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Abstract: Machining CMCs under productivity conditions while limiting tool wear and material
damage is a challenge for applications such as jet aircraft engines and industrial turbines. This
contribution focused on developing a method to characterize the wear of abrasive tools based on
fractal dimensions. This solution allows characterization of the state of the tool after each machining
and identification of the type of damage to the tool (regular wear of the diamond grains, cleavage, or
breakage) and its influence on the cutting forces, in addition to damage to the machined material and
the quality of the machined surface. Thus, the chipped area and the maximum chipping are directly
associated with the fractal dimension of the tool surface and the metal removal rate of the process.
The quality of the surface (Sa, Sz, and Sq) is associated with the fractal dimension of the surface of
the tool characterizing the state of the grinding wheel and the radial depth of cut ae characterizing
the engagement of the tool in the CMC material. Moreover, the results also demonstrated that the
use of an abrasive tool associated with cutting conditions close to milling and not grinding is a
viable solution.

Keywords: CMC machining; abrasive tool; tool wear; fractal dimension

1. Introduction

Machining ceramic matrix composites (CMCs) with abrasive tools involves conven-
tional processes such as grinding, abrasive milling (trimming, facing, complex milling,
helical milling, etc.), or non-conventional methods such as ultrasonic machining or abrasive
waterjet. These materials are known for their extreme hardness, high brittleness, anisotropy,
heterogeneity, and wear resistance, making machining a challenging task.

Machining using cutting tools (carbides or PCD) is quite difficult because of the fast
wear of the tool due to the material hardness (>2500 Knoop) and abrasion. The risk of
damaging the material is very high and the pieces to be produced are of complex and thin
shapes. Abrasive machining using diamond grinders is then an interesting alternative,
although the process and the tools have to be optimized and the wear behavior of the
abrasive tool understood. The industrial practice is to employ these tools in grinding
conditions (high cutting speed, high feed rate, low cutting depth) in order to avoid any
damage of the CMC (delamination and in-depth cracking, surface cracking and splintering,
edge breaking, etc.). This approach leads to low productivity and high machining cost.

The purpose of this contribution is to understand the behavior of the abrasive tool in
milling conditions in order to decrease and control the tool wear and to improve productiv-
ity while controlling the CMC damage. For that, an approach based on fractal dimension
is used to characterize the tool wear and to relate the evolution of the tool surface fractal
dimension to cutting loads, machining parameters, material damage, and machined surface
roughness.
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2. State of the Art
2.1. CMC Materials

CMCs are ceramic matrix composite materials that associate a reinforcement, usually
ceramic fiber or particles, with a ceramic matrix.

The graphs below show how CMCs outperform current aero engine materials such as
Inconel superalloys. SiC or carbon fiber-reinforced silicon carbide composites (SiCf/SiC
or Cf/SiC) produced by GE Aviation (Evendale, OH, USA) or Safran (Bordeaux, France)
operate at 1316 ◦C. Figure 1 shows a view of where future CMCs are directed in terms of
temperature [1].
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Figure 1. CMCs offer higher temperature capability compared to metals such as titanium and nickel
(top graph) and alloys such as Inconel (e.g., IN738, IN939, and IN792 DS in bottom graph).

The global ceramic matrix composites market exceeded USD 8.6 billion in 2021 and
according to international experts and available data [2] is expected to reach around USD
25 billion by 2035, growing at 6.5% from 2022 to 2035 (Figure 2).
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The use of ceramic matrix composites (CMCs) is growing in applications such as jet
aircraft engines and industrial turbines for the following reasons:

- CMCs are 1/3 the weight of the nickel superalloys currently used.
- CMCs can operate at temperatures up to 260 ◦C higher than Ni superalloys.
- Higher service temperatures mean less thrust cooling air is diverted, allowing engines

to run at higher thrust and/or more efficiently.
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- Engines also run at higher temperatures, burning fuel completely, reducing fuel
consumption and emissions.

- Similarly, CMCs in industrial power generation turbines could reduce environmental
pollution and the cost of electricity.

It should be noted that although CMC materials are not new in the aviation, automo-
tive, or other applications that have recently opened up for this type of materials, due to
the aforementioned reasons, studies of the use of these materials in specific applications
are very scarce and knowing their behavior is still very uncertain, especially with abrasive
machining.

2.2. CMC Abrasive Machining

The first studies on machining of CMCs, and in particular of Cf/SiC (Sepcarb-Inox®),
were carried out in the 1990s by Danglot, J. [3] and Girot, F. [4], in collaboration with
diamond tool manufacturers. Sepcarb-Inox® (45 vol% of woven carbon fiber, 50 vol% CVI
silicon carbide matrix, and 5 vol% of porosity) contour milling or trimming is the least
known machining method. Planning or face-milling operations are quite limited (Figure 3).
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Edging/trimming is the mandatory operation that can be carried out several times
during the production cycle of the material to open the pores and continue the infiltration
process, eliminate excess lengths, and obtain the final dimensions. It can be compared to a
deep pass grinding operation since the radial passes can be several mm.

A priori, there is no difference between climb or conventional machining, since, in
grinding, the advance of the table changes direction with each pass. This point has been
confirmed by Danglot [3]. In conclusion, the works of Danglot and Girot demonstrated the
following:

(1) The grinding wheel is a fundamental factor for machining. The quality of machin-
ing depends on its characteristics and its reproducibility. The choice of grains should be
limited to ranges with little grain size disparity. Making the tool with electrolytic binder
with a normal crimp (50%) should allow the useful life of the tool to be increased by at
least 30% for an equivalent purchase cost. This new embedment height should improve the
tool’s cutting ability, with clearer cutting edges and better chip evacuation. During the first
machining operations with this type of tool, it will be necessary to check that the diamond
grains are not expelled from the bond under the cutting force, which would reduce the
useful life of the tool. If we limit the shear stress, this phenomenon should not occur.

