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Abstract: The automation of manufacturing applications where humans and robots operate in
a shared environment imposes new challenges for presenting the operator’s safety and robot’s
efficiency. Common solutions relying on isolating the robots’ workspace from human access during
their operation are not applicable for HRI. This paper presents an extended reality-based method to
enhance human cognitive awareness of the potential risk due to dynamic robot behavior towards
safe human–robot collaborative manufacturing operations. A dynamic and state-aware occupancy
probability map indicating the forthcoming risk of human–robot accidental collision in the 3D
workspace of the robot is introduced. It is determined using octrees and is rendered in a virtual
or augmented environment using Unity 3D. A combined framework allows the generation of both
static zones (taking into consideration the entire configuration space of the robot) and dynamic
zones (generated in real time by fetching the occupancy data corresponding to the robot’s current
configuration), which can be utilized for short-term collision risk prediction. This method is then
applied in a virtual environment of the workspace of an industrial robotic arm, and we also include
the necessary technical adjustments for the method to be applied in an AR setting.

Keywords: robotics; human–robot interaction; VR applications; AR applications

1. Introduction

Recent advancements in human–robot collaboration have enabled humans and robots
to work together in a shared manufacturing environment [1,2]. Since their first use at the
industrial level, collaborative robots (or cobots) have been used in many tasks combining
the perception of several humans with the efficiency of robots. Several repetitive tasks
that require precision and usually require moving heavy payloads are being automated
by robots. For example, in the automotive industry, large robot manipulators have been
used to build car engines, weld and assemble car parts at high speeds. Inside the robot
workspace and the neighboring working environment, humans are engaged with high-
level tasks that require advanced thinking and possible interactions with the robots. For
human–robot applications, a context-aware safety system that prioritizes human protection
is needed.

There are two main actions to make any collaborative task safer. The first one is to
change the motion of the robot according to the human presence, and the second one is to
inform the worker about the robot’s potential danger so that he/she can change his/her
actions. For the first one, knowing the common workspace of both the human and the
robot is mandatory for successfully controlling the robot to ensure safety. N. Vahrenkamp
et al. [3] make use of both workspaces in order to find a robot’s best possible poses in a task
requiring human–robot interaction. Other approaches seek to accurately sense potential
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collisions between the human and the robot based on image feedback [4] or to identify
collisions using force/torque sensors [5–9]. However, in many industries, it is very difficult
to make online changes to the motion of the robot due to the continuity of the production
line as well as the time needed for restarting it. Therefore, the second action wherein the
worker is appropriately informed about the movement of the robot and its potential danger
seems to be more feasible and efficient.

While onsite, hands-on safety training is very important for significantly decreasing the
risk of injury. On the other hand, virtual training using state-of-the-art technologies, such
as virtual, augmented or mixed reality (VR/AR/MR) [10], offers many possibilities to train
workers who will be able to work safely in shared or collaborative working environments.
VR technology provides a complete virtual environment/test-bed, while AR technology
is able to combine the best of both worlds by enhancing real world training in a shared
manufacturing environment with visuals, hints, sounds and other additional information.

Another important aspect is the data structure used for representing the virtual objects
and information rendering for situational awareness. The variability of workspace configu-
rations in industry creates the requirement of a flexible framework and data structure that
is able to be adapted to specific workflows with minimal effort. Point clouds are recognized
as a very promising means for representing 3D content in AR/VR; yet to obtain a high
level of realism and faithfulness, a very high amount of data is needed, demanding efficient
coding solutions. Octrees have been widely used for point cloud geometry coding and
compression [11] since they are characterized by adaptive partitioning capabilities.

In this work, we present an immersive VR system for safety-aware human–robot
collaboration (HRC). Our work is based on a simple robot configuration description format
and the use of an octree structure that provides the flexibility to simulate a workspace at
various resolutions depending on the available computational power while at the same
time maintaining the ability to store rich information for high-dimensional workspaces.
Although our work has been developed and tested in a simulation environment, we have
created the conditions for our system to be easily applied in AR applications. Thus, we
propose a solution to efficiently render safety zones in Hololens2 AR equipment by com-
bining the Unity3D game engine and occupancy mapping simulations. Our contributions
are three-fold:

• The emulation of robotic movement in a digital workspace in Unity3D to be used as
a priori knowledge during runtime computation of (spatiotemporal) human–robot
collision risk.

