𝛾𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest penalization for prediction

containing no object (𝛾𝑛𝑜𝑜𝑏𝑗 = 0.5). The authors calculated the loss function by taking the

sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-

ability). As a result, the first part of the equation computes the loss of the bounding box

prediction with respect to the ground truth bounding box based on the coordinates

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝕝𝑖𝑗

𝑜𝑏𝑗
 is set as 1 in the case of the object residing within 𝑗𝑡ℎ bounding box

prediction in 𝑖𝑡ℎ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box

would be tasked with predicting an object with the greatest IoU, as expressed in (4):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 − 𝑦�̂�)

2]𝐵
𝑗=0

𝑆2

𝑖=0 (4)

The next component of the loss function computes the prediction error in width and

height of the bounding box, similar to the preceding component. However, the scale of

error in the large boxes has lesser impact compared to the small boxes. The normalization

of width and height between the range 0 and 1 indicates that their square roots increase

obj
ij is set to 1 when the object is present in the cell; otherwise, it is set

as 0, whilst

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with

each cell predicting B bounding boxes, each containing five parameters and sharing pre-

diction probabilities of classes (C). Therefore, the parameter output would take the fol-

lowing form, expressed in (2):

𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction

set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-

eter output would be given as expressed in (3):

7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-

tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are

required, i.e., vector y is the representative of ground truth and vector �̇� is the predicted

vector. To address multiple bounding boxes containing no object or the same object,

YOLO opts for non-maximum suppression (NMS). By defining a threshold value for

NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS

value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.

The first architecture comprised of 24 convolutional layers with the final layer providing

a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-

iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the

inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-

mented for reducing the resultant feature space from the preceding layers. The prelimi-

nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-

dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from

bounding boxes containing objects (𝛾𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest penalization for prediction

containing no object (𝛾𝑛𝑜𝑜𝑏𝑗 = 0.5). The authors calculated the loss function by taking the

sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-

ability). As a result, the first part of the equation computes the loss of the bounding box

prediction with respect to the ground truth bounding box based on the coordinates

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝕝𝑖𝑗

𝑜𝑏𝑗
 is set as 1 in the case of the object residing within 𝑗𝑡ℎ bounding box

prediction in 𝑖𝑡ℎ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box

would be tasked with predicting an object with the greatest IoU, as expressed in (4):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 − 𝑦�̂�)

2]𝐵
𝑗=0

𝑆2

𝑖=0 (4)

The next component of the loss function computes the prediction error in width and

height of the bounding box, similar to the preceding component. However, the scale of

error in the large boxes has lesser impact compared to the small boxes. The normalization

of width and height between the range 0 and 1 indicates that their square roots increase

noobj
ij works in the opposite way, as shown in (6):

∑S2

i=0 ∑B
j=0

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with

each cell predicting B bounding boxes, each containing five parameters and sharing pre-

diction probabilities of classes (C). Therefore, the parameter output would take the fol-

lowing form, expressed in (2):

𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction

set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-

eter output would be given as expressed in (3):

7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-

tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are

required, i.e., vector y is the representative of ground truth and vector �̇� is the predicted

vector. To address multiple bounding boxes containing no object or the same object,

YOLO opts for non-maximum suppression (NMS). By defining a threshold value for

NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS

value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.

The first architecture comprised of 24 convolutional layers with the final layer providing

a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-

iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the

inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-

mented for reducing the resultant feature space from the preceding layers. The prelimi-

nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-

dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from

bounding boxes containing objects (𝛾𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest penalization for prediction

containing no object (𝛾𝑛𝑜𝑜𝑏𝑗 = 0.5). The authors calculated the loss function by taking the

sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-

ability). As a result, the first part of the equation computes the loss of the bounding box

prediction with respect to the ground truth bounding box based on the coordinates

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝕝𝑖𝑗

𝑜𝑏𝑗
 is set as 1 in the case of the object residing within 𝑗𝑡ℎ bounding box

prediction in 𝑖𝑡ℎ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box

would be tasked with predicting an object with the greatest IoU, as expressed in (4):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 − 𝑦�̂�)

2]𝐵
𝑗=0

𝑆2

𝑖=0 (4)

The next component of the loss function computes the prediction error in width and

height of the bounding box, similar to the preceding component. However, the scale of

error in the large boxes has lesser impact compared to the small boxes. The normalization

of width and height between the range 0 and 1 indicates that their square roots increase

obj
ij (ci − ĉi)

2 + γnoobj∑S2

i=0 ∑B
j=0

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with

each cell predicting B bounding boxes, each containing five parameters and sharing pre-

diction probabilities of classes (C). Therefore, the parameter output would take the fol-

lowing form, expressed in (2):

𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction

set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-

eter output would be given as expressed in (3):

7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-

tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are

required, i.e., vector y is the representative of ground truth and vector �̇� is the predicted

vector. To address multiple bounding boxes containing no object or the same object,

YOLO opts for non-maximum suppression (NMS). By defining a threshold value for

NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS

value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.

The first architecture comprised of 24 convolutional layers with the final layer providing

a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-

iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the

inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-

mented for reducing the resultant feature space from the preceding layers. The prelimi-

nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-

dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from

bounding boxes containing objects (𝛾𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest penalization for prediction

containing no object (𝛾𝑛𝑜𝑜𝑏𝑗 = 0.5). The authors calculated the loss function by taking the

sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-

ability). As a result, the first part of the equation computes the loss of the bounding box

prediction with respect to the ground truth bounding box based on the coordinates

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝕝𝑖𝑗

𝑜𝑏𝑗
 is set as 1 in the case of the object residing within 𝑗𝑡ℎ bounding box

prediction in 𝑖𝑡ℎ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box

would be tasked with predicting an object with the greatest IoU, as expressed in (4):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 − 𝑦�̂�)

2]𝐵
𝑗=0

𝑆2

𝑖=0 (4)

The next component of the loss function computes the prediction error in width and

height of the bounding box, similar to the preceding component. However, the scale of

error in the large boxes has lesser impact compared to the small boxes. The normalization

of width and height between the range 0 and 1 indicates that their square roots increase

noobj
ij (xi − x̂i)

2 + (ci − ĉi)
2 (6)

The last component of the loss function, similar to the normal classification loss,
calculates the class (c) probability loss, except for the

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with

each cell predicting B bounding boxes, each containing five parameters and sharing pre-

diction probabilities of classes (C). Therefore, the parameter output would take the fol-

lowing form, expressed in (2):

𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction

set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-

eter output would be given as expressed in (3):

7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-

tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are

required, i.e., vector y is the representative of ground truth and vector �̇� is the predicted

vector. To address multiple bounding boxes containing no object or the same object,

YOLO opts for non-maximum suppression (NMS). By defining a threshold value for

NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS

value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.

The first architecture comprised of 24 convolutional layers with the final layer providing

a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-

iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the

inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-

mented for reducing the resultant feature space from the preceding layers. The prelimi-

nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-

dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from

bounding boxes containing objects (𝛾𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest penalization for prediction

containing no object (𝛾𝑛𝑜𝑜𝑏𝑗 = 0.5). The authors calculated the loss function by taking the

sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-

ability). As a result, the first part of the equation computes the loss of the bounding box

prediction with respect to the ground truth bounding box based on the coordinates

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝕝𝑖𝑗

𝑜𝑏𝑗
 is set as 1 in the case of the object residing within 𝑗𝑡ℎ bounding box

prediction in 𝑖𝑡ℎ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box

would be tasked with predicting an object with the greatest IoU, as expressed in (4):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 − 𝑦�̂�)

2]𝐵
𝑗=0

𝑆2

𝑖=0 (4)

The next component of the loss function computes the prediction error in width and

height of the bounding box, similar to the preceding component. However, the scale of

error in the large boxes has lesser impact compared to the small boxes. The normalization

of width and height between the range 0 and 1 indicates that their square roots increase

obj
ij part, expressed in (7):

∑S2

i=0

Machines 2023, 11, x FOR PEER REVIEW 5 of 26

Figure 3. YOLO-v1 preliminary architecture.

As alluded to earlier, the input image is split into s × s grid cells (default = 7 × 7), with

each cell predicting B bounding boxes, each containing five parameters and sharing pre-

diction probabilities of classes (C). Therefore, the parameter output would take the fol-

lowing form, expressed in (2):

𝑠 × 𝑠 × (5 ∗ 𝐵 + 𝐶) (2)

Considering the example of YOLO network with each cell bounding box prediction

set to 2 and evaluating the benchmark COCO dataset consisting of 80 classes, the param-

eter output would be given as expressed in (3):

7 × 7 × (5 ∗ 2 + 80) (3)

The fundamental motive of YOLO and object detection in general is the object detec-

tion and localization via bounding boxes. Therefore, two sets of bounding box vectors are

required, i.e., vector y is the representative of ground truth and vector �̇� is the predicted

vector. To address multiple bounding boxes containing no object or the same object,

YOLO opts for non-maximum suppression (NMS). By defining a threshold value for

NMS, all overlapping predicted bounding boxes with an IoU lower than the defined NMS

value are eliminated.

The original YOLO based on the Darknet framework consisted of two sub-variants.

The first architecture comprised of 24 convolutional layers with the final layer providing

a connection into the first of the two fully connected layers. Whereas the ‘Fast YOLO’ var-

iant consisted of only nine convolutional layers hosting fewer filters each. Inspired by the

inception module in GoogleNet, a sequence of 1 × 1 convolutional layers was imple-

mented for reducing the resultant feature space from the preceding layers. The prelimi-

nary architecture for YOLO-v1 is presented in Figure 3.

To address the issue of multiple bounding boxes for the same object or with a confi-

dence score of zero, i.e., no object, the authors decided to greatly penalize predictions from

bounding boxes containing objects (𝛾𝑐𝑜𝑜𝑟𝑑 = 5) and the lowest penalization for prediction

containing no object (𝛾𝑛𝑜𝑜𝑏𝑗 = 0.5). The authors calculated the loss function by taking the

sum of all bounding box parameters (x, y, width, height, confidence score, and class prob-

ability). As a result, the first part of the equation computes the loss of the bounding box

prediction with respect to the ground truth bounding box based on the coordinates

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝕝𝑖𝑗

𝑜𝑏𝑗
 is set as 1 in the case of the object residing within 𝑗𝑡ℎ bounding box

prediction in 𝑖𝑡ℎ cell; otherwise, it is set as 0. The selected, i.e., predicted bounding box

would be tasked with predicting an object with the greatest IoU, as expressed in (4):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 − 𝑦�̂�)

2]𝐵
𝑗=0

𝑆2

𝑖=0 (4)

The next component of the loss function computes the prediction error in width and

height of the bounding box, similar to the preceding component. However, the scale of

error in the large boxes has lesser impact compared to the small boxes. The normalization

of width and height between the range 0 and 1 indicates that their square roots increase

obj
ij ∑c∈classes

.
(pi(c)−

Machines 2023, 11, x FOR PEER REVIEW 6 of 26

the differences for smaller values to a higher degree compared to that of larger values,

expressed as (5):

𝛾𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √𝑤�̂�)
2

+ (√ℎ𝑖 − √ℎ�̂�)

2

]𝐵
𝑗=0

𝑆2

𝑖=0 (5)

Next, the loss of the confidence score is computed based on whether the object is

present or absent with respect to the bounding box. Penalization of the object confidence

error is only executed by the loss function if that predictor was responsible for the ground

truth bounding box. 𝕝𝑖𝑗
𝑜𝑏𝑗

 is set to 1 when the object is present in the cell; otherwise, it is

set as 0, whilst 𝕝ij
noobj

 works in the opposite way, as shown in (6):

∑ ∑ 𝕝ij
obj(ci − cî)

2 + γnoobj ∑ ∑ 𝕝ij
noobj(xi − xî)

2 + (ci − cî)
2B

j=0
S2

i=0
B
j=0

S2

i=0 (6)

The last component of the loss function, similar to the normal classification loss, cal-

culates the class (c) probability loss, except for the 𝕝𝑖𝑗
𝑜𝑏𝑗

 part, expressed in (7):

∑ 𝕝𝑖𝑗
𝑜𝑏𝑗𝑆2

𝑖=0 ∑ (𝑝𝑖(𝑐) −𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠.
𝑝𝑖(𝑐)̂)2 (7)

Performance wise, the simple YOLO (24 convolutional layers) when trained on the

PASCAL VOC dataset (2007 and 2012) [39,40] achieved a mean average precision (refer-

ring to cross-class performance) (mAP) of 63.4% at 45 FPS, whilst Fast YOLO achieved

52.7% mAP at an impressive 155 FPS. Although the performance was better than real-time

detectors, such as DPM-v5 [41] (33% mAP), it was lower than the state-of-the-art (SOTA)

at the time, i.e., Faster R-CNN (71% mAP).

