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Abstract: Domestic chimney cleaning is still mostly a manual procedure which can be overly complex,
dangerous, and expansive. This paper describes the design of a novel robotic device for chimney
cleaning that aims to provide a valuable alternative solution to the traditional manual techniques
with user-friendly and low-cost features. The proposed device enables a significant reduction in
operator risks, including roof falling and soot dust contact. The paper’s content describes, in detail,
the design process, including a definition of the main design requirements and steps towards the
manufacturing of a preliminary prototype. Moreover, a preliminary validation is described through
laboratory tests to demonstrate the engineering feasibility and effectiveness of the proposed design
solution for the intended semi-autonomous chimney-cleaning application.

Keywords: design; chimney cleaning robot; preliminary testing

1. Introduction

The obstruction of a chimney can arise due to the accumulation of soot and creosote,
leading to stagnation and an excessive emission of smoky odors. To prevent the buildup
of soot and the occurrence of fires, a proposition involves the utilization of autonomous
robotic apparatus designed for chimney cleaning, such as proposed in [1–4]. Traditional
methods for chimney cleaning persist, involving chimney sweeps who deploy steel or
plastic brushes. Two primary manual cleaning techniques exist: the first necessitates the
presence of a skilled operator employing harnesses, while the second involves cleaning the
chimney from within the confines of the building. Safety considerations for the operator
are paramount in both scenarios. The primary risk associated with roof-based cleaning
pertains to the potential for falls. Regardless, exposure to soot dust carries the risk of cancer
and soot-related asphyxiation.

Unfortunately, the specific application of robotized chimney cleaning has rarely been
addressed in the literature, while there exists a wide range of investigations on robots that
are capable of traversing within pipes and executing tasks related to cleaning or inspection.
Several aspects of these applications are well-related to the application in this paper and
several design aspects can be inspired by the need to effectively navigate and inspect
pipelines, with a wide array of design solutions available in the literature. For example, the
review in [5] introduces the possibility of using crawler modules, showcasing the potential
for agile and adaptive movement within pipelines. Kwon et al. [6] contributed a two-
module indoor pipeline inspection robot, addressing challenges related to maneuverability
and control. Furthermore, autonomous navigation within pipelines has been achieved
through the utilization of contact sensor modules [7], signifying advancements in reducing
human intervention and enhancing inspection efficiency.

In the realm of locomotion mechanisms, the introduction of tensegrity-based inchworm-
like robots [8] by Liu et al. has been revolutionary. This novel design concept imitates
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the principle of tensegrity, allowing for the robot to crawl through pipelines with varying
diameters. A parallel-pipe-crawling pneumatic soft robot, as designed by Zhang et al. [9],
highlights the versatility of soft robotics in pipeline environments, underscoring the im-
portance of innovative design and modeling in achieving adaptable locomotion as also
reported in [10,11]. The landscape of in-pipe inspection extends beyond locomotion to
encompass gripping and manipulation mechanisms. Wang and Gu’s work on bristle-based
pipeline robots [12] offers effective strategies for navigating pipes with challenging ge-
ometries. Additionally, the incorporation of self-locking mechanisms in inchworm in-pipe
robots [13] presents a unique solution for overcoming the complexities posed by varying
pipe shapes.

In the pursuit of efficient inspection across diverse industries, novel mechanisms such
as multi-axial differential gear mechanisms [14] have come to the forefront. Kim et al.
introduced a pioneering mechanism for in-pipe robots, exemplifying the potential of
advanced mechanisms in navigating intricate pipeline scenarios. Furthermore, recent
developments have extended the capabilities of in-pipe inspection to address challenges
related to confined spaces. The introduction of the “Porcospino” spined single-track mobile
robot [15] signifies an expansion in the scope of in-pipe inspection, enabling access to
previously unreachable regions. Gripper-based climbing robots like “KharazmBot” [16]
underscore the importance of robust and reliable gripping mechanisms for a variety of
surfaces, highlighting advancements in robot design and functionality. Beyond locomotion
and gripping, the survey delves into long-distance pipeline inspection [17] and novel
modularized robotic systems [18], as well as bio-inspired wall-climbing robots [19], while
the Mecanum-Wheeled Hybrid Hexapod [20] highlights dynamic mobility. Multiple other
examples highlight the integration of mechanical design and simulation principles and
cutting-edge concepts like magnetic harmonic drives to further expand the spectrum of
robotic solutions, as reported, for example, in [21–23].

Given the above literature overview, this paper addresses the practical requirements
for domestic chimney cleaning. The first phase of the design process involved formulating
the design requirements and constraints. On this matter, one should note that several
aspects were defined by referring to the related literature and considering the available
quantitative data that were taken by referring to competitors’ designs. For example, taking
into consideration the key aspects of manual operation and comparing them with compa-
rable items on the market, the functional requirements of the product were established.
In particular, it was established that the ideal maximum operating speed can be set at
0.15 m/s. With this speed, the robot can advance inside the pipe so that the brush can
effectively remove even the most stubborn encrustations. Similarly, bearing in mind the
average weight of existing built-in robots, a maximum weight of 2.5 kg was defined. In
addition, the robot must meet the competitor’s standard radial size of 200 to 250 mm or
a 400 to 500 mm diametral size to fit within standard chimneys. Furthermore, the total
range of the robot must allow for the navigation of at least 50 m in the chimney, as also
mentioned in [1–4].