• The introduction of the use of octree-based representation in relation to machinery
movement to calculate dangerous areas around the robot by utilizing the configuration
state of the robot.

• Experiments with different rendering methods in Unity in VR/AR for static and
dynamic safety zones.

In the following sections, a review of multiple VR/AR-based approaches related to
safety zone representation, mainly for human–robot collaboration frameworks, is presented.
In Section 3, the proposed approach, starting with dynamic safety zone computation and
state-aware collision risk prediction and followed by the octree-based occupancy mapping
technique, is presented. In Section 4, the visualization of the virtual environment (imple-
mented in Unity3D) is presented along with the different rendering techniques in VR/AR.
Finally, we conclude and discuss the results as well as future possible implementations
related to the proposed approach.

2. Related Work on Human–Robot Collaboration

In this section, multiple approaches related to HRC safety and situational awareness
are presented; they are divided into two broad categories according to the main technology
(augmented reality and virtual reality).
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2.1. AR- and MR-Based Applications

This augmentation technique is already an integral part of multiple studies on human–
robot collaboration. In one such study, [12] a novel integrated mixed reality system for
safety-aware HRC using deep learning and digital twin generation is proposed. Their
approach can accurately measure the minimum safe distance in real-time and provide
MR-based task assistance to the human operator. This technique integrates MR with
safety-related monitoring by tracking the shared workplace and providing user-centric
visualization through smart MR glasses for safe and effective HRC. A virtual robot, the
digital twin of the real robot, is registered accurately utilizing deep-learning-based instance
segmentation techniques. The main reason for using digital twins is to calculate safety-
related data more effectively and accurately and to provide to the user some relevant safety
and task assistance information.

Another study [13] augments the real environment by rendering semi-transparent
green and red cubes signifying the safe area and the constrained robot’s work-space,
respectively. Through visual alerts and warning messages about potential hazards on the
shop floor, the system increases the awareness of the user interacting with the robot.

Hietanen et al. [14] proposed the use of a depth-sensor-based model for workspace
monitoring and an interactive augmented reality User Interface (UI). The AR UI was
implemented on two different hardware systems: a projector–mirror setup and wearable
AR equipment (Hololens). It is important to highlight the fact that Hololens-based AR is
not yet suitable for industrial manufacturing, while the projector–mirror setup shows clear
improvements to safety and work ergonomics according to the user experience assessment
that took place.

In another example [15], the authors created virtual boundaries around the area
considered to be safe by utilizing AR technology. When the worker approaches a border,
the border elements closest to the user start growing and changing color so that elements
grow and turn from green to yellow to red with decreasing distance.

2.2. VR-Based Applications

Virtual reality, in comparison with augmented reality, eliminates possible hazards that
may occur in a real-world scenario during training routines. However, the importance of
safety zone awareness during training is an integral part of every HRC. A recent VR applica-
tion [16] was designed to simulate safety targeting strategies in human–robot collaborative
manufacturing. The work reported two alternative safe collaboration strategies—‘reduce
speed’ and ‘move back’—in the task of handling fabric when building aerospace composite
material parts. Both methods are triggered when the distance between the human and the
robot falls below a certain threshold.

VR is also being employed in studies concerning cost-effective solutions rather than
just safety oriented ones [17]. In that work, safety zone boundaries were created around
the robot, which, when violated by the trainee, lead the program to automatically prompt a
warning message explaining the operator’s unsafe behavior. Another important safety train-
ing framework is introduced in [18] to empower safety concern and encourage constructing
clear, distinguished instructions regarding machine operation.