(2) Analysis of the material before machining reveals multiple porosities and cracks in
the matrix. Machining generates new cracks as well as chipping of the material throughout
and at the end of machining. This can be detrimental to the mechanical characteristics
of the material. Measurement of the specific longitudinal Young’s modulus before and
after machining indicates a decrease in this characteristic when the cutting force exceeds
50 N. The surface finish does not change with increasing cutting depth. It improves
noticeably if the rotation speed is high. The dimensions of the chipping on the surface of
the material increase if the depth of cut is increased and if the rotation speed is decreased.
No delamination was observed. This is explained by the fact that there are no forces in the
interlaminar direction.
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(3) Cutting forces change depending on parameters. They increase linearly with
cutting depth and feed speed. They decrease exponentially depending on the rotation
speed of the tool. The range of forces recorded is very wide, from 1 N to 320 N. The radial
force is mainly related to the rotation speed. The other parameters—feed, depth of cut,
and their interactions with rotation speed—have much less influence. Tangential force is a
function of speed, depth of cut, and their interactions. These variables have the same weight
in increasing the tangential force for consistent work. In the case of conventional milling,
the tangential force is multiplied by 2 to 4. Climb milling should be used systematically to
limit cutting forces.

(4) Machining in grinding conditions (very high rotation speed, very fast feed, and
low cutting depth), as recommended by tool manufacturers to limit the cutting force, is
not the right solution. Machining with the milling conditions (moderate rotation speed,
limited feed, and high depth of cut) allows a high material removal rate with moderate
cutting forces.

Recently, An et al. [5] provided a detailed literature survey on the machining of C-SiC.
The material removal mechanism, defect form, and interfacial mechanical properties were
summarized. Preliminary experiments have proved that ultrasonic-assisted machining has
shown unique advantages in reducing force and tool wear, improving machining quality
and machining efficiency.

Diaz et al. [6] provided an informative literature survey of the research undertaken in
the field of conventional and non-conventional machining of CMCs with a main focus on
critically evaluating how different machining techniques affect the machined surfaces.

Wang et al. [7] observed and analyzed the failure modes of the SiC matrix and carbon
fiber under ordinary cutting and ultrasound cutting conditions. With the help of ultrasonic
energy, the grinding force is reduced up to 60%, which means that ultrasonic vibration is
beneficial to reduce the grinding force.

Luna et al. [8] evaluated the influence of grit geometry and fiber orientation on the
abrasive material removal mechanisms of SiC/SiC ceramic matrix composites (CMCs).
They demonstrated that the shape of the abrasive grits has a stronger influence on the
measured process forces. As the size of grit is decreased, less resistance to penetration is
encountered by the grit to engage the workpiece in matrix-rich areas. The scratch tests with
arrangements of multiple grains demonstrated the ability of SiC/SiC CMCs to arrest the
lateral cracks governing the material removal in brittle mode.

2.3. Abrasive Tools

The tools used for this type of machining are of two categories: concretion wheels,
and abrasive wheels with electrolytic binder (Figure 4).

Machines 2023, 11, x FOR PEER REVIEW 5 of 31 
 

 

 
Figure 4. Different types of diamond tool and detail of the diamond grain setting for electrolytic 
bond wheels. 

The diamond is natural, with a maximum diamond concentration (volume of dia-
mond deposited on the tool), meaning that the grains touch each other around the entire 
periphery. A so-called aerated concentration can be requested from the tool manufacturer 
to limit the so-called “jamming” or dulling problem of the tool, although it is not usually 
used to machine this type of material due to a limited number of diamond grains. The 
crimping corresponds to the embedding height of the diamond grains in the electrolytic 
deposit. There are three heights: (i) D or low (30% embedding), (ii) N or normal (50% 
embedding), and (iii) S or super (75% embedding) [9]. 

Usually, the tools used are those with S embedding, as they resist better during the 
machining of Cf/SiC and SiCf/SiC. Concerning grain size, grinders with grit D427 (rough-
ing) to D151 (finishing) are used. The grain size influences the machined surface. A large 
grit allows an interesting material removal rate in a short time, but leaves very marked 
scratches on the piece that will have to be removed with a fine-grain grinding wheel. A 
D252 grain was chosen, which is a medium grain size with good cutting power, to machine 
with large cutting depths. Additionally, this grit size is often used for grinding wheels 
where the dimensional accuracy of the tool is not essential. 

2.4. Wear of Abrasive Tools 
Determining the wear of an abrasive tool in the machining of ceramic matrix compo-

sites (CMCs) is crucial for maintaining the quality of machined parts and optimizing tool 
life. The wear of abrasive tools in CMC machining can be assessed using various methods 
and observations: 
 Visual inspection: Start with a visual inspection of the abrasive tool. Look for signs 

of wear on the tool’s surface, such as (i) loss of sharpness on abrasive grains or edges; 
(ii) formation of chips, cracks, or fractures on the abrasive material; or (iii) change in 
color or surface texture due to wear. Early signs of wear may not be immediately 
obvious, so regular inspections are important. 

 Measurement of tool dimensions: Measure the key dimensions of the abrasive tool 
before and after machining CMCs. These dimensions can include diameter, thick-
ness, mass, and any relevant geometrical features. A reduction in these dimensions 
can indicate wear. 

 Tool wear rate calculation: Calculate the tool wear rate using the following formula: 𝑇𝑜𝑜𝑙 𝑊𝑒𝑎𝑟 𝑅𝑎𝑡𝑒 ሺ𝑉𝑤ሻ = ሺ𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑜𝑜𝑙 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 −  𝐹𝑖𝑛𝑎𝑙 𝑇𝑜𝑜𝑙 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛ሻ𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑚𝑜𝑣𝑒𝑑  

Figure 4. Different types of diamond tool and detail of the diamond grain setting for electrolytic
bond wheels.