There were some clear loopholes that required attention, such as the architecture hav-

ing comparatively low recall and higher localization error compared to Faster R-CNN.

Additionally, the architecture struggled to detect close proximity objects due to the fact

that each grid cell was capped to two bounding box proposals. The loopholes attributed

to the original YOLO provided inspiration for the following variants of YOLO.

2.2. YOLO-v2/9000

YOLO-v2/9000 was introduced by Joseph Redmon in 2016 [42]. The motive was to

remove or at least mitigate the inefficiencies observed with the original YOLO while main-

taining the impressive speed factor. Several enhancements were claimed through the im-

plementation of various techniques. Batch normalization [43] was introduced with the in-

ternal architecture to improve model convergence, leading to faster training. This intro-

duction eliminated the need for other regularization techniques, such as dropout [44]

aimed at reducing overfitting [45]. Its effectiveness can be gauged by the fact that simply

introducing batch normalization improved the mAP by 2% compared to the original

YOLO.

The original YOLO worked with an input image size of 224 × 224 pixels during the

training stage, whilst for the detection phase, input images could be scaled up to 448 × 448

pixels, enforcing the architecture to adjust to the varying image resolution, which in turn

decrease the mAP. To address this, the authors trained the architecture on 448 × 448 pixel

images for 10 epochs on the ImageNet [46] dataset, providing the architecture with the

capacity to adjust the internal filters when dealing with higher resolution images, result-

ing in an increased mAP of 4%. Whilst architectures, such as Fast and Faster R-CNN pre-

dict coordinates directly from the convolutional network, the original YOLO utilized fully

(7)

Performance wise, the simple YOLO (24 convolutional layers) when trained on the
PASCAL VOC dataset (2007 and 2012) [39,40] achieved a mean average precision (referring
to cross-class performance) (mAP) of 63.4% at 45 FPS, whilst Fast YOLO achieved 52.7%
mAP at an impressive 155 FPS. Although the performance was better than real-time
detectors, such as DPM-v5 [41] (33% mAP), it was lower than the state-of-the-art (SOTA) at
the time, i.e., Faster R-CNN (71% mAP).

There were some clear loopholes that required attention, such as the architecture
having comparatively low recall and higher localization error compared to Faster R-CNN.
Additionally, the architecture struggled to detect close proximity objects due to the fact that
each grid cell was capped to two bounding box proposals. The loopholes attributed to the
original YOLO provided inspiration for the following variants of YOLO.

2.2. YOLO-v2/9000

YOLO-v2/9000 was introduced by Joseph Redmon in 2016 [42]. The motive was
to remove or at least mitigate the inefficiencies observed with the original YOLO while
maintaining the impressive speed factor. Several enhancements were claimed through
the implementation of various techniques. Batch normalization [43] was introduced with
the internal architecture to improve model convergence, leading to faster training. This
introduction eliminated the need for other regularization techniques, such as dropout [44]
aimed at reducing overfitting [45]. Its effectiveness can be gauged by the fact that simply
introducing batch normalization improved the mAP by 2% compared to the original YOLO.

The original YOLO worked with an input image size of 224 × 224 pixels during
the training stage, whilst for the detection phase, input images could be scaled up to
448 × 448 pixels, enforcing the architecture to adjust to the varying image resolution,
which in turn decrease the mAP. To address this, the authors trained the architecture on
448 × 448 pixel images for 10 epochs on the ImageNet [46] dataset, providing the architec-
ture with the capacity to adjust the internal filters when dealing with higher resolution
images, resulting in an increased mAP of 4%. Whilst architectures, such as Fast and Faster
R-CNN predict coordinates directly from the convolutional network, the original YOLO
utilized fully connected layers to serve this purpose. YOLO-v2 replaced the fully connected
layer responsible for predicting bounding boxes by adding anchor boxes for bounding
box predictions. Anchor boxes [47] are essentially a list of predefined dimensions (boxes)
aimed at best matching the objects of interest. Rather than manual determination of best-fit
anchor boxes, the authors utilized k-means clustering [48] on the training set bounding
boxes, inclusive of the ground truth bounding boxes, grouping similar shapes and plotting
average IoU with respect to the closest centroid as shown in Figure 4. YOLO-v2 was trained
on different architectures, namely, VGG-16 and GoogleNet, in addition to the authors
proposing the Darknet-19 [49] architecture due to characteristics, such as reduced process-
ing requirements, i.e., 5.58 FLOPs compared to 30.69 FLOPs and 8.52 FLOPs on VGG-16
and GoogleNet, respectively. In terms of performance, YOLO-v2 provided 76.8 mAP at
67 FPS and 78.6 mAP at 40 FPS. The results demonstrated the architectures’ superiority
over SOTA architectures of that time, such as SSD and Faster R-CNN. YOLO-9000 utilized

Machines 2023, 11, 677 7 of 25

YOLO-v2 architecture, aimed at real-time detection of more than 9000 different objects;
however, at a significantly reduced mAP of 19.7%.

Machines 2023, 11, x FOR PEER REVIEW 7 of 26

connected layers to serve this purpose. YOLO-v2 replaced the fully connected layer re-
sponsible for predicting bounding boxes by adding anchor boxes for bounding box pre-
dictions. Anchor boxes [47] are essentially a list of predefined dimensions (boxes) aimed
at best matching the objects of interest. Rather than manual determination of best-fit an-
chor boxes, the authors utilized k-means clustering [48] on the training set bounding
boxes, inclusive of the ground truth bounding boxes, grouping similar shapes and plotting
average IoU with respect to the closest centroid as shown in Figure 4. YOLO-v2 was
trained on different architectures, namely, VGG-16 and GoogleNet, in addition to the au-
thors proposing the Darknet-19 [49] architecture due to characteristics, such as reduced
processing requirements, i.e., 5.58 FLOPs compared to 30.69 FLOPs and 8.52 FLOPs on
VGG-16 and GoogleNet, respectively. In terms of performance, YOLO-v2 provided 76.8
mAP at 67 FPS and 78.6 mAP at 40 FPS. The results demonstrated the architectures’ supe-
riority over SOTA architectures of that time, such as SSD and Faster R-CNN. YOLO-9000
utilized YOLO-v2 architecture, aimed at real-time detection of more than 9000 different
objects; however, at a significantly reduced mAP of 19.7%.

Figure 4. Dimension clusters vs. mAP.

2.3. YOLO-v3
Architectures, such as VGG, focused their development work around the concept

that deeper networks, i.e., more internal layers, equated to higher accuracy. YOLO-v2 also
had higher number of convolutional layers compared to its predecessor.

However, as the image progressed through the network, the progressive down sam-
pling resulted in the loss of fine-grained features; therefore, YOLO-v2 often struggled with
detecting smaller objects. At the time research was active in addressing this issue, as evi-
dent by the deployment of skip connections [50] embedded within the proposed ResNet
architecture, the focus was on addressing the vanishing gradient issue by facilitating in-
formation propagation via skip connection, as presented in Figure 5.

Figure 4. Dimension clusters vs. mAP.

2.3. YOLO-v3

Architectures, such as VGG, focused their development work around the concept that
deeper networks, i.e., more internal layers, equated to higher accuracy. YOLO-v2 also had
higher number of convolutional layers compared to its predecessor.

However, as the image progressed through the network, the progressive down sam-
pling resulted in the loss of fine-grained features; therefore, YOLO-v2 often struggled
with detecting smaller objects. At the time research was active in addressing this issue,
as evident by the deployment of skip connections [50] embedded within the proposed
ResNet architecture, the focus was on addressing the vanishing gradient issue by facilitating
information propagation via skip connection, as presented in Figure 5.

Machines 2023, 11, x FOR PEER REVIEW 8 of 26

Figure 5. Skip-connection configuration.

YOLO-v3 proposed a hybrid architecture factoring in aspects of YOLO-v2, Darknet-
53 [51], and the ResNet concept of residual networks. This enabled the preservation of
fine-grained features by allowing for the gradient flow from shallow layers to deeper lay-
ers.

On top of the existing 53 layers of Darknet-53 for feature extraction, a stack of 53
additional layers was added for the detection head, totaling 106 convolutional layers for
the YOLO-v3. Additionally, YOLO-v3 facilitated multi-scale detection, namely, the archi-
tecture made predictions at three different scales of granularity for outputting better per-
formance, increasing the probability of small object detection.

2.4. YOLO-v4
YOLO-v4 was the first variant of the YOLO family after the original author discon-

tinued further work that was introduced to the computer vision community in April 2020
by Alexey Bochkovsky et al. [52]. YOLO-v4 was essentially the distillation of a large suite
of object detection techniques, tested and enhanced for providing a real-time, lightweight
object detector.

The backbone of an object detector has a critical role in the quality of features ex-
tracted. In-line with the experimental spirit, the authors experimented with three different
backbones: CSPResNext-50, CSPDarknet-53, and EfficientNet-B3 [53]. The first was based
on DenseNet [54] aimed at alleviating the vanishing gradient problem and bolstering fea-
ture propagation and reuse, resulting in reduced number of network parameters. Effi-
cientNet was proposed by Google Brain. The paper posits that an optima selection for
parameters when scaling CNNs can be ascertained through a search mechanism. After
experimenting with the above feature extractors, the authors based on their intuition and
backed by their experimental results selected CSPDarknet-53 as the official backbone for
YOLO-v4.

For feature aggregation, the authors experimented with several techniques for inte-
gration at the neck level including feature pyramid network (FPN) [55] and path aggrega-
tion network (PANet) [56]. Ultimately, the authors opted for PANet as the feature aggre-
gator. The modified PANet, as shown in Figure 6, utilized the concatenation mechanism.
PANet can be seen as an advanced version of FPN, namely, PANet proposed a bottom-up
augmentation path along with the top-down path (FPN), adding a ‘shortcut’ connection
for linking fine-grained features from high- and low-level layers. Additionally, the authors
introduced a SPP [57] block post CSPDarknet-53 aimed at increasing the receptive field
and separation of the important features arriving from the backbone.

Figure 5. Skip-connection configuration.

Machines 2023, 11, 677 8 of 25

YOLO-v3 proposed a hybrid architecture factoring in aspects of YOLO-v2, Darknet-
53 [51], and the ResNet concept of residual networks. This enabled the preservation of
fine-grained features by allowing for the gradient flow from shallow layers to deeper layers.

On top of the existing 53 layers of Darknet-53 for feature extraction, a stack of 53 addi-
tional layers was added for the detection head, totaling 106 convolutional layers for the
YOLO-v3. Additionally, YOLO-v3 facilitated multi-scale detection, namely, the architecture
made predictions at three different scales of granularity for outputting better performance,
increasing the probability of small object detection.

2.4. YOLO-v4

YOLO-v4 was the first variant of the YOLO family after the original author discon-
tinued further work that was introduced to the computer vision community in April 2020
by Alexey Bochkovsky et al. [52]. YOLO-v4 was essentially the distillation of a large suite
of object detection techniques, tested and enhanced for providing a real-time, lightweight
object detector.