However, the visualization of safety zones is not restricted to only HRC applications.
The authors in [19] focused on the detection of potential collisions of a 3D moving vehicle
model in an industrial environment and visualized not only the safety zones around the
desired entity but the vehicle path as well. Additionally, visual feedback was developed to
illustrate the part of the moving object that collides with the environment.

3. Methods

The proposed approach is an immersive AR/VR system that increases situational
awareness during human–robot collaboration in manufacturing. Our system can be divided
into two main parts: the Unity 3D Framework and the octree-based occupancy mapping,
as shown in Figure 1. Regarding the 3D framework, our method is illustrated in the case of
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a common industrial 6-DoF (degrees of freedom) robot performing assembly operations
in a shared—with a human operator—environment. The system evaluates and visualizes
the dynamic risk of collision using the local transform of joints of the robot that are in
motion. This is achieved in real time with the use of occupancy probability maps that are
pre-calculated through robotic motion simulations. In order to safeguard the method’s
generalization and applicability, robotic motion simulations are not restricted to predefined
robotic trajectories but rather span the whole configuration space, which is calculated
based on the robot’s kinematics. The occupancy mapping for the dynamic safety zones
is computed through the use of octrees for efficient data representation and storage and
with high and adaptive sampling density capabilities (presented in Section 3.4). Realistic
3D rendering is achieved thanks to Unity’s (https://unity.com/, accessed on 1 April 2023)
real-time 3D technology. It is illustrated in the virtual environment through the use of
helper cubes or with fog representation.

Figure 1. Schematic diagram of the AR-based system for safety-aware human–robot collaboration.

In order to calculate and render the dangerous areas around the robot, we need to
store information about the possible locations that the robot can occupy and then define a
collision risk metric. In a similar work [20], this is performed through randomly sampling
points within the robot’s operating space and by generating a collision risk factor for a
given trajectory. The drawback of this approach is that the risk factor is only calculated
once and does not include temporal information.

In this work, we implement three different methods to calculate collision risk based
on increasing levels of available information.

Given the robot’s initial configuration, the simplest approach for occupancy risk
prediction is to consider all possible positions the robot can reach at any time point. In
this case, temporal information is not considered and the calculated 3D probabilistic map
of the unsafe area is static and can thus be pre-calculated in advance (offline) given the
robot’s kinematic constraints. The exhaustive scanning of all possible configurations is
performed by recursively applying a step modification to each joint’s value and calculating
the position of all components at each iteration. The step is a significant contributing factor
to the total computational time of the full scan and can be modified depending on the
accuracy requirements.

In the more elaborate approach, we consider the configuration of the robot at a given
time point and calculate the occupancy risk only for the next few time steps. In this
case, the 3D occupancy probability map is dynamic, as it follows the movement of the
robot. Parallelization in the calculation of the occupancy map for every possible initial
configuration allows optimization of the computational time.

https://unity.com/
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While the previous static or dynamic probabilistic occupancy maps provide a measure
of collision risk, they weigh equally each one of the potential directions of movement of the
robotic arm. In order to improve short-term prediction, in the third approach, we take into
account (in addition to the robot’s pose) also the angular velocity of each robotic joint at
each time point. This provides state-aware collision risk with directionality, obtained by
penalizing changes in the rotation of the robotic joints, and thereby improving estimation
in the immediate future.

The details of the robot modeling and the methodologies for the dynamic and state-
aware collision risk prediction and the octree-based occupancy mapping approach are
described in the following subsections respectively.

3.1. Robot Modeling

A commercially available industrial robot manipulator is used for testing the proposed
approach. The TRR (Twisting, Rotational, Rotational joints) articulated 6-DoF robot, shown
in Figure 2, is the KUKA KR 150 R2700 model, which has been widely used for industrial
applications. The body of each link of the robot is modeled as a point cloud. The point cloud
is generated from the CAD models of the robot using ray-tracing operations implemented
with the point cloud library (PCL) [21]. By applying component transformations to the
points, we can simulate 3D space occupancy for any given configuration. The configuration
of the robot is defined as a JSON array. Each JSON object represents a link and defines the
type, size, rotational axis and value range of each joint of the link.