Machines 2023, 11, 1021 5 of 31

Concretion wheels are wheels whose diamonds are completely covered by the binder,
sintering the active zone of the tool on the metal support. The binder can be metallic (bronze,
etc.) or resinoid (bakelite). The advantages of these tools are their longevity (several layers
of diamond) and the good condition of the machined surfaces. Their disadvantages are
cost and low removal rate.

Electrolytic bond grinding wheels have only one or two layers of diamond. The
diamond is attached to the metal frame of the tool, thanks to an electrolytic (nickel) deposit.
This tool has a much lower unit cost and its known drawback is a random and shorter
useful life than that of concretion wheels. However, it has an affordable price and an
excellent cutting power.

The diamond is natural, with a maximum diamond concentration (volume of diamond
deposited on the tool), meaning that the grains touch each other around the entire periphery.
A so-called aerated concentration can be requested from the tool manufacturer to limit
the so-called “jamming” or dulling problem of the tool, although it is not usually used to
machine this type of material due to a limited number of diamond grains. The crimping
corresponds to the embedding height of the diamond grains in the electrolytic deposit.
There are three heights: (i) D or low (30% embedding), (ii) N or normal (50% embedding),
and (iii) S or super (75% embedding) [9].

Usually, the tools used are those with S embedding, as they resist better during
the machining of Cf/SiC and SiCf/SiC. Concerning grain size, grinders with grit D427
(roughing) to D151 (finishing) are used. The grain size influences the machined surface.
A large grit allows an interesting material removal rate in a short time, but leaves very
marked scratches on the piece that will have to be removed with a fine-grain grinding
wheel. A D252 grain was chosen, which is a medium grain size with good cutting power,
to machine with large cutting depths. Additionally, this grit size is often used for grinding
wheels where the dimensional accuracy of the tool is not essential.

2.4. Wear of Abrasive Tools

Determining the wear of an abrasive tool in the machining of ceramic matrix compos-
ites (CMCs) is crucial for maintaining the quality of machined parts and optimizing tool
life. The wear of abrasive tools in CMC machining can be assessed using various methods
and observations:

â Visual inspection: Start with a visual inspection of the abrasive tool. Look for signs of
wear on the tool’s surface, such as (i) loss of sharpness on abrasive grains or edges;
(ii) formation of chips, cracks, or fractures on the abrasive material; or (iii) change in
color or surface texture due to wear. Early signs of wear may not be immediately
obvious, so regular inspections are important.

â Measurement of tool dimensions: Measure the key dimensions of the abrasive tool
before and after machining CMCs. These dimensions can include diameter, thickness,
mass, and any relevant geometrical features. A reduction in these dimensions can
indicate wear.

â Tool wear rate calculation: Calculate the tool wear rate using the following formula:

Tool Wear Rate (Vw) =
(Initial Tool Dimension− Final Tool Dimension)

Total material removed

This calculation provides a quantitative measure of how much material the tool has
lost due to wear.

â Surface finish analysis: Evaluate the surface finish of the machined CMC parts. As the
tool wears, it may produce surface defects such as chattering, scratches, or poor finish
quality. A noticeable deterioration in surface finish can be an indicator of tool wear.

â Cutting forces monitoring: Monitor the cutting forces during machining. A sudden
increase in cutting forces or abnormal fluctuations can suggest tool wear. You can use
force sensors or dynamometers to accurately measure cutting forces.
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â Acoustic emission analysis: Acoustic emission monitoring can detect subtle changes
in tool wear by analyzing the sound emitted during machining. Abrupt changes or
unusual patterns in acoustic emission signals can indicate tool wear [10].

Regularly assessing and managing abrasive tool wear is essential to maintain machin-
ing efficiency, product quality, and tool life when working with ceramic matrix composites.
The machining parameters, tool selection, and maintenance practices should be adjusted
based on the wear analysis findings to optimize the process.

Apart from dimensional or mass measurements, there is therefore no quantification of
the wear of the abrasive tool. Furthermore, this dimensional or mass measurement does
not provide additional information on the wear process of the abrasive tool (grain wear or
cleavage) nor on the abrasive power of the tool at a given time for the machining operation.

3. Fractals for Wear Modeling and Control
3.1. The Importance of Wear of Diamond Tools for Machining CMCs

Tool wear prediction is one of the most important topics in the field of machining.
The prediction of tool wear is mainly related to the integrity of the surfaces, and it directly
affects the quality of the part and is important at the level of production logistics and
manufacturing costs [11].

There is some information on the wear of diamond-coated tools for applications other
than machining with CMCs, for example, methodologies for measuring tool wear in rock
machining [12], or mathematical models for calculating the Blunting Area, taking into
account different wear mechanisms [13]. There is abundant information on predicting the
wear of conventional tools when machining metals, and with very diverse approaches:
(i) the use of analytical models and neural networks in turning [14], (ii) signal analysis with
treatment using neural networks for milling [15], (iii) use of linear regressions in combina-
tion with design of experiments in finishing operations [16], or (iv) use of algorithms in
combination with “Machine Learning” [17].

3.2. The Use of Fractals for Machining Analysis

Topology, as a geometry, is extended to the definition of fractal structures by charac-
terizing equivalences in different levels of detail. In the investigation of Sahoo et al. [18],
an exhaustive examination is conducted of the use of fractals to characterize the surface
quality of various machining processes. It is mentioned that one of the main advantages
of this approach is the independence of the sample size. For example, height variations
in roughness depend on the size of the section being analyzed. Using a measure that is
scale invariant [19] suggests the use of fractals in the case of surfaces that are rough (such
as those of diamond abrasive tools).

For this research, a plate of silicon carbide CMCs was machined by edging. The useful
height of the abrasive tool was 10 mm, and the thickness of the composite plate was 6.5
mm. The tool was centered symmetrically with respect to the composite plate, such that
approximately 1.75 mm on each side of the tool remained unused, which served as a sample
to determine the difference in the fractal dimension of the tool in “new” condition.