The backbone of an object detector has a critical role in the quality of features extracted.
In-line with the experimental spirit, the authors experimented with three different back-
bones: CSPResNext-50, CSPDarknet-53, and EfficientNet-B3 [53]. The first was based on
DenseNet [54] aimed at alleviating the vanishing gradient problem and bolstering feature
propagation and reuse, resulting in reduced number of network parameters. EfficientNet
was proposed by Google Brain. The paper posits that an optima selection for parameters
when scaling CNNs can be ascertained through a search mechanism. After experimenting
with the above feature extractors, the authors based on their intuition and backed by their
experimental results selected CSPDarknet-53 as the official backbone for YOLO-v4.

For feature aggregation, the authors experimented with several techniques for integra-
tion at the neck level including feature pyramid network (FPN) [55] and path aggregation
network (PANet) [56]. Ultimately, the authors opted for PANet as the feature aggregator.
The modified PANet, as shown in Figure 6, utilized the concatenation mechanism. PANet
can be seen as an advanced version of FPN, namely, PANet proposed a bottom-up augmen-
tation path along with the top-down path (FPN), adding a ‘shortcut’ connection for linking
fine-grained features from high- and low-level layers. Additionally, the authors introduced
a SPP [57] block post CSPDarknet-53 aimed at increasing the receptive field and separation
of the important features arriving from the backbone.

Machines 2023, 11, x FOR PEER REVIEW 9 of 26

Figure 6. Path aggregation. (a) Original PAN, (b) modified PAN.

The authors also introduced a bag-of-freebies, presented in Figure 7, primarily con-
sisting of augmentations, such as Mosaic aimed at improving performance without intro-
ducing additional baggage onto the inference time. CIoU loss [58] was also introduced as
a freebie, focused on the overlap of the predicted and ground truth bounding box. In the
case of no overlap, the idea was to observe the closeness of the two boxes and encourage
overlap if in close proximity.

In addition to the bag-of-freebies, the authors introduced ‘bag-of-specials’, with the
authors claiming that although this set of optimization techniques presented in Figure 7
would marginally impact the inference time, they would significantly improve the overall
performance. One of the components within the ‘bag-of-specials’ was the Mish [59] acti-
vation function aimed at moving feature creations toward their respective optimal points.
Cross mini-batch normalization [60] was also presented facilitating the running on any
GPU as many batch normalization techniques involve multiple GPUs operating in tan-
dem.

Figure 7. State-of-the-art optimization methodologies experimented in YOLO-v4 via bag-of-spe-
cials.

2.5. YOLO-v5
The YOLO network in essence consists of three key pillars, namely, backbone for fea-

ture extraction, neck focused on feature aggregation, and the head for consuming output

Figure 6. Path aggregation. (a) Original PAN, (b) modified PAN.

Machines 2023, 11, 677 9 of 25

The authors also introduced a bag-of-freebies, presented in Figure 7, primarily consist-
ing of augmentations, such as Mosaic aimed at improving performance without introducing
additional baggage onto the inference time. CIoU loss [58] was also introduced as a freebie,
focused on the overlap of the predicted and ground truth bounding box. In the case of no
overlap, the idea was to observe the closeness of the two boxes and encourage overlap if in
close proximity.

Machines 2023, 11, x FOR PEER REVIEW 9 of 26

Figure 6. Path aggregation. (a) Original PAN, (b) modified PAN.

The authors also introduced a bag-of-freebies, presented in Figure 7, primarily con-
sisting of augmentations, such as Mosaic aimed at improving performance without intro-
ducing additional baggage onto the inference time. CIoU loss [58] was also introduced as
a freebie, focused on the overlap of the predicted and ground truth bounding box. In the
case of no overlap, the idea was to observe the closeness of the two boxes and encourage
overlap if in close proximity.

In addition to the bag-of-freebies, the authors introduced ‘bag-of-specials’, with the
authors claiming that although this set of optimization techniques presented in Figure 7
would marginally impact the inference time, they would significantly improve the overall
performance. One of the components within the ‘bag-of-specials’ was the Mish [59] acti-
vation function aimed at moving feature creations toward their respective optimal points.
Cross mini-batch normalization [60] was also presented facilitating the running on any
GPU as many batch normalization techniques involve multiple GPUs operating in tan-
dem.

Figure 7. State-of-the-art optimization methodologies experimented in YOLO-v4 via bag-of-spe-
cials.

2.5. YOLO-v5
The YOLO network in essence consists of three key pillars, namely, backbone for fea-

ture extraction, neck focused on feature aggregation, and the head for consuming output

Figure 7. State-of-the-art optimization methodologies experimented in YOLO-v4 via bag-of-specials.

In addition to the bag-of-freebies, the authors introduced ‘bag-of-specials’, with the
authors claiming that although this set of optimization techniques presented in Figure 7
would marginally impact the inference time, they would significantly improve the overall
performance. One of the components within the ‘bag-of-specials’ was the Mish [59] acti-
vation function aimed at moving feature creations toward their respective optimal points.
Cross mini-batch normalization [60] was also presented facilitating the running on any
GPU as many batch normalization techniques involve multiple GPUs operating in tandem.

2.5. YOLO-v5

The YOLO network in essence consists of three key pillars, namely, backbone for
feature extraction, neck focused on feature aggregation, and the head for consuming
output features from the neck as input and generating detections. YOLO-v5 [61] similar to
YOLO-v4, with respect to contributions, focus on the conglomeration and refinement of
various computer vision techniques for enhancing performance. In addition, in less than
2 months after the release of YOLO-v4, Glenn Jocher open-sourced an implementation of
YOLO-v5 [61].

A notable mention is that YOLO-v5 was the first native release of architectures be-
longing to the YOLO clan, to be written in PyTorch [62] rather than Darknet. Although
Darknet is considered as a flexible low-level research framework, it was not purpose built
for production environments with a significantly smaller number of subscribers due to
configurability challenges. PyTorch, on the other hand, provided an established eco-system,
with a wider subscription base among the computer vision community and provided the
supporting infrastructure for facilitating mobile device deployment.

Machines 2023, 11, 677 10 of 25

In addition, another notable proposal was the ‘automated anchor box learning’ concept.
In YOLO-v2, the anchor box mechanism was introduced based on selecting anchor boxes
that closely resemble the dimensions of the ground truth boxes in the training set via
k-means. The authors select the five close-fit anchor boxes based on the COCO dataset [63]
and implement them as default boxes. However, the application of this methodology to a
unique dataset with significant object differentials compared to those present in the COCO
dataset can quickly expose the inability of the predefined boxes to adapt quickly to the
unique dataset. Therefore, authors in YOLO-v5 integrated the anchor box selection process
into the YOLO-v5 pipeline. As a result, the network would automatically learn the best-fit
anchor boxes for the particular dataset and utilize them during training to accelerate the
process. YOLO-v5 comes in several variants with respect to the computational parameters
as presented in Table 1.

Table 1. YOLO-v5 internal variant comparison.

Model Average Precision (@50) Parameters FLOPs

YOLO-v5s 55.8% 7.5 M 13.2B
YOLO-v5m 62.4% 21.8 M 39.4B
YOLO-v5l 65.4% 47.8 M 88.1B
YOLO-v5x 66.9% 86.7 M 205.7B

YOLO-v5 comprised of a weight file equating to 27 MB compared to YOLO-v5l at 192
MB. Figure 8 demonstrates the superiority of YOLO-v5 over EfficientDet [64].

Machines 2023, 11, x FOR PEER REVIEW 10 of 26

features from the neck as input and generating detections. YOLO-v5 [61] similar to YOLO-
v4, with respect to contributions, focus on the conglomeration and refinement of various
computer vision techniques for enhancing performance. In addition, in less than 2 months
after the release of YOLO-v4, Glenn Jocher open-sourced an implementation of YOLO-v5
[61].

A notable mention is that YOLO-v5 was the first native release of architectures be-
longing to the YOLO clan, to be written in PyTorch [62] rather than Darknet. Although
Darknet is considered as a flexible low-level research framework, it was not purpose built
for production environments with a significantly smaller number of subscribers due to
configurability challenges. PyTorch, on the other hand, provided an established eco-sys-
tem, with a wider subscription base among the computer vision community and provided
the supporting infrastructure for facilitating mobile device deployment.

In addition, another notable proposal was the ‘automated anchor box learning’ con-
cept. In YOLO-v2, the anchor box mechanism was introduced based on selecting anchor
boxes that closely resemble the dimensions of the ground truth boxes in the training set
via k-means. The authors select the five close-fit anchor boxes based on the COCO dataset
[63] and implement them as default boxes. However, the application of this methodology
to a unique dataset with significant object differentials compared to those present in the
COCO dataset can quickly expose the inability of the predefined boxes to adapt quickly
to the unique dataset. Therefore, authors in YOLO-v5 integrated the anchor box selection
process into the YOLO-v5 pipeline. As a result, the network would automatically learn
the best-fit anchor boxes for the particular dataset and utilize them during training to ac-
celerate the process. YOLO-v5 comes in several variants with respect to the computational
parameters as presented in Table 1.

Table 1. YOLO-v5 internal variant comparison.

Model Average Precision (@50) Parameters FLOPs
YOLO-v5s 55.8% 7.5 M 13.2B
YOLO-v5m 62.4% 21.8 M 39.4B
YOLO-v5l 65.4% 47.8 M 88.1B
YOLO-v5x 66.9% 86.7 M 205.7B

YOLO-v5 comprised of a weight file equating to 27 MB compared to YOLO-v5l at 192
MB. Figure 8 demonstrates the superiority of YOLO-v5 over EfficientDet [64].

Figure 8. YOLO-v5 variant comparison vs. EfficientDet [61]. Figure 8. YOLO-v5 variant comparison vs. EfficientDet [61].

2.6. YOLO-v6

The initial codebase for YOLO-v6 [65] was released in June 2022 by the Meituan
Technical Team based in China. The authors focused their design strategy on producing an
industry-orientated object detector.

To meet industrial application requirements, the architecture would need to be highly
performant on a range of hardware options, maintaining high speed and accuracy. To
conform with the diverse set of industrial applications, YOLO-v6 comes in several variants
starting with YOLO-v6-nano as the fastest with the least number of parameters and reaching
YOLO-v6-large with high accuracy at the expense of speed, as shown in Table 2.

Machines 2023, 11, 677 11 of 25

Table 2. YOLO-v6 variant comparison.

Variant mAP 0.5:0.95
(COCO-val) FPS Tesla T4 Parameters (Million)

YOLO-v6-N 35.9 (300 epochs) 802 4.3
YOLO-v6-T 40.3 (300 epochs) 449 15.0

YOLO-v6-RepOpt 43.3 (300 epochs) 596 17.2
YOLO-v6-S 43.5 (300 epochs) 495 17.2
YOLO-v6-M 49.7 233 34.3

YOLO-v6-L-ReLU 51.7 149 58.5

The impressive performance presented in Table 2 is a result of several innovations
integrated into the YOLO-v6 architecture. The key contributions can be summed into four
points. First, in contrast to its predecessors, YOLO-v6 opts for an anchor-free approach,
making it 51% faster when compared to anchor-based approaches.

Second, the authors introduced a revised reparametrized backbone and neck, proposed
as EfficientRep backbone and Rep-PAN neck [66], namely, up to and including YOLO-v5,
the regression and classification heads shared the same features. Breaking the convention,
YOLO-v6 implements the decoupled head as shown in Figure 9. As a result, the architecture
has additional layers separating features from the final head, as empirically shown to
improve the performance. Third, YOLO-v6 mandates a two-loss function. Varifocal loss
(VFL) [67] is used as the classification loss and distribution focal loss (DFL) [68], along with
SIoU/GIoU [69] as regression loss. VFL being a derivative of focal loss, treats positive
and negative samples at varying degrees of importance, helping in balancing the learning
signals from both sample types. DFL is deployed for box regression in YOLO-v6 medium
and large variants, treating the continuous distribution of the box locations as discretized
probability distribution, which is shown to be particularly efficient when the ground truth
box boundaries are blurred.

Machines 2023, 11, x FOR PEER REVIEW 11 of 26

2.6. YOLO-v6
The initial codebase for YOLO-v6 [65] was released in June 2022 by the Meituan Tech-

nical Team based in China. The authors focused their design strategy on producing an
industry-orientated object detector.