Figure 2. Dimensions, workspace and schematic representation of a KUKA KR 150 R2700.

The robotic movement is assumed to follow a number of predefined trajectories
(selected by the user). By increasing this number, all possible trajectories and configurations
can be simulated. A trajectory is defined as a sequence of poses in the configuration space.

3.2. Dynamic Occupancy Map

The probabilistic occupancy map can be calculated for the entire configuration space
or predefined trajectories. In the case of the full configuration space, the obtained 3D map
provides a generalized probability of occupancy regardless of the current and expected
future positions of the robot. This approach underestimates the collision risk on the paths
along which the robot moves (if the robot follows only a few trajectories). To tackle this, we
propose the use of dynamic safety zones that illustrate the potential position of the robot
depending on its current pose and movement, thereby providing the operator with critical
information about the workspace areas that can be safely accessed in the next time points.

We quantize the configuration space with a constant step or a constant number of
steps per configuration space dimension. Then, we calculate the occupancy map and
safety zones for each value in the discrete configuration space or trajectory step. Using
a mapping function, we assign a key to each map and save it in storage. Depending on
the type of forward simulations—either exhaustive or following a specific trajectory—we
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map the configurations and define their distances using the coordinates of the quantized
configuration space or the forward time difference, correspondingly.

In the first case, we use the l1 norm:

l1 : d(p, q) =
n

∑
i=1
|pi − qi| (1)

where p and q are two points in the n-dimensional configuration space. Given a step s, the
values pi, i ∈ [1, n] of the point p represent the interval steps from the ith degree-of-freedom
lowest possible value required to reach this position; thus, pi ∈ N+. Since the values of the
configuration point are positive integers, given a segmentation of each degree-of-freedom’s
range to 255 values, we can represent all potential values of a joint using 8 bits of data.
Going further, we represent each point in the configuration space as a 64-bit number,
allowing for efficient storage of said configuration points in the occupancy map nodes. This
method can handle, with no further changes, robotic arms of up to 8 DoF. A collision risk
factor can then be defined as:

Rk(x, y, z, c) = Rs

l

∑
i=1,d≤k

1
d2(pi

xyz, c)
(2)

where d(pi
xyz, c) is the distance between the configuration point c and the ith configuration

point pi
xyz that leads to occupancy of the node corresponding to the coordinates (x, y, z) of

the world, as defined in Equation (1); k is the configuration distance lookup depth; l is the
number of configurations that occupy the node corresponding to (x, y, z); Rs is a constant
scaling factor.

In the case of simulating a known (expected) movement of the robot, we use the
time t since the start of the movement (in milliseconds) as the representative key of the
configuration. Using the key t, we simply define the distance from t to t0 as:

d(t, t0) =

{
t0 − t, if t0 ≥ t
∞, otherwise

(3)

Using the time distance, the risk factor is then defined as:

RT(x, y, z, t) = Rs

l

∑
i=1,d≤T

1
d2(t, τi)

(4)

where d(t, τi) is the timed distance between the current time t and the ith time τi > t when
the node corresponding to the coordinates (x, y, z) of the world is occupied, as defined in
Equation (3); T is the future lookup depth; l is the number of times the node corresponding
to (x, y, z) is occupied after t; Rs is a constant scaling factor.

At runtime, we apply the same quantization and mapping function to the current
configuration of the robot and get the key to the corresponding occupancy map and safety
zone. Additionally, we can fetch the neighboring configurations within a predefined
configuration distance and merge the safety zones, forming a map that corresponds to the
robot’s current and potential future positions. Using this risk factor, we can generate a 3D
map of the collision risk for a given configuration.