A convenient way of characterizing the roughness of a surface (or to characterize a
diamond abrasive-type tool) is Hausdorff or fractal dimension. A fractal geometry is a
measure of the complexity of the surface, and the value of the fractal dimension can take
a non-integer value between 2 and 3. In general, when the value of the fractal dimension
increased, the greater the complexity of the surface. For smooth surfaces, the value of
fractal dimension is near to 2, which gradually increases with an increment in roughness of
the surface. For drastically rough surfaces, the fractal dimension comes close to 3.

There is a variety of proposals to calculate the fractal dimension of a surface: using tri-
angular prisms [20], the variation method [19,21], box counting [22], the three-dimensional
root mean square (3D-RMS) [23], the regional residual root mean square (3R method) [24],
the cubic covering method, or the surface area method [25,26]. All of the above methods
have advantages and disadvantages and greater or lesser precision. However, they all
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have a limitation regarding the shape of the area that is sampled to determine the fractal
dimension (the measured section must be square), or the number of sample points on the
map at each coordinate of the XY plane (it must be a number close to a power of 2). An
example of a “problematic” data map is shown in Figure 5.
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For a topographic map such as the one in Figure 5, it is difficult to calculate the fractal
dimension, since the entire section of the tool has not been worn. The tool edge will not
be taken into account, from the dimension x0 = 0 to x1 = 0.3 mm. The data between the
coordinates x1 = 0.3 to x2 = 1.3 mm correspond to the area where the abrasive tool has not
machined CMC. The area from x3 = 2 to x4 = 5.1 mm is where machining has occurred.
Between x2 = 1.3 and x3 = 2 mm there is uncertainty regarding the location of the tool with
respect to the CMC plate during machining, and that is why it was not analyzed.

3.3. Proposed Method to Determine the Fractal Dimension

The surface must meet certain minimum requirements to be able to be analyzed
according to the method that will be proposed later. The requirements are:

- The roughness must be isotropic: the surface must not present directionality in its
fractal pattern. The isotropy of the surface is important since it allows the dimension
reduction method to be used to calculate the surface fractal (D_surf) as the fractal
dimension value along a certain direction of a profile (D_prof) + 1 [20,24]. An example
of isotropic and anisotropic roughness is shown in Figure 6.

- The section (map) from which the fractal dimension will be calculated must be square
or rectangular in shape, and must be aligned along a convenient coordinate system, as
shown in Figure 2.
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The proposed method consists of the following steps:

- Divide the surface into sections along the direction containing the greatest quantity
of data, and obtain roughness profiles perpendicular to the direction containing the
least quantity of data. In the case of Figure 5, the largest quantity of data is along the
X coordinate (columns) and the direction with the least quantity of data is along the Y
direction (rows).

- The selection of the roughness profile will depend on the area of the surface to be
analyzed. For example, Figure 7 shows a roughness profile from x3 = 2 to x4 = 5.1 mm,
in the area where the tool has machined CMC.
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Figure 7. Roughness profile of a part of the section (Sn), of the tool surface as shown in Figure 5.
In this case, the profile has been selected from the area in which the tool has suffered wear from
machining CMCs.

- The number of roughness profiles will be equal to the smallest number of data
along that direction; in the case of Figure 5, from nrow = 1 (y = 0 mm) to nrow = 96
(y = 0.95 mm).

- Calculate the fractal dimension for the section of each roughness profile as shown in
Figure 5. To calculate the fractal dimension, the power spectral density (PSD) method
is recommended [27]. Each coordinate on the X axis represents time in a wave, and
the amplitude of the same wave is represented by the roughness height on the Z
coordinate.

- Power spectral density requires the selection of a way to estimate the energy of the
wave (in this case the roughness profile). One can use the classic methods: “method of
autocorrelation method, periodogram method, Bartlett method, and Welch method”.
According to Shen et al. [28], the Bartlett and Welch methods are the most precise, and
that is why the latter (Welch) has been selected.

- For each profile, the slope (β) is calculated on a log–log scale of the fit line for the
power spectral density data [29], as shown in Figure 8 for the roughness profile in
Figure 7.
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- The slopes are calculated for all surface roughness profiles in the study area of interest
from nrow = 1 to nrow (as in the case of Figure 5), and the value of the Hurst coefficient
(H) is calculated, with 0 ≤ H ≤ 1 [27], from Equation (1).

|β| = 2Hnrow − 1 (1)

For a self-affine surface [19], the fractal dimension of the surface (2D) from its rough-
ness profiles (1D) will be calculated using Equation (2).

Dsur f nrow
= E + 1− Hnrow (2)

where E is the dimension of the Euclidean space (in this case E = 2 for a surface).

- The estimated values Dsur f nrow
of each roughness profile are adjusted to a logistic type

distribution [30]. The logistic distribution was chosen due to its relative simplicity
and because it adapts very well to the way in which the Dsur f nrow

data obtained from
each roughness profile are distributed (Figure 9).
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- The value of Dsur f for the entire fractal surface is given by Equation (3).

Dsur f = µ
[

PDF
(

Dsur f nrow

)]
(3)

where µ is the value of the location parameter of the probability density function (PDF).

4. CMC Abrasive Machining Experiments
4.1. Material Used in the Abrasive Machining Tests

The material was supplied by SGL CARBON GmbH (Wiesbaden, Germany). This
company offers both Cf/C (SIGRABOND® Standard) and Cf/SiC (SIGRASIC®) CMCs.
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This last material can be adapted to the required application with a behavior controlled
by the matrix (matrix dominated with milled fibers (MFs)), mixed (short fibers (SFs)), or
controlled by the reinforcement (fiber-dominated with long fibers (LFs)). SIGRASIC® LF
was selected because it is the type of material used in aircraft engine applications [31].