To meet industrial application requirements, the architecture would need to be
highly performant on a range of hardware options, maintaining high speed and accuracy.
To conform with the diverse set of industrial applications, YOLO-v6 comes in several var-
iants starting with YOLO-v6-nano as the fastest with the least number of parameters and
reaching YOLO-v6-large with high accuracy at the expense of speed, as shown in Table 2.

Table 2. YOLO-v6 variant comparison.

Variant
mAP 0.5:0.95
(COCO-val) FPS Tesla T4 Parameters (Million)

YOLO-v6-N 35.9 (300 epochs) 802 4.3
YOLO-v6-T 40.3 (300 epochs) 449 15.0

YOLO-v6-RepOpt 43.3 (300 epochs) 596 17.2
YOLO-v6-S 43.5 (300 epochs) 495 17.2
YOLO-v6-M 49.7 233 34.3

YOLO-v6-L-ReLU 51.7 149 58.5

The impressive performance presented in Table 2 is a result of several innovations
integrated into the YOLO-v6 architecture. The key contributions can be summed into four
points. First, in contrast to its predecessors, YOLO-v6 opts for an anchor-free approach,
making it 51% faster when compared to anchor-based approaches.

Second, the authors introduced a revised reparametrized backbone and neck, pro-
posed as EfficientRep backbone and Rep-PAN neck [66], namely, up to and including
YOLO-v5, the regression and classification heads shared the same features. Breaking the
convention, YOLO-v6 implements the decoupled head as shown in Figure 9. As a result,
the architecture has additional layers separating features from the final head, as empiri-
cally shown to improve the performance. Third, YOLO-v6 mandates a two-loss function.
Varifocal loss (VFL) [67] is used as the classification loss and distribution focal loss (DFL)
[68], along with SIoU/GIoU [69] as regression loss. VFL being a derivative of focal loss,
treats positive and negative samples at varying degrees of importance, helping in balanc-
ing the learning signals from both sample types. DFL is deployed for box regression in
YOLO-v6 medium and large variants, treating the continuous distribution of the box lo-
cations as discretized probability distribution, which is shown to be particularly efficient
when the ground truth box boundaries are blurred.

Figure 9. YOLO-v6 model base architecture.

Additional improvements focused on industrial applications include the use of knowl-
edge distillation [70], involving a teacher model used for training a student model, where
the predictions of the teacher are used as soft labels along with the ground truth for training
the student. This comes without fueling the computational cost as essentially the aim is
to train a smaller (student) model to replicate the high performance of the larger (teacher)
model. Comparing the performance of YOLO-v6 with its predecessors, including YOLO-v5
on the benchmark COCO dataset in Figure 10, it is clear that YOLO-v6 achieves a higher
mAP at various FPS.

Machines 2023, 11, 677 12 of 25

Machines 2023, 11, x FOR PEER REVIEW 12 of 26

Figure 9. YOLO-v6 model base architecture.

Additional improvements focused on industrial applications include the use of
knowledge distillation [70], involving a teacher model used for training a student model,
where the predictions of the teacher are used as soft labels along with the ground truth
for training the student. This comes without fueling the computational cost as essentially
the aim is to train a smaller (student) model to replicate the high performance of the larger
(teacher) model. Comparing the performance of YOLO-v6 with its predecessors, includ-
ing YOLO-v5 on the benchmark COCO dataset in Figure 10, it is clear that YOLO-v6
achieves a higher mAP at various FPS.

Figure 10. Relative evaluation of YOLO-v6 vs. YOLO-v5 [71].

2.7. YOLO-v7
The following month after the release of YOLO-v6, the YOLO-v7 was released [72].

Although other variants have been released in between, including YOLO-X [73] and
YOLO-R [74], these focused more on GPU speed enhancements with respect to inferenc-
ing. YOLO-v7 proposes several architectural reforms for improving the accuracy and
maintaining high detection speeds. The proposed reforms can be split into two categories:
Architectural reforms and Trainable BoF (bag-of-freebies). Architectural reforms included
the implementation of the E-ELAN (extended efficient layer aggregation network) [75] in
the YOLO-v7 backbone, taking inspiration from research advancements in network effi-
ciency. The design of the E-ELAN was guided by the analysis of factors that impact accu-
racy and speed, such as memory access cost, input/output channel ratio, and gradient
path.

The second architectural reform was presented as compound model scaling, as
shown in Figure 11. The aim was to cater for a wider scope of application requirements,
i.e., certain applications require accuracy to be prioritized, whilst others may prioritize
speed. Although NAS (network architecture search) [76] can be used for parameter-spe-
cific scaling to find the best factors, the scaling factors are independent [77]. Whereas the
compound-scaling mechanism allows for the width and depth to be scaled in coherence
for concatenation-based networks, maintaining optimal network architecture while scal-
ing for different sizes.

Figure 10. Relative evaluation of YOLO-v6 vs. YOLO-v5 [71].

2.7. YOLO-v7

The following month after the release of YOLO-v6, the YOLO-v7 was released [72].
Although other variants have been released in between, including YOLO-X [73] and YOLO-
R [74], these focused more on GPU speed enhancements with respect to inferencing. YOLO-
v7 proposes several architectural reforms for improving the accuracy and maintaining high
detection speeds. The proposed reforms can be split into two categories: Architectural
reforms and Trainable BoF (bag-of-freebies). Architectural reforms included the implemen-
tation of the E-ELAN (extended efficient layer aggregation network) [75] in the YOLO-v7
backbone, taking inspiration from research advancements in network efficiency. The design
of the E-ELAN was guided by the analysis of factors that impact accuracy and speed, such
as memory access cost, input/output channel ratio, and gradient path.

The second architectural reform was presented as compound model scaling, as shown
in Figure 11. The aim was to cater for a wider scope of application requirements, i.e., certain
applications require accuracy to be prioritized, whilst others may prioritize speed. Although
NAS (network architecture search) [76] can be used for parameter-specific scaling to find
the best factors, the scaling factors are independent [77]. Whereas the compound-scaling
mechanism allows for the width and depth to be scaled in coherence for concatenation-
based networks, maintaining optimal network architecture while scaling for different sizes.

Machines 2023, 11, x FOR PEER REVIEW 13 of 26

Figure 11. YOLO-v7 compound scaling.

Re-parameterization planning is based on averaging a set of model weights to obtain
a more robust network [78,79]. Expanding further, module level re-parameterization ena-
bles segments of the network to regulate their own parameterization strategies. YOLO-v7
utilizes gradient flow propagation paths with the aim to observe which internal network
modules should deploy re-parameterization strategies.

The auxiliary head coarse-to-fine concept is proposed on the premise that the net-
work head is quite far downstream; therefore, the auxiliary head is deployed at the middle
layers to assist in the training process. However, this would not train as efficiently as the
lead head, due to the former not having access to the complete network.

Figure 12 presents a performance comparison of YOLO-v7 with the preceding YOLO
variants on the MS COCO dataset. It is clear from Figure 12 that all YOLO-v7 variants
surpassed the compared object detectors in accuracy and speed in the range of 5–160 FPS.
It is, however, important to note, as mentioned by the authors of YOLO-v7, that none of
the YOLO-v7 variants are designed for CPU-based mobile device deployment. YOLO-v7-
tiny/v7/W6 variants are designed for edge GPU, consumer GPU, and cloud GPU, respec-
tively. Whilst YOLO-v7-E6/D6/E6E are designed for high-end cloud GPUs only.

Figure 12. YOLO-v7 comparison vs. other object detectors [72].

Figure 11. YOLO-v7 compound scaling.

Machines 2023, 11, 677 13 of 25

Re-parameterization planning is based on averaging a set of model weights to obtain a
more robust network [78,79]. Expanding further, module level re-parameterization enables
segments of the network to regulate their own parameterization strategies. YOLO-v7
utilizes gradient flow propagation paths with the aim to observe which internal network
modules should deploy re-parameterization strategies.

The auxiliary head coarse-to-fine concept is proposed on the premise that the network
head is quite far downstream; therefore, the auxiliary head is deployed at the middle layers
to assist in the training process. However, this would not train as efficiently as the lead
head, due to the former not having access to the complete network.

Figure 12 presents a performance comparison of YOLO-v7 with the preceding YOLO
variants on the MS COCO dataset. It is clear from Figure 12 that all YOLO-v7 variants
surpassed the compared object detectors in accuracy and speed in the range of 5–160 FPS.
It is, however, important to note, as mentioned by the authors of YOLO-v7, that none of
the YOLO-v7 variants are designed for CPU-based mobile device deployment. YOLO-
v7-tiny/v7/W6 variants are designed for edge GPU, consumer GPU, and cloud GPU,
respectively. Whilst YOLO-v7-E6/D6/E6E are designed for high-end cloud GPUs only.

Machines 2023, 11, x FOR PEER REVIEW 13 of 26

Figure 11. YOLO-v7 compound scaling.

Re-parameterization planning is based on averaging a set of model weights to obtain
a more robust network [78,79]. Expanding further, module level re-parameterization ena-
bles segments of the network to regulate their own parameterization strategies. YOLO-v7
utilizes gradient flow propagation paths with the aim to observe which internal network
modules should deploy re-parameterization strategies.

The auxiliary head coarse-to-fine concept is proposed on the premise that the net-
work head is quite far downstream; therefore, the auxiliary head is deployed at the middle
layers to assist in the training process. However, this would not train as efficiently as the
lead head, due to the former not having access to the complete network.

Figure 12 presents a performance comparison of YOLO-v7 with the preceding YOLO
variants on the MS COCO dataset. It is clear from Figure 12 that all YOLO-v7 variants
surpassed the compared object detectors in accuracy and speed in the range of 5–160 FPS.
It is, however, important to note, as mentioned by the authors of YOLO-v7, that none of
the YOLO-v7 variants are designed for CPU-based mobile device deployment. YOLO-v7-
tiny/v7/W6 variants are designed for edge GPU, consumer GPU, and cloud GPU, respec-
tively. Whilst YOLO-v7-E6/D6/E6E are designed for high-end cloud GPUs only.

Figure 12. YOLO-v7 comparison vs. other object detectors [72]. Figure 12. YOLO-v7 comparison vs. other object detectors [72].

Internal variant comparison of YOLO-v7 is presented in Table 3. As evident, there is a
significant performance gap with respect to mAP when comparing YOLO-v7-tiny with the
computationally demanding YOLO-v7-D6. However, the latter would not be suitable for
edge deployment onto a computationally constrained device.

Table 3. Variant comparison of YOLO-v7.

Model Size (Pixels) mAP (@50) Parameters FLOPs

YOLO-v7-tiny 640 52.8% 6.2 M 5.8G
YOLO-v7 640 69.7% 36.9 M 104.7G

YOLO-v7-X 640 71.1% 71.3 M 189.9G
YOLO-v7-E6 1280 73.5% 97.2 M 515.2G
YOLO-v7-D6 1280 73.8% 154.7 M 806.8G

Machines 2023, 11, 677 14 of 25

2.8. YOLO-v8

The latest addition to the family of YOLO was confirmed in January 2023 with the
release of YOLO-v8 [80] by Ultralytics (also released YOLO-v5). Although a paper release
is impending and many features are yet to be added to the YOLO-v8 repository, initial
comparisons of the newcomer against its predecessors demonstrate its superiority as the
new YOLO state-of-the-art.

Figure 13 demonstrates that when comparing YOLO-v8 against YOLO-v5 and YOLO-
v6 trained on 640 image resolution, all YOLO-v8 variants output better throughput with a
similar number of parameters, indicating toward hardware-efficient, architectural reforms.
The fact that YOLO-v8 and YOLO-v5 are presented by Ultralytics with YOLO-v5 providing
impressive real-time performance and based on the initial benchmarking results released
by Ultralytics, it is strongly assumed that the YOLO-v8 will be focusing on constrained
edge device deployment at high-inference speed.