3.3. State-Aware Short-Term Prediction of Collision Risk

A 6-DoF robotic arm consists of seven coordinate systems. Each coordinate system
corresponds to a different joint of the robot. For each sequential pair of coordinate systems,
the equation connecting the velocity of one to the other can be retrieved by Equation (5) [22].
Considering that coordinate system B moves with respect to coordinate system A with a
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velocity of AUB0, the velocity AUP of each point p along the link that connects only with
the joint corresponding to the coordinate system B can be calculated as follows:

SAUP = AUB0 +
ARB

BUP (5)

or
AUP = ARB

AUB0 +
AωB × ARB

B p (6)

where ARB is the rotation matrix between the two coordinate systems and ω is the angular
velocity of each joint.

From the aforementioned equations, one can derive the equations describing the linear
and angular velocity of each link of the robot. Given that joint i + 1 moves with respect to
joint i:

0ωi+1 = 0ωi +
0ki+1θ̇i+1 (7)

0Ui+1 = 0ωi +
0ωi × 0πi+1 (8)

where 0ki+1 is the unit vector of the coordinate system of joint i + 1 with respect to the
z-axis of base system 0.

Given this knowledge, we can create rotation ranges for each joint of the robot. We
make the assumption that, in fact, if a joint rotates in one direction, then it is most likely
to keep rotating in that direction. If the joint keeps rotating in the same direction, then
we assume that between two consecutive time-steps, it cannot reach a velocity ωi t+1
50% higher than its previous one ωi t. In the event of changing direction, the joint is
expected to rotate over a smaller angle range equal to the half of the previous one. If
φi is the angle difference of joint i between two sequential states and li and ui are the
lower and upper angle limits, respectively, of joint i, then the rotation range for this joint
is [ li ≤ θi t+1 −

φi t+1
2 , θi t+1 + φi t+1 ≤ ui] if the joint is rotating in the same direction and

[ li ≤ θi t+1 − φi t+1, θi t+1 +
φi t+1

2 ≤ ui] if the joint changes direction.
Since, by nature, the coordinate systems of the last three joints of the robot intersect

with each other, this means that when nothing is attached to the end effector, their rotations
will not significantly affect the overall space the robotic arm takes up. Thus, only the
rotation ranges of the first three joints will be used for the risk factor analysis. As shown
in Figure 3, the risk factor analysis at this stage consists of three 3D point sets, each
corresponding to the estimation of the position of the end of each of the first three links
of the robot. The point sets are visualized around the pose of a 6-DoF robotic arm model
simulated in MATLAB using the Robotics Toolbox. These point sets form the superset V,
which can then be used to form a state-aware collision risk factor. We consider a 3D space
C of b× b× b dimensions in which the risk factor will be computed. Given that dsa is the
distance between a point g ∈ C and a point j ∈ V:

dsa(g, j) = |g− j| (9)

To properly describe the risk factor, the j closer to the g has to be found in order to
be able to compute the state-aware risk factor of gxyz. The metric of the risk factor is the
distance between the two. Thus, the risk factor is inversely proportional to the minimum
distance dmin(x, y, z) between g(x, y, z) and any point j ∈ V.

dmin(x, y, z) = min
j∈V

(dsa(gxyz, j)) (10)

Then, the normalized state-aware risk factor Rsa of a 3D point gxyz can be described
by the following equation:

Rsa(x, y, z) =

{
b

dmin(x,y,z) , dmin(x, y, z) 6= 0

1, dmin(x, y, z) = 0
(11)
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Figure 3. State-aware collision risk factor point sets (figure better viewed in color).

3.4. Occupancy Mapping by Octrees

In order to encode the probabilistic 3D occupancy map in a more compact and flexible
way, we used an octree structure based on OctoMap [23]. The octree structure allows
us to easily adapt the 3D space resolution depending on the application requirements.
Starting with one root cube enclosing the entire area of interest, each node of the octree
structure branches to eight sub-cubes (voxels) of the same size until the desired space
resolution is reached. At the same time, occupancy information for the entire configuration
space can be efficiently stored in a small-sized file. Each node encodes the occupancy
probability, number of configurations that lead to the node being occupied and a list of the
configurations that lead to node occupancy.