Cf/SiC is manufactured by infiltrating a carbon fiber-reinforced carbon body with
silicon (Figure 10). Due to near net shape processing, complex machining can be performed
cost-effectively early in the process. Final ceramic grinding can be used locally when tight
tolerances are required. By suitable adjustment of the material and process parameters,
the product characteristics can be matched to the intended use of the CMC component
(Figure 10). The mechanical properties are shown in Figure 11. The test pieces are 100 ×
100 × 6.5 mm3 plates.
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4.2. Tools and Machining Equipment

The diamond wheels were supplied by the PFERD company [9], and had the charac-
teristics defined in Table 1.

Table 1. Characteristics of the abrasive grinder used in the study.

Abrasive Tool Reference Type Vc Feed Pass

DZY-N 25.0 10/12 D126 Diamond
106–125 µm

15–25 m/s
wet

0.01–0.05
mm/rev ≤6 mm

The machining center used for the tests was a KONDIA A6 vertical axis, mobile table
machine, with a spindle rotation capacity of 15,000 rpm. External lubrication based on
coolant was used.

For these preliminary tests, a 25 mm diameter tool with diamond grains was used
because it offers a range of wet cutting speed compatible with the limitations of the
equipment (15,000 rpm, but limited to 13,000 rpm).

In order to compare the results with other research works, the cutting speed was 2, 7,
12, and 17 m/s. The feed speed was 100, 500, and 1000 mm/min (Table 2).

Table 2. Design of experiments performed.

Ref. Vc (m/s) N (rpm) Feed Vf
(mm/min)

Pass ae
(mm)

[1] 2 1529 100 1

[2] 7 5350 100 1

[3] 12 9172 100 1

[4] 17 12.994 100 1

[5] 17 12.994 500 1

[6] 12 9172 500 1

[7] 7 5350 500 1

[8] 2 1529 500 1

[9] 17 12.994 1000 1

[10] 12 9172 1000 1

[11] 17 12.994 100 2.5

[12] 7 5350 1000 1

The tests were performed using a constant axial pass, corresponding to the thickness
of the composite plate (6.5 mm), and a fixed radial pass of 1 mm, except for a test where it
was increased to 2.5 mm in order to conduct a deep pass test and see its influence on the
cutting forces.

A Kistler dynamometer was used to analyze the forces in the three orthogonal di-
rections (Figure 12). The device follows ISO 376 [32] and ASTM E74 [33] standards for
calibration and verification for force measuring, and is calibrated every 6 months.

The material was climb machined according to the results of Danglot’s study [3].
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Figure 12. Kistler dynamometer and assembly used for testing. Zone where fractal analysis is
performed.

4.3. Damage Measurement Methodology

To determine the quality of the cut and its impact on the damage to the CMC material,
two variables representative of the process for different cutting conditions were measured
from pictures and using the image analysis software ImageJ [34]. ImageJ is public domain
digital image processing software programmed in Java, developed at the National Institutes
of Health. Those variables were the maximum depth of chipping (in µm) and the linear
chipped area (in mm2/cm). To do this, the color picture was changed to a black and white
one and digitized (Figure 13).
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Figure 13. Image of the machined surface of the CMC (top), the delimitation of the damage (center),
and its binary equivalent (bottom) for measurement with ImageJ.
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The magnification of the image is defined from a known measurement or an initial
calibration and all black particles in the digitized photo are determined.

For each cutting condition, different pictures are taken along the 100 mm machined.
These surfaces are averaged and a specific damage is determined for the measured surface
corresponding to 10 mm in length (linear chipped area). The maximum width of the
chipping along the 100 mm (maximum chipping) is also determined.

5. Wear Results
5.1. Tool Wear Evolution

The evolution of tool wear was carried out by determining the fractal dimension of
the tool surface of a worn area and comparing it with the fractal dimension of the part of
the tool that was not machined by the CMC.

The values obtained following the methodology described above are reflected in
Table 3. The variation in the fractal dimension with respect to the previous test was also
calculated; this variable that can explain how wear occurs and develops.

Table 3. Values of the fractal dimension of the tool surface as a function of the test number and the
cutting force applied to the tool.

Test Number D_surf R2 Fc (N) ∆D_surf

0 2.1896 0.9889 0 0

1 2.1902 0.9524 20.65 0.0006

2 2.1132 0.9532 12.35 −0.077

3 2.0982 0.9488 13.77 −0.015

4 2.1731 0.8761 11.06 0.0749

5 2.0594 0.9649 27.92 −0.1137

6 2.1228 0.9534 28.56 0.0634

7 2.1403 0.9043 40.53 0.0175

8 2.0427 0.9743 52.15 −0.0976

9 2.1068 0.9634 25.23 0.0641

10 2.1916 0.8921 27.17 0.0848

11 2.0815 0.9627 20.54 −0.1101

12 2.1336 0.9278 55.86 0.0521

The corresponding images obtained with the Leica DCM 3D confocal microscope
are given in Appendix A (top view and 3D view of the tool surface analyzed) and in
Appendix B (optical view of corresponding zone), after each of the different tests 1 to 12.

As we are dealing with a 3D surface, the fractal dimension has a value between 2 and
3. If the wear is homogeneous, meaning the grains are worn away and lead to a flat surface,
the fractal dimension should decrease and approach the value 2.

If, on the other hand, wear is produced by breaking the grains, or if other smaller
grains appear on the surface, the surface of the tool will be rougher and its fractal dimension
will increase to move away from the value 2.

However, the trend is that there is no clear relationship between the fractal dimension
and the cutting force.