Machines 2023, 11, x FOR PEER REVIEW 15 of 26

Figure 13. YOLO-v8 comparison with predecessors [80].

3. Industrial Defect Detection Via YOLO
The previous section demonstrates the rapid evolution of the YOLO ‘clan’ of object

detectors amongst the computer vision community. This section of the review focuses on
the implementation of YOLO variants for the detection of surface defects within the in-
dustrial setting. The selection of ‘industrial setting’ is due to its varying and stringent re-
quirements alternating between accuracy and speed, a theme which is found through
DNA of the YOLO variants.

3.1. Industrial Fabric Defect Detection
Rui Jin et al. [81] in their premise state the inefficiencies of manual inspection in the

textile manufacturing domain as high cost of labor, human-related fatigue, and reduced
detection speed (less than 20 m/min). The authors aim to address these inefficiencies by
proposing a YOLO-v5-based architecture, coupled with a spatial attention mechanism for
accentuation of smaller defective regions. The proposed approach involved a teacher net-
work trained on the fabric dataset. Post training of the teacher network, the learned
weights were distilled to the student network, which was compatible for deployment onto
a Jetson TX2 [82] via TensorRT [83]. The results presented by the authors show, as ex-
pected, that the teacher network reported higher performance with an AUC of 98.1% com-
pared to 95.2% (student network). However, as the student network was computationally
smaller, the inference time was significantly less at 16 ms for the student network in con-
trast to the teacher network at 35 ms on the Jetson TX2. Based on the performance, the

Figure 13. YOLO-v8 comparison with predecessors [80].

3. Industrial Defect Detection via YOLO

The previous section demonstrates the rapid evolution of the YOLO ‘clan’ of object
detectors amongst the computer vision community. This section of the review focuses
on the implementation of YOLO variants for the detection of surface defects within the
industrial setting. The selection of ‘industrial setting’ is due to its varying and stringent
requirements alternating between accuracy and speed, a theme which is found through
DNA of the YOLO variants.

Machines 2023, 11, 677 15 of 25

3.1. Industrial Fabric Defect Detection

Rui Jin et al. [81] in their premise state the inefficiencies of manual inspection in the
textile manufacturing domain as high cost of labor, human-related fatigue, and reduced
detection speed (less than 20 m/min). The authors aim to address these inefficiencies by
proposing a YOLO-v5-based architecture, coupled with a spatial attention mechanism
for accentuation of smaller defective regions. The proposed approach involved a teacher
network trained on the fabric dataset. Post training of the teacher network, the learned
weights were distilled to the student network, which was compatible for deployment onto
a Jetson TX2 [82] via TensorRT [83]. The results presented by the authors show, as expected,
that the teacher network reported higher performance with an AUC of 98.1% compared to
95.2% (student network). However, as the student network was computationally smaller,
the inference time was significantly less at 16 ms for the student network in contrast to the
teacher network at 35 ms on the Jetson TX2. Based on the performance, the authors claim
that the proposed solution provides high accuracy and real-time inference speed, making it
compatible for deployment via the edge device.

Sifundvoleshile Dlamini et al. [84] propose a production environment fabric defect
detection framework focused on real-time detection and accurate classification on-site,
as shown in Figure 14. The authors embed conventional image processing at the onset
of their data enhancement strategy, i.e., filtering to denoise feature enhancement. Post
augmentations and data scaling, the authors train the YOLO-v4 architecture based on
pretrained weights. The reported performance was respectable with an F1-score of 93.6%,
at an impressive detection speed of 34 fps and prediction speed of 21.4 ms. The authors
claim that the performance is evident to the effectiveness of the selected architecture for the
given domain.

Machines 2023, 11, x FOR PEER REVIEW 16 of 26

authors claim that the proposed solution provides high accuracy and real-time inference
speed, making it compatible for deployment via the edge device.

Sifundvoleshile Dlamini et al. [84] propose a production environment fabric defect
detection framework focused on real-time detection and accurate classification on-site, as
shown in Figure 14. The authors embed conventional image processing at the onset of
their data enhancement strategy, i.e., filtering to denoise feature enhancement. Post aug-
mentations and data scaling, the authors train the YOLO-v4 architecture based on pre-
trained weights. The reported performance was respectable with an F1-score of 93.6%, at
an impressive detection speed of 34 fps and prediction speed of 21.4 ms. The authors claim
that the performance is evident to the effectiveness of the selected architecture for the
given domain.

Figure 14. Inspection machine integration [84].

Restricted by the available computing resources for edge deployment, Guijuan Lin et
al. [85] state problems with quality inspection in the fabric production domain, including
minute scale of defects, extreme unbalance with the aspect ratio of certain defects, and
slow defect detection speeds. To address these issues, the authors proposed a sliding-win-
dow, self-attention (multihead) mechanism calibrated for small defect targets. Addition-
ally, the Swin Transformer [86] module as depicted in Figure 15 was integrated into the
original YOLO-v5 architecture for the extraction of hierarchical features. Furthermore, the
generalized focal loss is implemented with the architecture aimed at improving the learn-
ing process for positive target instances, whilst lowering the rate of missed detections. The
authors report the accuracy of the proposed solution on a real-world fabric dataset, reach-
ing 76.5% mAP at 58.8 FPS, making it compatible with the real-time detection require-
ments for detection via embedded devices.

Figure 14. Inspection machine integration [84].

Restricted by the available computing resources for edge deployment, Guijuan Lin et al. [85]
state problems with quality inspection in the fabric production domain, including minute
scale of defects, extreme unbalance with the aspect ratio of certain defects, and slow defect
detection speeds. To address these issues, the authors proposed a sliding-window, self-
attention (multihead) mechanism calibrated for small defect targets. Additionally, the Swin
Transformer [86] module as depicted in Figure 15 was integrated into the original YOLO-v5
architecture for the extraction of hierarchical features. Furthermore, the generalized focal
loss is implemented with the architecture aimed at improving the learning process for
positive target instances, whilst lowering the rate of missed detections. The authors report
the accuracy of the proposed solution on a real-world fabric dataset, reaching 76.5% mAP

Machines 2023, 11, 677 16 of 25

at 58.8 FPS, making it compatible with the real-time detection requirements for detection
via embedded devices.

Machines 2023, 11, x FOR PEER REVIEW 17 of 26

Figure 15. Backbone for Swin Transformer network [85].

3.2. Solar Cell Surface Defect Detection
Setting their premise, the authors [87] state that human-led Photovoltaic (PV) inspec-

tion has many drawbacks including the requirement of operation and maintenance
(O&M) engineers, cell-by-cell inspection, high workload, and reduced efficiency. The au-
thors propose an improved architecture based on YOLO-v5 for the characterization of
complex solar cell surface textures and defective regions. The proposal is based on the
integration of deformable convolution within the CSP module with the aim of achieving
an adaptive learning scale. Additionally, an attention mechanism is incorporated for en-
hanced feature extraction. Moreover, the authors optimize the original YOLO-v5 architec-
ture further via K-means++ clustering for anchor box determination algorithm. Based on
the presented results, the improved architecture achieved a respectable mAP of 89.64% on
an EL-based solar cell image dataset, 7.85% higher compared to mAP for the original ar-
chitecture, with detection speed reaching 36.24 FPS, which can be translated as a more
accurate detection while remaining compatible with the real-time requirements.

Amran Binomairah et al. [88] highlight two frequent defects encountered during the
manufacturing process of crystalline solar cells as dark spot/region and microcracks. The
latter can have a detrimental impact on the performance of the module, which is a major
cause for PV module failures. The authors subscribe to the YOLO architecture, comparing
the performance of their methodology on YOLO-v4 and an improved YOLO-v4-tiny inte-
grated with a spatial pyramid pooling mechanism. Based on the presented results, YOLO-
v4 achieved 98.8% mAP at 62.9 ms, whilst the improved YOLO-v4-tiny lagged with 91%
mAP at 28.2 ms. The authors claim that although the latter is less accurate, it is notably
faster than the former.

Tianyi Sun et al. [89] focus on automated hot-spot detection within PV cells based a
modified version of the YOLO-v5 architecture. The first improvement comes in the form
of enhanced anchors and detection heads for the respective architecture. To improve the
detection precision at varying scales, k-means clustering [48] is deployed for clustering
the length–width ratio with respect to the data annotation frame. Additionally, a set of the
anchors consisting of smaller values were added to cater for the detection of small defects
by optimizing the cluster number. The reported performance of the improved architecture
was reported as 87.8% mAP, with the average recall rate of 89.0% and F1-score reaching
88.9%. The reported FPS was impressive reaching 98.6 FPS, with the authors claiming that
the proposed solution would provide intelligent monitoring at PV power stations. Infer-
encing output presented in Figure 16 shows the proposed AP-YOLO-v5 architecture,
providing inferences at a higher confidence level compared to the original YOLO-v5.

Figure 15. Backbone for Swin Transformer network [85].

3.2. Solar Cell Surface Defect Detection

Setting their premise, the authors [87] state that human-led Photovoltaic (PV) inspec-
tion has many drawbacks including the requirement of operation and maintenance (O&M)
engineers, cell-by-cell inspection, high workload, and reduced efficiency. The authors
propose an improved architecture based on YOLO-v5 for the characterization of complex
solar cell surface textures and defective regions. The proposal is based on the integration
of deformable convolution within the CSP module with the aim of achieving an adaptive
learning scale. Additionally, an attention mechanism is incorporated for enhanced feature
extraction. Moreover, the authors optimize the original YOLO-v5 architecture further via
K-means++ clustering for anchor box determination algorithm. Based on the presented
results, the improved architecture achieved a respectable mAP of 89.64% on an EL-based
solar cell image dataset, 7.85% higher compared to mAP for the original architecture, with
detection speed reaching 36.24 FPS, which can be translated as a more accurate detection
while remaining compatible with the real-time requirements.

Amran Binomairah et al. [88] highlight two frequent defects encountered during
the manufacturing process of crystalline solar cells as dark spot/region and microcracks.
The latter can have a detrimental impact on the performance of the module, which is
a major cause for PV module failures. The authors subscribe to the YOLO architecture,
comparing the performance of their methodology on YOLO-v4 and an improved YOLO-v4-
tiny integrated with a spatial pyramid pooling mechanism. Based on the presented results,
YOLO-v4 achieved 98.8% mAP at 62.9 ms, whilst the improved YOLO-v4-tiny lagged with
91% mAP at 28.2 ms. The authors claim that although the latter is less accurate, it is notably
faster than the former.

Tianyi Sun et al. [89] focus on automated hot-spot detection within PV cells based a
modified version of the YOLO-v5 architecture. The first improvement comes in the form
of enhanced anchors and detection heads for the respective architecture. To improve the
detection precision at varying scales, k-means clustering [48] is deployed for clustering the
length–width ratio with respect to the data annotation frame. Additionally, a set of the
anchors consisting of smaller values were added to cater for the detection of small defects
by optimizing the cluster number. The reported performance of the improved architecture
was reported as 87.8% mAP, with the average recall rate of 89.0% and F1-score reaching

Machines 2023, 11, 677 17 of 25

88.9%. The reported FPS was impressive reaching 98.6 FPS, with the authors claiming
that the proposed solution would provide intelligent monitoring at PV power stations.
Inferencing output presented in Figure 16 shows the proposed AP-YOLO-v5 architecture,
providing inferences at a higher confidence level compared to the original YOLO-v5.

Machines 2023, 11, x FOR PEER REVIEW 18 of 26

Figure 16. inference/confidence comparison [89].

3.3. Steel Surface Defect Detection
Dinming Yang et al. [90] set the premise of their research by stating the importance

of steel pipe quality inspection, citing the growing demand in countries, such as China.
Although X-ray testing is utilized as one of the key methods for industrial nondestructive
testing (NDT), the authors state that it still requires human assistance for the determina-
tion, classification, and localization of the defects. The authors propose the implementa-
tion of YOLO-v5 for production-based weld steel defect detection based on X-ray images
of the weld pipe. The authors claim that the trained YOLO-v5 reached a mAP of 98.7%
(IoU-0.5), whilst meeting the real-time detection requirements of steel pipe production
with a single image detection rate of 0.12 s.