The occupancy map is generated either by using the trajectory or the full configuration
space simulations. The base of the robot is positioned at the world origin. For each
configuration of interest, we calculate the robot’s surface pointcloud and cast rays from
the origin to the points [23]. Since a single node can enclose multiple points, we take
care to only count one hit per configuration for each node. This way, occupancy mapping
is independent of density anomalies in the provided point clouds. The final result is a
3D occupancy probability map for the desired trajectory or for the entire configuration
space. Additionally, we generate an independent occupancy map for each individual
configuration of the set.

Figure 4 shows an example of the dynamic volumetric collision risk factor computed
for a given pose of the robot and illustrating the risk for the upcoming time period T,
as described in Section 3.2. With use of octrees in data representation, different resolu-
tion levels can be obtained according to the required level of visualization accuracy and
memory limits.
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Figure 4. Example of dynamic collision risk map with look-ahead time T visualized at voxel sizes
of 8 cm, 4 cm and 1 cm (from left to right) thanks to the use of octrees. The risk factor is scaled by a
constant factor Rs to compensate for the squared time difference in the denominator of Equation (4)
and is illustrated in a blue (0)-to-red (1) colorscale.

4. AR/VR-Based Visualization

Visualization of the simulated environment and rendering of the safety zones is
performed in the Unity3D game engine. The respective virtual industrial environment is
created using a variety of available 3D objects, while the required functionality is achieved
by C# scripts. For visualization in the virtual world, an Oculus Rift head-mounted display is
employed, while navigation of the user around the environment and interaction with objects
is rendered possible by the use of the Oculus controllers. In AR, Hololens 2 equipment is
utilized.

4.1. Rendering in VR

Visualization of the safety zones in VR is performed either as a stand-alone method
(purely in Unity3D) through online tracking of the moving robot or by utilizing the pre-
viously presented occupancy mapping technique. In contrast to the dynamic occupancy
mapping that provides a measure of risk for the upcoming timepoints, the former approach
simply visualizes the unsafe zone (defined by the distance from the robot’s surface) for
the current state. Specifically, the space around the 3D robotic model is filled with a large
number (n = 715) of small cubes, which are used as ‘sensors’ that detect a potential collision
with the robotic parts during movement. The detection takes place at predefined time steps
(a default value of 0.1 s between each record is selected). By computing which cubes are
colliding with the robot’s parts, a set of points is generated that eventually sets the safety
boundaries in every time step.

Visualization of the outcome of this method, as well as of the octree-based representa-
tion, is performed (both in VR and AR environments) by utilizing different shapes/entities,
such as surface model cube and fog (by employing Unity’s particle system).

The dynamic rendering of safety zones (illustrating the collision risk within a fixed
number of future steps) with the cube representation is shown in Figure 5. The detailed
experiment of the safety zone generation can be found online (https://youtu.be/orHhr5X9
N9U, accessed on 22 June 2023). A colorscale is used for the visualization of the cubes and
corresponds to the percentage of time the robotic arm collides with each cube (within the
look-ahead time T) considering all the potential (defined) trajectories. This can be better
observed in Figure 6, in which the green cubes denoting the overall workspace of the robot
have been hidden.

https://youtu.be/orHhr5X9N9U
https://youtu.be/orHhr5X9N9U
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Stages of dynamic safety zone representation of a task requiring human–robot interaction.
(a) The robotic arm’s end effector moves in front of a stack of aluminum frames. (b) The robotic
arm reaches the aluminum frame and grasp it. (c–e) The robotic arm’s end effector moves from
the starting point to the point it should place the aluminum frame. (f) The robotic arm places the
aluminum frame in front of the human user in order to proceed to the part requiring the assistance of
the human user.

(a) Side view (b) Top view

Figure 6. Dynamic safety zone with robot tracking in Unity3D and cube representation.

Another important factor is that due to VR’s nature, for each frame, the workload is
doubled, as the image needs to be rendered twice (one for each eye), causing a significant
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drop in the overall performance (frames per second—fps), thus causing critical problems
related to the overall experience and immersive capability of the simulation.

Due to this combination, the need to reduce information with a higher SNR (signal-to-
noise ratio) was imminent in order to be able to provide a useful VR/AR experience, as
most AR equipment will experience the same kind of performance problems.