Figure 14 details the evolution of the fractal dimension with the cutting force applied
to the tool. A decreasing evolution of the fractal dimension with cutting force is highlighted,
meaning that, for the higher the cutting load, the smaller the fractal dimension, resulting in
greater wear.
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However, interesting things may appear when analyzing the variation of the fractal
dimension with respect to the previous test (Figure 15). In this figure, one can notice
positive or negative variations. Negative variations are associated with a decrease in the
fractal dimension, which corresponds to a smoother surface or a regular wear of the grains.
Positive variations are associated with the cleavage of diamond grains and the appearance
of new underlying grains. These variations also depend on the level of the cutting or feed
force acting on the tool, which have a particular influence on the diamond grain behavior.
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The height of the diamond grains decreases with wear but is also dependent on the
force applied to the abrasive tool. The higher the cutting load, the greater the wear or
breakage of the grains (Figure 16). It has been proven that, during the wear of the grains,
several of them cracked due to an inappropriate grain crystallographic orientation with
respect to the cutting forces. These cracks lead to partial rupture of the grain by cleavage
(which occurs in test 4) or due to excess of cutting force. Figure 17 highlights these different
aspects. The new abrasive tool has some grains with cleavage (bright points in Figure 17a).
When wear evolves, the quantity of grains presenting a smooth face increases (end of test 3,
Figure 17b). If machining continues, grain cleavage is greater compared to worn grains
(end of tests 4 and 12, Figure 17c,d).
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Another interesting evolution concerns the diamond abrasive height as a function of
the tool surface fractal dimension (Figure 18). This height decreases continuously from test
1 to test 12. Sequences of grain wear are followed by steps of grain cleavage or breaking,
hence decreasing and increasing the fractal dimension of the tool surface. Smaller grains
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also surface in the cutting zone and participate in the abrasion machining of the CMC,
contributing to an increase in the fractal dimension.
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5.2. Multiple Linear Regression of Fractal Dimension

The analysis of variance (Table 4) was realized with LUMIERE 5.40 software and
demonstrates that the fractal dimension of the surface can be explained by the variations in
significant parameters such as the cutting load Fc, the radial pass ae, and the interaction of
these two parameters. The regression coefficient of the model is also quite good (R = 0.9582).

Table 4. Analysis of variance of the fractal dimension D_surf.

Variable Coefficient Standard Deviation t Student Confidence % Risk %

Fc 0.1055 0.0298 3.5441 99.47 0.53

ae 2.1531 0.4638 4.6423 99.91 0.09

Fc. ae −0.1065 0.037 −2.8775 98.35 1.65

Source Square sum DoF Mean squares Fisher Confidence % Risk %

Regression 53.9936 3 17.9979 37.3736 100 0

Residues 4.8157 10 0.4816

Total 58.8093 13 4.5238 R = 0.9582

On the other hand, it was not possible to define a model that explains the evolutions
of the fractal dimension variation ∆D with respect to the previous test.

6. Relationships between Wear, Forces, Damage, and Roughness

The results of evolution of the machining loads, damage and roughness are given in
Table 5.

6.1. Evolution of Cutting Forces

The cutting load decreases with the cutting speed regardless of the feed velocity
(Figure 19). This result is in agreement with the conclusion of Danglot’s work [3]. From
15 m/s, the cutting force practically no longer changes, justifying that it is not necessary to
work at higher speed to reduce the forces on the tool. This is interesting since it means that
a conventional machining center working at 15,000 or 25,000 rpm can carry out this type of
machining using a tool with a diameter of 20 or 10 mm.
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Table 5. Evolution of the machining loads, CMC damage, and roughness during the different tests
performed. Sa (arithmetical mean height), Sz (maximum height), and Sq (root mean square height)
are the surface texture parameters of the machined sample.

Test Number Chipped Area
mm2/cm

Maximum
Chipping µm Fc N Fn N Sq µm Sz µm Sa µm

1 0.1729 105 20.65 2.72 23.8 309 18.5

2 0.0809 63 12.35 3.76 40.2 223 33.3

3 0.0589 57 13.77 4.51 26.3 162 20.9

4 0.0189 48 11.06 4.66 21.4 170 16.6

5 0.0591 55 27.92 1.81 30.7 208 24.5

6 0.1296 61 28.56 1.5 21.4 187 16.7

7 0.2329 113 40.53 2.11 27.5 189 22.1

8 0.2838 193 52.15 2.34 18 153 14.1

9 0.1665 106 25.23 1.47 28.4 217 22.7

10 0.2109 158 27.17 1.48 30.9 241 24.9

11 0.0383 117 20.54 1.67 44 352 36.3

12 0.4097 302 55.86 2.46 35.7 225 28.6
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Figure 19. Evolution of the cutting force with the cutting speed and comparison with data from
Danglot’s work (grey squares) [3].

The normal force Fn is in all cases very small (<5 N) and in the uncertainty of the
measurement (±5 N).

The difference in results with Danglot’s work, i.e., the efforts obtained are double,
can be attributed to the materials used in one case (SEPCARB-INOX) or in the other
(SIGRASIC®).

Concerning the evolution of the cutting force with the feed speed (Figure 20), it appears
that the force increases continuously with the feed speed for low cutting speeds (2 and
7 m/s). For higher speeds (12 and 17 m/s), the forces are very similar with a non-monotonic
behavior and reach their maximum around 700 mm/min (30 N). This demonstrates that it
is possible to have high productivity while maintaining low cutting force.
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6.2. Multiple Linear Regression of Cutting Forces

The analysis of variance (Table 6) demonstrates that the variations in the cutting force
can be explained by the variations in significant parameters such as the feed velocity Vf,
the radial pass ae, and the interaction between the feed velocity Vf and the cutting speed
Vc. The regression coefficient of the model is also quite good (r = 0.9781).

Table 6. Analysis of variance of the cutting force.