Zhuxi MA et al. [91] address the issue of large-scale computation and specific hard-
ware requirements for automated defect detection in aluminum strips. The authors select
YOLO-v4 as the architecture, whilst the backbone is constructed to make use of depth-
wise separable convolutions along with a parallel dual attention mechanism for feature
enhancement, as shown in Figure 17. The proposed network is tested on real data from a
cold-rolling workshop, providing impressive results on real data achieving an mAP of
96.28%. Compared to the original YOLO-v4, the authors claim that the proposed architec-
ture volume is reduced by 83.38%, whilst the inference speed is increased by a factor of
three. The increase in performance was partly due to the custom anchor approach,
whereby due to the maximum aspect ratio of the custom dataset, the defect was set to 1:20
which is in-line with the defect characteristics, such as scratch marks.

Figure 16. Inference/confidence comparison [89].

3.3. Steel Surface Defect Detection

Dinming Yang et al. [90] set the premise of their research by stating the importance
of steel pipe quality inspection, citing the growing demand in countries, such as China.
Although X-ray testing is utilized as one of the key methods for industrial nondestructive
testing (NDT), the authors state that it still requires human assistance for the determination,
classification, and localization of the defects. The authors propose the implementation of
YOLO-v5 for production-based weld steel defect detection based on X-ray images of the
weld pipe. The authors claim that the trained YOLO-v5 reached a mAP of 98.7% (IoU-0.5),
whilst meeting the real-time detection requirements of steel pipe production with a single
image detection rate of 0.12 s.

Zhuxi MA et al. [91] address the issue of large-scale computation and specific hard-
ware requirements for automated defect detection in aluminum strips. The authors select
YOLO-v4 as the architecture, whilst the backbone is constructed to make use of depth-
wise separable convolutions along with a parallel dual attention mechanism for feature
enhancement, as shown in Figure 17. The proposed network is tested on real data from
a cold-rolling workshop, providing impressive results on real data achieving an mAP of
96.28%. Compared to the original YOLO-v4, the authors claim that the proposed architec-
ture volume is reduced by 83.38%, whilst the inference speed is increased by a factor of
three. The increase in performance was partly due to the custom anchor approach, whereby
due to the maximum aspect ratio of the custom dataset, the defect was set to 1:20 which is
in-line with the defect characteristics, such as scratch marks.

Machines 2023, 11, 677 18 of 25Machines 2023, 11, x FOR PEER REVIEW 19 of 26

Figure 17. Proposed parallel network structure [91].

Jianting Shi et al. [92] cite the manufacturing process of steel production as the reason
for various defects originating on the steel surface, such as rolling scale and patches. The
authors state that the small dimensions of the defects as well as the stringent detection
requirements make the quality inspection process a challenging task. Therefore, the au-
thors present an improved version of YOLO-v5 by incorporating an attention mechanism
for facilitating the transmission of shallow features from the backbone to the neck, pre-
serving the defective regions, in addition to k-means clustering of anchor boxes for ad-
dressing the extreme aspect ratios of defective targets within the dataset. The authors state
that the improved architecture achieved 86.35% mAP reaching 45 FPS detection speed,
whilst the original architecture achieved 81.78% mAP at 52 FPS.

3.4. Pallet Racking Defect Inspection
A promising application with significant deployment scope in the warehousing and

general industrial storage centers is automated pallet racking inspection. Warehouses and
distribution centers host a critical infrastructure known as racking for stock storage. Un-
noticed damage to pallet racking can pave the way for significant losses initiated by rack-
ing collapse leading to wasted/damaged stock, financial implications, operational losses,
injured employees, and worst-case, loss of lives [93]. Due to the inefficiencies of the con-
ventional racking inspection mechanisms, such as human-led annual inspection resulting
in labor costs, bias, fatigue, and mechanical products, such as rackguards [94] lacking clas-
sification intelligence, CNN-based automated detection seems to be a promising alterna-
tive.

Realizing the potential, Hussain et al. [95] inaugurated research into automated pallet
racking detection via computer vision. After presenting their initial research based on the
MobileNet-V2 architecture, the authors recently proposed the implementation of YOLO-
v7 for automated pallet racking inspection [96]. The selection of the architecture was in-
line with the stringent requirements of production floor deployment, i.e., edge device de-
ployment, placed onto an operating forklift, requiring real-time detection as the forklift
approaches the racking. Evaluating the performance of the proposed solution on a real
dataset, the authors claimed an impressive performance of 91.1% mAP running at 19 FPS.

Figure 17. Proposed parallel network structure [91].

Jianting Shi et al. [92] cite the manufacturing process of steel production as the reason
for various defects originating on the steel surface, such as rolling scale and patches. The
authors state that the small dimensions of the defects as well as the stringent detection
requirements make the quality inspection process a challenging task. Therefore, the authors
present an improved version of YOLO-v5 by incorporating an attention mechanism for
facilitating the transmission of shallow features from the backbone to the neck, preserving
the defective regions, in addition to k-means clustering of anchor boxes for addressing
the extreme aspect ratios of defective targets within the dataset. The authors state that the
improved architecture achieved 86.35% mAP reaching 45 FPS detection speed, whilst the
original architecture achieved 81.78% mAP at 52 FPS.

3.4. Pallet Racking Defect Inspection

A promising application with significant deployment scope in the warehousing
and general industrial storage centers is automated pallet racking inspection. Ware-
houses and distribution centers host a critical infrastructure known as racking for stock
storage. Unnoticed damage to pallet racking can pave the way for significant losses
initiated by racking collapse leading to wasted/damaged stock, financial implications,
operational losses, injured employees, and worst-case, loss of lives [93]. Due to the
inefficiencies of the conventional racking inspection mechanisms, such as human-led
annual inspection resulting in labor costs, bias, fatigue, and mechanical products, such
as rackguards [94] lacking classification intelligence, CNN-based automated detection
seems to be a promising alternative.

Realizing the potential, Hussain et al. [95] inaugurated research into automated pallet
racking detection via computer vision. After presenting their initial research based on the
MobileNet-V2 architecture, the authors recently proposed the implementation of YOLO-
v7 for automated pallet racking inspection [96]. The selection of the architecture was
in-line with the stringent requirements of production floor deployment, i.e., edge device
deployment, placed onto an operating forklift, requiring real-time detection as the forklift

Machines 2023, 11, 677 19 of 25

approaches the racking. Evaluating the performance of the proposed solution on a real
dataset, the authors claimed an impressive performance of 91.1% mAP running at 19 FPS.

Table 4 presents a comparison of the present research in this emerging field. Although
mask R-CNN presents the highest accuracy, which is a derivative of the segmentation
family of architectures with significant computational load, this makes it an infeasible
option for deployment. Whereas the proposed approach utilizing YOLO-v7 achieved
similar accuracy compared to MobileNet-V2, whilst requiring significantly less training
data along with inferencing at 19 FPS.

Table 4. Racking domain research comparison.

Research Architecture Dataset Size Accuracy FPS

[95] MobileNet-V2 19,717 92.7% -----
[96] YOLO-v7 2095 91.1% 19
[97] Mask-RCNN 75 93.45% -----

4. Discussion

The YOLO family of object detectors has had a significant impact on improving the
potential of computer vision applications. Right from the onset, i.e., the release of the
YOLO-v1 in 2015, significant breakthroughs were introduced. YOLO-v1 became the first
architecture combining the two conventionally separate tasks of bounding box prediction
and classification into one. YOLO-v2 was released in the following year, introducing archi-
tectural improvements and iterative improvements, such as batch normalization, higher
resolution, and anchor boxes. In 2018, YOLO-v3 was released, an extension of previous
variants with enhancements including the introduction of objectness scores for bounding
box predictions added connections for the backbone layers and the ability to generate
predictions at three different levels of granularity, leading to improved performance on
smaller object targets.

After a short delay, YOLO-v4 was released in April 2020, becoming the first variant of
the YOLO family not to be authored by the original author Joseph Redmon. Enhancements
included improved feature aggregation, gifting of the ‘bag of freebies’, and the mish
activation. In a matter of months, YOLO-v5 entered the computer vision territory, becoming
the first variant to be released without being accompanied by a paper release. YOLO-v5
based on PyTorch, with an active GitHub repo further delineated the implementation
process, make it accessible to a wider audience. Focused on internal architectural reforms,
YOLO-v6 authors redesigned the backbone (EfficientRep) and neck (Rep-PAN) modules,
with an inclination toward hardware efficiency. Additionally, anchor-free and the concept
of decoupled head was introduced, implying additional layers for feature separation from
the final head, which is empirically shown to improve the overall performance. The authors
of YOLO-v7 also focused on architectural reforms, considering the amount of memory
required to keep layers within memory and the distance required for gradients to back-
propagate, i.e., shorter gradients, resulting in enhanced learning capacity. For the ultimate
layer aggregation, the authors implemented E-ELAN, which is an extension of the ELAN
computational block. The advent of 2023 introduced the latest version of the YOLO family,
YOLO-v8, which was released by Ultralytics. With an impending paper release, initial
comparisons of the latest version against predecessors have shown promising performance
with respect to throughput when compared to similar computational parameters.

4.1. Reason for Rising Popularity

Table 5 presents a summary of the reviewed YOLO variants based on the underlying
framework, backbone, average-precision (AP), and key contributions. It can be observed
from Table 3 that as the variants evolved there was a shift from the conservative Darknet
framework to a more accessible one, i.e., PyTorch. The AP presented here is based on
COCO-2017 [63] with the exception of YOLO-v1/v2, which are based on VOC-2017 [39].

Machines 2023, 11, 677 20 of 25

COCO-2017 [63] consists of over 80 objects designed to represent a vast array of regularly
seen object. It contains 121,408 images resulting in 883,331 object annotations with median
image ratio of 640 × 480 pixels. It is important to note that the overall accuracy along with
inference capacity depends on the deployed design/training strategies, as demonstrated in
the industrial surface detection section.

Table 5. Abstract variant comparison.

Variant Framework Backbone AP (%) Comments

V1 Darknet Darknet-24 63.4 Only detect a maximum of two objects in the same grid.

V2 Darknet Darknet-24 63.4 Introduced batch norm, k-means clustering for anchor boxes.
Capable of detecting > 9000 categories.

V3 Darknet Darknet-53 36.2 Utilized multi-scale predictions and spatial pyramid pooling
leading to larger receptive field.

V4 Darknet CSPDarknet-53 43.5 Presented bag-of-freebies including the use of CIoU loss.

V5 PyTorch Modified CSPv7 55.8
First variant based in PyTorch, making it available to a wider
audience. Incorporated the anchor selection processes into

the YOLO-v5 pipeline.

V6 PyTorch EfficientRep 52.5
Focused on industrial settings, presented an anchor-free
pipeline. Presented new loss determination mechanisms

(VFL, DFL, and SIoU/GIoU).

V7 PyTorch RepConvN 56.8
Architectural introductions included E-ELAN for faster

convergence along with a bag-of-freebies including
RepConvN and reparameterization-planning.

V8 PyTorch YOLO-v8 53.9
Anchor-free reducing the number of prediction boxes whilst
speeding up non-maximum suppression. Pending paper for

further architectural insights.

The AP metric consists of precision-recall (PR) metrics, defining of a positive prediction
using Intersection over Union, and the handling of multiple object categories. AP provides
a balanced overview of PR based on the area under the PR curve. IoU facilitates the
quantification of similarity between predicted kp and ground truth kg bounding boxes as
expressed in (8):

IoU =
area

(
kp ∩ kg

)
area

(
kp ∪ kg

) (8)

The rise of YOLO can be attributed to two factors. First, the fact that the architectural
composition of YOLO variants is compatible for one-stage detection and classification
makes it computationally lightweight with respect to other detectors. However, we feel
that efficient architectural composition by itself did not drive the popularity of the YOLO
variants, as other single-stage detectors, such as MobileNets, also serve a similar purpose.