This means that, for example, in Figure 7, the safety zone that is rendered concerns
the position of the collided cubes from this step until the next four steps. In the dynamic
area rendering, when considering the fog particle system, we also provided a top view of
the safety zones, which is rendered in the board and is visible in Figure 7. Likewise, we
incorporate the provided information from an octree-based risk representation and render
it with the cube method, as shown in Figure 8.

Figure 7. Dynamic safety zones with fog representation.

(a) Side view (b) Top view

Figure 8. Dynamic safety zones with octree-based collision risk prediction and cube representation.

4.2. Rendering in AR

The AR implementation is mostly focused on providing a tangible, mixed-reality result
to enable the use of the digital twin and the rendered safety zones in an actual working
environment through, e.g., the use of ArUco (Augmented Reality University of Cordoba)
markers. To enable rendering in our simulation, we mainly exploit the data provided by
the octree-based representation, as this depicts our introduced framework.

In order to deploy our VR Project into AR, the camera settings need to change to
implement specific configuration profiles to map the Hololens 2 functionality inside the
simulation. For this purpose, we need to replace the VR components inside our simulation
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with the respective AR ones. Then, one can deploy our project to Hololens 2 to visualize
the respective results. In AR, given the movements of the robotic arm, our process can
successfully visualize in real time (with a response of under 20 ms) the dynamic safety
zones in order to inform a user close to the working space of the robotic arm. To run the
aforementioned experiments we used a computer with 48 GB of RAM, an AMD Ryzen 9
3900X processor with 12 cores and an NVIDIA RTX 3090 graphics card.

This enables the process to be applied in real-world applications. Thus, by connecting
to a robotic arm’s controller through a serial or a wireless connection, our system can have
real-time updates of the movement of the robot and can accurately calculate the dynamic
safety zones, reducing the need for external cameras covering the HRI workspace.

5. Discussion

In this paper, we present a framework for rendering static/dynamic safety zones in
VR/AR. To emulate real robotic movement, we developed a custom simulation of the
robot’s 3D digital model and placed it inside a virtual working environment. Probabilistic
occupancy maps were used to estimate the risk of upcoming human–robot collisions based
on all possible movements of the robot’s joints. In the case of specific assembly operations,
the estimated spatiotemporal risk factor can be adapted to take into account only the pro-
grammed robotic motion trajectories, reducing the visualized risk for other configurations.

Furthermore, we introduced a state-aware collision risk prediction term that takes
into account not only the robot’s pose but also the rotation of the robotic joints at each time
step, thereby allowing prediction of the most-probable direction of movement. However,
it should be noted that while the assumption of smooth changes in joints’ rotation holds
for short time periods, it cannot be used for more long-term predictions. Moreover, this
assumption is less valid when reaching the rotational limits (boundary points), thereby
reducing confidence in the estimation in those cases. The above-mentioned argument
can also be made regarding robots’ singularities. We assume that the inverse kinematics
controller of the robot can successfully avoid singularities. However, the confidence in the
estimation is significantly reduced due to the robot’s different behavior when close to a
singularity pose.

6. Conclusions

In the future, we intend to combine the dynamic and the state-aware collision risk
terms through appropriate temporally changing weights that will put more emphasis
on the first or second term based on the need for short- or long-term prediction and the
confidence of the estimation at each time step.

Moreover, in this work, the configuration of the robot at each time point is considered
to be known, and the pose of the human operator is not taken into account. We are
currently investigating the incorporation of 3D pose estimation algorithms based on visual
information (through cameras placed in the workcell) that will allow the identification
of imminent danger, i.e., when the operator enters a high-risk zone, and will accordingly
adjust the rendered information (e.g., through more opaque or vivid colors or the triggering
of sound). Even though our work does not focus on control systems that may affect or
interrupt the robot motion, a future work direction could be the investigation of the effect
of advanced interfaces in augmented reality that will increase the operators’ awareness and
safety in the best possible way.
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