Variable Coefficient Standard Deviation t Student Confidence % Risk %

ae 10.2834 2.3217 4.4292 99.87 0.13

Vf 0.0748 0.01 7.4545 100 0

Vf × Vc −0.0037 0.0008 −4.844 99.93 0.07

Source Square sum DoF Mean squares Fisher Confidence % Risk %

Regression 11,299.5072 3 3766.5024 73.6568 100 0

Residues 511.3586 10 51.1359

Total 11,810.8658 13 908.5281 R = 0.9781

6.3. Evolution of the Damage to the Material

Concerning the evolution of the chipped area with the cutting speed, the higher the
cutting speed, the lower the chipped area (Figure 21). Furthermore, in the case of the feed
velocity, the higher the feed velocity, the higher the chipped area (Figure 22).

However, it should be noted that for cutting speeds of 12 and 17 m/s, this dependence
of the chipped area on the feed speed is less significant than for cutting speeds of 2 and
7 m/s. The chipped area is therefore very dependent on the cutting speed.

An interesting analysis concerns the evolution of the chipped area with the variation in
the fractal dimension with respect to the previous test (Figure 23). This analysis highlights
that the greater this variation (positive or negative), the greater the chipped area. However,
this damage occurs more frequently when this variation is positive (associated with grain
cleavage or rupture) than when it is negative (associated with diamond grain wear). So,
this means that the damage mode of the tool has a strong influence on the chipped area of
the CMC part.
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Concerning the maximum chipping, the evolution is similar. The higher the cutting
speed or the lower the feed velocity, the lower the maximum chipping (Figures 24 and 25).
In this case, it should also be noted that for cutting speeds of 12 and 17 m/s, this dependence
of the maximum chipping on the feed speed is less significant than for cutting speeds of 2
and 7 m/s.
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Concerning the evolution of the maximum chipping with the variation in the fractal
dimension with respect to the previous test (Figure 26), it is highlighted that the greater this
variation (positive or negative), the higher the maximum chipping. However, unlike for
the chipped area, the maximum chipping strongly depends on the variation in the fractal
dimension compared to the previous test. For high variation values (worn diamond grain
or cleavage), the maximum chipping is high. For variations in the fractal dimension less
than −0.1 or greater than +0.05, the maximum pullout increases significantly, and is not
conditioned by the type of damage to the tool.
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6.4. Multiple Linear Regression of Chipped Area

The analysis of variance (Table 7) demonstrates that the variations in the chipped area
can be explained by the variations in significant parameters such as the cutting speed Vc,
the fractal dimension D_surf, the interaction between the feed velocity Vf and the cutting
speed Vc, and the interaction between the radial pass ae and the feed velocity Vf. The
regression coefficient of the model is also very good (r = 0.9926). The interaction between
the radial pass ae and the feed velocity Vf is representative of the metal removal rate (MRR)
since, in our case, the axial depth ap is constant. The model points out that the higher the
MRR, the higher the chipped area.

Table 7. Analysis of variance of the chipped area.

Variable Coefficient Standard Deviation t Student Confidence % Risk %

Vc −0.0092 0.0021 −4.3775 99.76 0.24

D_surf 0.0644 0.0127 5.0636 99.90 0.10

Vf × Vc 0.0000 0.0000 −3.1989 98.74 1.26

Vf × ae 0.0004 0.0001 7.1231 99.99 0.01

Source Square sum DoF Mean squares Fisher Confidence % Risk %

Regression 0.4305 4 0.1076 136.2415 100 0

Residues 0.0063 8 0.0008

Total 0.4369 12 0.0364 R = 0.9926

6.5. Multiple Linear Regression of Maximum Chipping

The analysis of variance (Table 8) demonstrates that the variations in the chipped area
can be explained by the variations in significant parameters such as the fractal dimension
D_surf, the interaction between the feed velocity Vf and the cutting speed Vc, and the
interaction between the radial pass ae and the feed velocity Vf (interaction proportional to
the MRR). The regression coefficient of the model is also very good (r = 0.9926).
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Table 8. Analysis of variance of the maximum chipping.

Variable Coefficient Standard Deviation t Student Confidence % Risk %

D_surface 19.0108 6.6851 2.8438 98.07 1.93

Vf × Vc −0.0184 0.0031 −5.9483 99.98 0.02

Vf × ae 0.3552 0.0450 7.8854 100.00 0.00

Source Square sum DoF Mean squares Fisher Confidence % Risk %

Regression 210,992.6347 3 70,330.8782 85.4064 100.00 0.00

Residues 7411.3653 9 823.4850

Total 218,404.0000 12 18,200.3333 R = 0.9829

6.6. Evolution of the Roughness of the CMC Sample

The surface texture parameters of the machined sample Sa (arithmetical mean height),
Sz (maximum height), and Sq (root mean square height) in ISO25178 were measured using a
Leica DCM 3D system with dual core technology that combines confocal and interferometry
technology for high-speed and high-resolution measurements down to 0.1 nm.

There is no notable pattern that relates the roughness Sq, Sz, or Sa to the process
parameters, cutting speed, or feed rate.

At a feed speed of 1000 mm/min, the roughness parameters appear constant.
The roughness values Sq and Sa evolve in a similar way. Up to a cutting speed of

14 m/s, the parameters Sq and Sa seem to decrease when the feed speed increases. Above
that value, the result is the opposite.

The roughness Sz decreases with the cutting speed at low feed rates, but increases
with a feed rate of 500 mm/min.

There is also no clear pattern of evolution of roughness with advance speed.
At 100 mm/min and 1000 mm/min, the best results are associated with a cutting

speed of 17 m/s.
At 500 mm/min, roughness is minimized with a low cutting speed (2 m/s).
Since SIGRASIC-LF is a material manufactured by liquid and gas infiltration, there

could be a relationship between the microstructure of the material, and especially the closed
and reopened porosities during machining, and the results of roughness measurements.
Figure 27 presents micrographs of the machined surface in the central part of the material
where the porosities reopened during machining can be seen. There are no differences in
porosity between the different cutting conditions that could explain the roughness results
and that could be attributed to the quality and microstructure of the material.
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Figure 27. Aspect of the machined surface highlighting internal porosities for the following parame-
ters: Vc = 2 m/s; Vf = 500 mm/min and ae = 1 mm.
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6.7. Multiple Linear Regression of Roughness Sa

The analysis of variance (Table 9) demonstrates that the variations in the roughness Sa
can be explained by the variations in significant parameters such as the fractal dimension
D_surf and the radial pass ae.