The second reason is the accessibility factor, which was introduced as the YOLO
variants progressed, with YOLO-v5 being the turning point. Expanding further on this
point, the first two variants were based on the Darknet framework. Although this pro-
vided a degree of flexibility, accessibility was limited to a smaller user base due to the
required expertise. Ultralytics, introduced YOLO-v5 based on the PyTorch framework,
making the architecture available for a wider audience and increasing the potential domain
of applications.

As evident from Table 6, the migration to a more accessible framework coupled with
architectural reforms for improved real-time performance sky-rocketed. At present, YOLO-
v5 has 34.7 k stars, a significant lead compared to its predecessors. From implementation,
YOLO-v5 only required the installation of lightweight python libraries. The architectural
reforms indicated that the model training time was reduced, which in turn reduced the ex-
perimentation cost attributed to the training process, i.e., GPU utilization. For deployment
and testing purposes, researchers have several routes, such as individual/batch images,
video/webcam feeds, in addition to simple weight conversion to ONXX weights for edge
device deployment.

Machines 2023, 11, 677 21 of 25

Table 6. GitHub popularity comparison.

YOLO Variant Stars (K)

V3 9.3
V4 20.2
V5 34.7
V6 4.6
V7 8.4
V8 2.9

4.2. YOLO and Industrial Defect Detection

Manifestations of the fourth industrial revolution can be observed at present in an
ad-hoc manner, spanning across various industries. With respect to the manufacturing
industry, this revolution can be targeted at the quality inspection processes, which are
vital for assuring efficiency and retaining client satisfaction. When focusing on surface
defect detection, as alluded to earlier, the inspection requirements can be more stringent
as compared to other applications. This is due to many factors, such as the fact that the
defects may be extremely small, requiring external spectral imaging to expose defects prior
to classification and due to the fact that the operational setting of the production line may
only provide a small-time window within which inference must be carried out.

Considering the stringent requirements outlined above and benchmarking against the
principles of YOLO family of variants, forms the conclusion that the YOLO variants have the
potential to address both real-time, constrained deployment and small-scale defect detec-
tion requirements of industrial-based surface defect detection. YOLO variants have proven
real-time compliance in several industrial environments as shown in [81,84,85,90,95]. An
interesting observation arising from the industrial literature reviewed is the ability for users
to modify the internal modules of YOLO variants in order to take care of their specific ap-
plication needs without compromising on real-time compliance, for example [81,87,91,92],
introducing attention-mechanisms for accentuation of defective regions.

An additional factor, found within the later YOLO variants is sub-variants for each
base architecture, i.e., for YOLO-v5 variants including YOLO-v5-S/M/L, this corresponds
to different computational loads with respect to the number of parameters. This flexibility
enables researchers to consider a more flexible approach with the architecture selection
criteria based on the industrial requirements, i.e., if real-time inference is required with less
emphasis on optimal mAP, a lightweight variant can be selected, such as YOLO-v5-small
rather than YOLO-v5-large.

5. Conclusions

In conclusion, this work is the first of its type focused on documenting and reviewing
the evolution of the most prevalent single-stage object detector within the computer vision
domain. The review presents the key advancements of each variant, followed by imple-
mentation of YOLO architectures within various industrial settings focused on surface
automated real-time surface defect detection.

From the review, it is clear as the YOLO variants have progressed, latter versions in
particular, YOLO-v5 has focused on constrained edge deployment, a key requirement for
many manufacturing applications. Due to the fact that there is no copyright and patent
restrictions, research anchored around the YOLO architecture, i.e., real-time, lightweight,
accurate detection, can be conducted by any individual or research organization, which has
also contributed to the prevalence of this variant.

With YOLO-v8 released in January 2023, showing promising performance with respect
to throughput and computational load requirements, it is envisioned that 2023 will see
more variants released by previous or new authors focused on improving the deployment
capacity of the architectures with respect to constrained deployment environments.

With research organizations, such as Ultralytics and Meituan Technical Team taking
a keen interest in the development of YOLO architectures with a focus on edge-friendly

Machines 2023, 11, 677 22 of 25

deployment, we anticipate further technological advancements in the architectural footprint
of YOLO. To cater for constrained deployment, these advancements will need to focus on
energy conservation whilst maintaining high inference rates. Furthermore, we envision
the proliferation of YOLO architectures into production facilities to help with quality
inspection pipelines as well as providing stimulus for innovative products as demonstrated
by [96] with an automated pallet racking inspection solution. Along with integration
into a diverse set of hardware and IoT devices, YOLO has the potential to tap into new
domains where computer vision can assist in enhancing existing processes whilst requiring
limited resources.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, B.; Quan, C.; Ren, F. Study on CNN in the recognition of emotion in audio and images. In Proceedings of the 2016

IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, 26–29 June 2016.
[CrossRef]

2. Pollen, D.A. Explicit neural representations, recursive neural networks and conscious visual perception. Cereb. Cortex 2003, 13,
807–814. [CrossRef] [PubMed]

3. Using artificial neural networks to understand the human brain. Res. Featur. 2022. [CrossRef]
4. Improvement of Neural Networks Artificial Output. Int. J. Sci. Res. (IJSR) 2017, 6, 352–361. [CrossRef]
5. Dodia, S.; Annappa, B.; Mahesh, P.A. Recent advancements in deep learning based lung cancer detection: A systematic review.

Eng. Appl. Artif. Intell. 2022, 116, 105490. [CrossRef]
6. Ojo, M.O.; Zahid, A. Deep Learning in Controlled Environment Agriculture: A Review of Recent Advancements, Challenges and

Prospects. Sensors 2022, 22, 7965. [CrossRef] [PubMed]
7. Jarvis, R.A. A Perspective on Range Finding Techniques for Computer Vision. IEEE Trans. Pattern Anal. Mach. Intell. 1983, PAMI-5,

122–139. [CrossRef]
8. Hussain, M.; Bird, J.; Faria, D.R. A Study on CNN Transfer Learning for Image Classification. 11 August 2018. Available online:

https://research.aston.ac.uk/en/publications/a-study-on-cnn-transfer-learning-for-image-classification (accessed on 1 January
2023).

9. Yang, R.; Yu, Y. Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging
Analysis. Front. Oncol. 2021, 11, 638182. [CrossRef]

10. Haupt, J.; Nowak, R. Compressive Sampling vs. Conventional Imaging. In Proceedings of the 2006 International Conference on
Image Processing, Las Vegas, NV, USA, 26–29 June 2006; pp. 1269–1272. [CrossRef]

11. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in
convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

12. Perez, H.; Tah, J.H.M.; Mosavi, A. Deep Learning for Detecting Building Defects Using Convolutional Neural Networks. Sensors
2019, 19, 3556. [CrossRef]

13. Hussain, M.; Al-Aqrabi, H.; Hill, R. PV-CrackNet Architecture for Filter Induced Augmentation and Micro-Cracks Detection
within a Photovoltaic Manufacturing Facility. Energies 2022, 15, 8667. [CrossRef]

14. Hussain, M.; Dhimish, M.; Holmes, V.; Mather, P. Deployment of AI-based RBF network for photovoltaics fault detection
procedure. AIMS Electron. Electr. Eng. 2020, 4, 1–18. [CrossRef]

15. Hussain, M.; Al-Aqrabi, H.; Munawar, M.; Hill, R.; Parkinson, S. Exudate Regeneration for Automated Exudate Detection in
Retinal Fundus Images. IEEE Access 2022. [CrossRef]

16. Hussain, M.; Al-Aqrabi, H.; Hill, R. Statistical Analysis and Development of an Ensemble-Based Machine Learning Model for
Photovoltaic Fault Detection. Energies 2022, 15, 5492. [CrossRef]

17. Singh, S.A.; Desai, K.A. Automated surface defect detection framework using machine vision and convolutional neural networks.
J. Intell. Manuf. 2022, 34, 1995–2011. [CrossRef]

18. Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of
production processes. Int. J. Adv. Manuf. Technol. 2019, 104, 1889–1902. [CrossRef]

19. Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst.
2018, 48, 144–156. [CrossRef]

20. Weimer, D.; Scholz-Reiter, B.; Shpitalni, M. Design of deep convolutional neural network architectures for automated feature
extraction in industrial inspection. CIRP Ann. 2016, 65, 417–420. [CrossRef]

21. Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2017, 56, 508–517. [CrossRef]

https://doi.org/10.1109/icis.2016.7550778
https://doi.org/10.1093/cercor/13.8.807
https://www.ncbi.nlm.nih.gov/pubmed/12853366
https://doi.org/10.26904/rf-144-3511648225
https://doi.org/10.21275/ART20178512
https://doi.org/10.1016/j.engappai.2022.105490
https://doi.org/10.3390/s22207965
https://www.ncbi.nlm.nih.gov/pubmed/36298316
https://doi.org/10.1109/TPAMI.1983.4767365
https://research.aston.ac.uk/en/publications/a-study-on-cnn-transfer-learning-for-image-classification
https://doi.org/10.3389/fonc.2021.638182
https://doi.org/10.1109/icip.2006.312576
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.3390/s19163556
https://doi.org/10.3390/en15228667
https://doi.org/10.3934/ElectrEng.2020.1.1
https://doi.org/10.1109/ACCESS.2022.3205738
https://doi.org/10.3390/en15155492
https://doi.org/10.1007/s10845-021-01878-w
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1016/j.cirp.2016.04.072
https://doi.org/10.1080/00207543.2017.1351644

Machines 2023, 11, 677 23 of 25

22. Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive
Survey and Current Challenges. Materials 2020, 13, 5755. [CrossRef]

23. Soviany, P.; Ionescu, R.T. Optimizing the Trade-Off between Single-Stage and Two-Stage Deep Object Detectors using Image
Difficulty Prediction. In Proceedings of the 2018 20th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), Timisoara, Romania, 20–23 September 2018. [CrossRef]

24. Du, L.; Zhang, R.; Wang, X. Overview of two-stage object detection algorithms. J. Phys. Conf. Ser. 2020, 1544, 012033. [CrossRef]
25. Sultana, F.; Sufian, A.; Dutta, P. A Review of Object Detection Models Based on Convolutional Neural Network. In Advances in

Intelligent Systems and Computing; Springer: Singapore, 2020; pp. 1–16. [CrossRef]
26. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of

the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [CrossRef]
27. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv 2017, arXiv:1701.06659.
28. Cheng, X.; Yu, J. RetinaNet with Difference Channel Attention and Adaptively Spatial Feature Fusion for Steel Surface Defect

Detection. IEEE Trans. Instrum. Meas. 2020, 70, 2503911. [CrossRef]
29. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

30. Wang, Z.J.; Turko, R.; Shaikh, O.; Park, H.; Das, N.; Hohman, F.; Kahng, M.; Chau, D.H.P. CNN Explainer: Learning Convolutional
Neural Networks with Interactive Visualization. IEEE Trans. Vis. Comput. Graph. 2020, 27, 1396–1406. [CrossRef] [PubMed]

31. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

32. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
33. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper with convolutions. In Proceedings

of the Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 12 June 2015.
34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016.
35. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object Detection and

Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [CrossRef]
36. Girshick, R. Fast R-CNN. In Proceedings of the International Conference on Computer Vision, Santiago, Chile, 7–13 December

2015.
37. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Trans.

Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
38. Vidyavani, A.; Dheeraj, K.; Reddy, M.R.M.; Kumar, K.N. Object Detection Method Based on YOLOv3 using Deep Learning

Networks. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 1414–1417. [CrossRef]
39. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.

Comput. Vis. 2009, 88, 303–338. [CrossRef]
40. Shetty, S. Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset.

arXiv 2016, arXiv:1607.03785.
41. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively Trained Part-Based Models.

IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627–1645. [CrossRef] [PubMed]
42. Chang, Y.-L.; Anagaw, A.; Chang, L.; Wang, Y.C.; Hsiao, C.-Y.; Lee, W.-H. Ship Detection Based on YOLOv2 for SAR Imagery.