Table 9. Analysis of variance of the roughness Sa.

Variable Coefficient Standard Deviation t Student Confidence % Risk %

ae 9.6457 3.8650 2.4956 96.83 3.17

D_surf 5.8533 2.1842 2.6799 97.69 2.31

Source Square sum DoF Mean squares Fisher Confidence % Risk %

Regression 6682.2530 2 3341.1265 104.8799 100.00 0.00

Residues 318.5670 10 31.8567

Total 7000.8200 12 583.4017 R = 0.9770

6.8. Multiple Linear Regression of Roughness Sz

The analysis of variance (Table 10) demonstrates that the variations in the roughness
Sz can be explained by the variations in significant parameters such as the fractal dimension
D_surf and the radial pass ae.

Table 10. Analysis of variance of the roughness Sz.

Variable Coefficient Standard Deviation t Student Confidence % Risk %

ae 94.9904 29.0894 3.2655 99.15 0.85

D_surf 53.3817 16.4389 3.2473 99.12 0.88

Source Square sum DoF Mean squares Fisher Confidence % Risk %

Regression 599,370.4741 2 299,685.2370 166.0718 100.00 0.00

Residues 18,045.5259 10 1804.5526

Total 617,416.0000 12 51,451.3333 R = 0.9853

6.9. Multiple Linear Regression of Roughness Sq

The analysis of variance (Table 11) demonstrates that the variations in the roughness
Sq can be explained by the variations in significant parameters such as the fractal dimension
D_surf and the radial pass ae.

Table 11. Analysis of variance of the roughness Sq.

Variable Coefficient Standard Deviation t Student Confidence % Risk %

ae 11.1078 4.4838 2.4773 96.73 3.27

D_surf 7.7930 2.5339 3.0755 98.83 1.17

Source Square sum DoF Mean squares Fisher Confidence % Risk %

Regression 10,355.9493 2 5177.9746 120.7717 100.00 0.00

Residues 428.7407 10 42.8741

Total 10,784.6900 12 898.7242 R = 0.9799

For all these regression analyses, the normality test of the residuals demonstrates that
the distribution is normal. This means that the models defined for each of the responses
studied (fractal dimension D_surf, cutting force, chipped area, maximum chipping, and
roughness values Sq, Sz, or Sa) do not require the addition of other parameters. The
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variations in the parameters of each of the models are sufficient to explain the variations in
each of the responses.

7. Conclusions

This contribution demonstrated that the use of fractal dimensions to evaluate the wear
of abrasive tools is an interesting method that allows more information to be obtained
about the behavior of the grinding wheel than a simple dimensional or mass measurement.

The cutting forces and the fractal dimension of the tool surface are directly linked, and
changes in cutting conditions can be highlighted by variations in this fractal dimension.
Likewise, the type of damage to the abrasive tool (wear of the diamond grains, cleavage, or
breakage, etc.) has a direct impact on the values of the fractal dimension.

The proposed method is therefore interesting but requires (i) having a confocal micro-
scope available, (ii) dismantling and indexing the abrasive tool to systematically analyze the
same zone(s), and (iii) gathering results from additional measurement time and investment
in measurement equipment. On the other hand, the method ensures a certain quality of
machining and control of material damage while ensuring better productivity.

The study also showed that milling cutting conditions make it possible to machine
CMC with good productivity, while minimizing cutting forces and damage to the CMC
(chipped area, maximum chipping). A cutting speed from 15 m/s combined with a feed
speed of 500 mm/min allows this material to be optimally machined for cutting depths ae
of up to 2.5 mm.

In the models developed to predict damage to the CMC (chipped area, maximum chip-
ping) or the roughness of machined surfaces, the fractal dimension appears systematically
as a significant parameter.

The fractal dimension D_surf is directly proportional to the cutting force Fc and to
the radial depth of cut, which a priori is logical since the damage to the diamond grains
depends on the engagement of the tool (hence ae) and of the force Fc applied during
machining.

The chipped area depends mainly on the product Vf*ae and the fractal dimension
D_surf, characteristics of the metal removal rate, the state of damage of the abrasive tool,
and then, to a lesser extent, the cutting speed.

The maximum pull-off also mainly depends on the product Vf*ae and the fractal
dimension D_surf.

The roughness values Sa, Sz, and Sq depend on the radial pass ae and the fractal
dimension D_surf, characteristics of the engagement of the tool in the CMC material, and
the state of damage of the abrasive tool.

In conclusion, the fractal dimension D_surf is therefore a good indicator of the wear of
the abrasive tool and makes it possible to characterize both the damage of the tool and that
of the machined material. The method proposed for determining this fractal dimension
seems suitable for this type of application (abrasive machining).
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Nomenclature

CMC Ceramic matrix composite
CVI Chemical vapor infiltration
D_surf Surface fractal dimension
D_prof Fractal dimension value along a certain direction of a profile
∆D Fractal dimension variation with respect to the previous test
β Slope calculated on a log–log scale of the fit line for the power spectral density data
nrow Row number of the roughness profile
H Hurst coefficient
Vc Cutting speed of the tool (m/s)
N Rotation speed of the tool (rpm)
Vf Feed velocity (mm/min)
ae Radial pass (mm)
Fc Cutting load (N)
Fn Normal load (N)
Sa Arithmetical mean height
Sz Maximum height
Sq Root mean square height
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