Remote Sens. 2019, 11, 786. [CrossRef]
43. Liao, Z.; Carneiro, G. On the importance of normalisation layers in deep learning with piecewise linear activation units. In

Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), New York, NY, USA, 7–10 March
2016. [CrossRef]

44. Garbin, C.; Zhu, X.; Marques, O. Dropout vs. batch normalization: An empirical study of their impact to deep learning. Multimed.
Tools Appl. 2020, 79, 12777–12815. [CrossRef]

45. Li, G.; Jian, X.; Wen, Z.; AlSultan, J. Algorithm of overfitting avoidance in CNN based on maximum pooled and weight decay.
Appl. Math. Nonlinear Sci. 2022, 7, 965–974. [CrossRef]

46. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009.

47. Xue, J.; Cheng, F.; Li, Y.; Song, Y.; Mao, T. Detection of Farmland Obstacles Based on an Improved YOLOv5s Algorithm by Using
CIoU and Anchor Box Scale Clustering. Sensors 2022, 22, 1790. [CrossRef]

48. Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics
2020, 9, 1295. [CrossRef]

49. Redmon, J. Darknet: Open Source Neural Networks in C. 2013. Available online: https://pjreddie.com/darknet (accessed on
1 January 2023).

50. Furusho, Y.; Ikeda, K. Theoretical analysis of skip connections and batch normalization from generalization and optimization
perspectives. APSIPA Trans. Signal Inf. Process. 2020, 9, e9. [CrossRef]

https://doi.org/10.3390/ma13245755
https://doi.org/10.1109/synasc.2018.00041
https://doi.org/10.1088/1742-6596/1544/1/012033
https://doi.org/10.1007/978-981-15-4288-6_1
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TIM.2020.3040485
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TVCG.2020.3030418
https://www.ncbi.nlm.nih.gov/pubmed/33048723
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TPAMI.2015.2437384
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.35940/ijitee.A4121.119119
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/TPAMI.2009.167
https://www.ncbi.nlm.nih.gov/pubmed/20634557
https://doi.org/10.3390/rs11070786
https://doi.org/10.1109/wacv.2016.7477624
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.2478/amns.2022.1.00011
https://doi.org/10.3390/s22051790
https://doi.org/10.3390/electronics9081295
https://pjreddie.com/darknet
https://doi.org/10.1017/ATSIP.2020.7

Machines 2023, 11, 677 24 of 25

51. Machine-Learning System Tackles Speech and Object Recognition. Available online: https://news.mit.edu/machine-learning-
image-object-recognition-918 (accessed on 1 January 2023).

52. Bochkovskiy, A.; Wang, C.Y.; Liao HY, M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

53. Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019.

54. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

55. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

56. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.

57. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

58. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and better learning for bounding box regression. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New York, NY, USA, 7–12 February 2020.

59. Misra, D. Mish: A self regularized nonmonotonic neural activation function. arXiv 2019, arXiv:1908.08681.
60. Yao, Z.; Cao, Y.; Zheng, S.; Huang, G.; Lin, S. Cross-Iteration Batch Normalization. arXiv 2020, arXiv:2002.05712.
61. Ultralytics. YOLOv5 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 1 January 2023).
62. Jocher, G.; Stoken, A.; Borovec, J.; Christopher, S.T.A.N.; Laughing, L.C. Ultralytics/yolov5: v4.0-nn.SiLU() Activations, Weights

& Biases Logging, PyTorch Hub Integration. Zenodo 2021. Available online: https://zenodo.org/record/4418161 (accessed on
5 January 2023).

63. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L. Microsoft coco: Common objects in context. In
Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014.

64. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.

65. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Wei, X. YOLOv6: A Single-Stage Object Detection Framework for Industrial
Applications. arXiv 2022, arXiv:2209.02976.

66. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742.

67. Zhang, H.; Wang, Y.; Dayoub, F.; Sunderhauf, N. Varifocalnet: An iou-aware dense object detector. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8514–8523.

68. Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Yang, J. Generalized focal loss: Learning qualified and distributed bounding
boxes for dense object detection. Adv. Neural Inf. Process. Syst. 2020, 33, 21002–21012.

69. Gevorgyan, Z. Siou loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740.
70. Shu, C.; Liu, Y.; Gao, J.; Yan, Z.; Shen, C. Channel-wise knowledge distillation for dense prediction. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 20221; pp. 5311–5320.
71. Solawetz, J.; Nelson, J. What’s New in YOLOv6? 4 July 2022. Available online: https://blog.roboflow.com/yolov6/ (accessed on

1 January 2023).
72. Wang, C.Y.; Bochkovskiy, A.; Liao HY, M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.

arXiv 2022, arXiv:2207.02696.
73. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO series in 2021. arXiv 2021, arXiv:2107.08430.
74. Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. You only learn one representation: Unified network for multiple tasks. arXiv 2021,

arXiv:2105.04206.
75. Wu, W.; Zhao, Y.; Xu, Y.; Tan, X.; He, D.; Zou, Z.; Ye, J.; Li, Y.; Yao, M.; Dong, Z.; et al. DSANet: Dynamic Segment AggrDSANet:

Dynamic Segment Aggregation Network for Video-Level Representation Learning. In Proceedings of the MM ’21—29th ACM
International Conference on Multimedia, Virtual, 20–24 October 2021. [CrossRef]

76. Li, C.; Tang, T.; Wang, G.; Peng, J.; Wang, B.; Liang, X.; Chang, X. BossNAS: Exploring Hybrid CNN-transformers with Block-
wisely Self-supervised Neural Architecture Search. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, Online, 11–17 October 2021. [CrossRef]

77. Dollar, P.; Singh, M.; Girshick, R. Fast and accurate model scaling. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 924–932.

78. Guo, S.; Alvarez, J.M.; Salzmann, M. ExpandNets: Linear over-parameterization to train compact convolutional networks. Adv.
Neural Inf. Process. Syst. (NeurIPS) 2020, 33, 1298–1310.

79. Ding, X.; Zhang, X.; Zhou, Y.; Han, J.; Ding, G.; Sun, J. Scaling up your kernels to 31 × 31: Revisiting large kernel design in CNNs.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24
June 2022.

80. Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. GitHub. 1 January 2023. Available online: https://github.com/ultralytics/
ultralytics (accessed on 12 January 2023).

https://news.mit.edu/machine-learning-image-object-recognition-918
https://news.mit.edu/machine-learning-image-object-recognition-918
https://doi.org/10.1109/TPAMI.2015.2389824
https://github.com/ultralytics/yolov5
https://zenodo.org/record/4418161
https://blog.roboflow.com/yolov6/
https://doi.org/10.1145/3474085.3475344
https://doi.org/10.1109/iccv48922.2021.01206
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

Machines 2023, 11, 677 25 of 25

81. Jin, R.; Niu, Q. Automatic Fabric Defect Detection Based on an Improved YOLOv5. Math. Probl. Eng. 2021, 2021, 1–13. [CrossRef]
82. NVIDIA Jetson TX2: High Performance AI at the Edge, NVIDIA. Available online: https://www.nvidia.com/en-gb/autonomous-

machines/embedded-systems/jetson-tx2/ (accessed on 30 January 2023).
83. NVIDIA TensorRT. NVIDIA Developer. 18 July 2019. Available online: https://developer.nvidia.com/tensorrt (accessed on

5 January 2023).
84. Dlamini, S.; Kao, C.-Y.; Su, S.-L.; Kuo, C.-F.J. Development of a real-time machine vision system for functional textile fabric defect

detection using a deep YOLOv4 model. Text. Res. J. 2021, 92, 675–690. [CrossRef]
85. Lin, G.; Liu, K.; Xia, X.; Yan, R. An Efficient and Intelligent Detection Method for Fabric Defects based on Improved YOLOv5.

Sensors 2022, 23, 97. [CrossRef] [PubMed]
86. Liu, Z.; Tan, Y.; He, Q.; Xiao, Y. SwinNet: Swin Transformer Drives Edge-Aware RGB-D and RGB-T Salient Object Detection. IEEE

Trans. Circuits Syst. Video Technol. 2021, 32, 4486–4497. [CrossRef]
87. Zhang, M.; Yin, L. Solar Cell Surface Defect Detection Based on Improved YOLO v5. IEEE Access 2022, 10, 80804–80815. [CrossRef]
88. Binomairah, A.; Abdullah, A.; Khoo, B.E.; Mahdavipour, Z.; Teo, T.W.; Noor, N.S.M.; Abdullah, M.Z. Detection of microcracks

and dark spots in monocrystalline PERC cells using photoluminescene imaging and YOLO-based CNN with spatial pyramid
pooling. EPJ Photovolt. 2022, 13, 27. [CrossRef]

89. Sun, T.; Xing, H.; Cao, S.; Zhang, Y.; Fan, S.; Liu, P. A novel detection method for hot spots of photovoltaic (PV) panels using
improved anchors and prediction heads of YOLOv5 network. Energy Rep. 2022, 8, 1219–1229. [CrossRef]

90. Yang, D.; Cui, Y.; Yu, Z.; Yuan, H. Deep Learning Based Steel Pipe Weld Defect Detection. Appl. Artif. Intell. 2021, 35, 1237–1249.
[CrossRef]

91. Ma, Z.; Li, Y.; Huang, M.; Huang, Q.; Cheng, J.; Tang, S. A lightweight detector based on attention mechanism for aluminum strip
surface defect detection. Comput. Ind. 2021, 136, 103585. [CrossRef]

92. Shi, J.; Yang, J.; Zhang, Y. Research on Steel Surface Defect Detection Based on YOLOv5 with Attention Mechanism. Electronics
2022, 11, 3735. [CrossRef]

93. CEP, F.A. 5 Insightful Statistics Related to Warehouse Safety. Available online: www.damotech.com (accessed on 11 January 2023).
94. Armour, R. The Rack Group. Available online: https://therackgroup.com/product/rack-armour/ (accessed on 12 January 2023).
95. Hussain, M.; Chen, T.; Hill, R. Moving toward Smart Manufacturing with an Autonomous Pallet Racking Inspection System

Based on MobileNetV2. J. Manuf. Mater. Process. 2022, 6, 75. [CrossRef]
96. Hussain, M.; Al-Aqrabi, H.; Munawar, M.; Hill, R.; Alsboui, T. Domain Feature Mapping with YOLOv7 for Automated Edge-Based

Pallet Racking Inspections. Sensors 2022, 22, 6927. [CrossRef] [PubMed]
97. Farahnakian, F.; Koivunen, L.; Makila, T.; Heikkonen, J. Towards Autonomous Industrial Warehouse Inspection. In Proceedings of

the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK, 2–4 September 2021. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2021/7321394
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/
https://developer.nvidia.com/tensorrt
https://doi.org/10.1177/00405175211034241
https://doi.org/10.3390/s23010097
https://www.ncbi.nlm.nih.gov/pubmed/36616696
https://doi.org/10.1109/TCSVT.2021.3127149
https://doi.org/10.1109/ACCESS.2022.3195901
https://doi.org/10.1051/epjpv/2022025
https://doi.org/10.1016/j.egyr.2022.08.130
https://doi.org/10.1080/08839514.2021.1975391
https://doi.org/10.1016/j.compind.2021.103585
https://doi.org/10.3390/electronics11223735
www.damotech.com
https://therackgroup.com/product/rack-armour/
https://doi.org/10.3390/jmmp6040075
https://doi.org/10.3390/s22186927
https://www.ncbi.nlm.nih.gov/pubmed/36146273
https://doi.org/10.23919/icac50006.2021.9594180

	Introduction
	Original YOLO Algorithm
	Original YOLO
	YOLO-v2/9000
	YOLO-v3
	YOLO-v4
	YOLO-v5
	YOLO-v6
	YOLO-v7
	YOLO-v8

	Industrial Defect Detection via YOLO
	Industrial Fabric Defect Detection
	Solar Cell Surface Defect Detection
	Steel Surface Defect Detection
	Pallet Racking Defect Inspection

	Discussion
	Reason for Rising Popularity
	YOLO and Industrial Defect Detection

	Conclusions
	References