This paper is organized as follows: Section 2 provides a description of the main
design features of the proposed chimney-cleaning robot, as based on the main requirements
that have been previously briefly outlined; Section 3 describes the process towards the
manufacturing of a proof-of-concept prototype; Section 4 describes the main hardware
features with calculations of the main properties; Section 5 describes the prototype testing;
and Section 6 drives some conclusions and future work. It is worth mentioning that the
proposed design has been submitted for patenting.

2. Chimney Cleaning Design

The first design step consisted of a careful literature and market review, resulting in
the definition of the main design requirements and constraints that are summarized in
the product design specifications that are summarized in Table 1, with an indication of
the requirements that are mandatory or desirable (not mandatory). Most dimensions are
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identified as referring to the dimensions of standard domestic chimneys, as well as by
considering the characteristics of competitor products. In particular, the robot’s cross-body
dimension was defined by considering the standard 400 to 500 mm diametral size of a
chimney and allowing for a minimum of 100 mm for a retractable mechanism to adapt
to chimneys of various sizes, as well as for adapting to soot and asperities that can be
present in the chimney. The requirements for mass, speed, and life cycle were deducted
by a comparison with other similar commercial products, as well as by referring to the
expectations of a standard user. The maximum robot motion refers to the maximum feasible
length of a domestic chimney, equaling 50 m. It is worth noting that the proposed device
has to comply with regulatory safety requirements, especially to avoid the risk of humans
getting into contact with the soot. From this viewpoint, it is worth highlighting that the
robot is designed to be operated remotely, providing a significant reduction in soot contact
and the related risks for a human operator.

Table 1. Definition of the main product design specifications (PDS).

PRODUCT DESIGN SPECIFICATIONS
FUNCTION CHIMNEY CLEANING DEVICE

PERFORMANCE
AND SIZE

DIMENSIONS AND MASS OF THE DEVICE

BODY CROSS DYMENSION:
300–400 mm (mandatory)

• diametral expansion: must be less than the
diameter of the smallest pipe

• the dimensions must allow the device to fit
comfortably into a chimney

MASS: ≤ 2.2 KG (desired)
• avoid damaging the chimney
• cost reduction

BRUSH SIZE AND MASS

DIAMETER: same of chimney (mandatory) • various diameter for off-the-shelf brushes
• available length for off-the-shelf brushes
• Avoid overload

LENGTH: no specific requirement

MASS: ≤ 0.3 KG (desired)

MOTION

SPEED: ≤ 0.15 M/S (desired)
MOTION LENGTH: up to 50 m

• analyzing similar applications [9,10]
• standard domestic chimneys can exceptionally

reach this maximum length
POSITIONING

POSITIONING AT CHIMNEY: Manual
• For safety purposes and for cost reduction,

manual placement in at the outer of
the chimney

EXECUTION

OPERATION: automatic or semi-automatic
• Preferred automatic operation along

the chimney

COMPATIBILITY

Adaptability to various chimneys • Operate in different diameter’s pipes
MAINTENANCE

At Each Use: Cleaning Brush and Robot Body • soot removed from the chimney can be partially
deposited on the brush, and on the wheelsPeriodic: Wheel Cleaning Every Two-Three Uses

Extraordinary: Replacement of Wheels, Brush,
and Motors (desired)

• Given the specific harsh environment, it can be
necessary to replace some components

LIFE IN SERVICE

1000 h (desired) • Common operation time of motors [11].
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Table 1. Cont.

PRODUCT DESIGN SPECIFICATIONS

MANUFACTURE
PRODUCTION COST

≤ €250 (desired) • Considering competitors and market searches

TERMS OF USE

OPERATING TEMPERATURE

0–50 ◦C (mandatory) • Standard operation range for similar devices

PRESENCE OF EXTERNAL AGENTS

Soot • Typical operation condition for this device

MATERIAL

DEVICE BODY

Aluminum and plastic (desired)
• aluminum for thin and profiled structures,

plastic for covers as typical for similar devices

BRUSH

Off-the-shelf brush (desired)
• polyethylene brush for steel pipes
• steel brush for other pipes

Given the variability in the pipe diameters in which the device must operate, a spring
expansion system was chosen to ensure pipe–wheel contact in different configurations. In
particular, the expansion mechanism can be of two types: active or passive. Active linkage
systems use actuators to actively control the normal force on the contacting parts, but are
bulkier and more expensive than passive systems. Passive systems, on the other hand,
allow for a high adaptability to different pipe diameters using simple structures. Therefore,
a passive system was chosen for this specific application.

Robotic Structure

This section discusses the design of the primary structure of the proposed robot, which
allows the robot to adapt and push its wheels against the inner surface of a chimney.
The robot consists of three legs with a slider-crank spring expansion mechanism design
(Figure 1a) to ensure pipe–wheel contact. To ensure the stability of the robot body, a
configuration was used in which the three legs are connected to the robot body and
oriented at 120◦, as shown in Figure 1b.
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Figure 1. A schematic design of the proposed robot structure: (a) the proposed leg mechanism for
ensuring adaptability of the wheel to the pipe; and (b) location of the three legs in a pipe cross
section view.

Figure 2 highlights the separation of the mechanism into free bodies by replacing the
constraints with reaction forces. Namely, the mechanism on the left side is converted int the
free body (1) consists of the link from D to B and the free body (2) consists of the link from
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A to C with addition of all the equivalent reaction forces in replacement of each constraint
that has been removed. One wants to correlate the minimum contact force to be ensured
(FC) with the spring force (Fm) so that the main components can be designed as referring to
the free body diagrams that are shown in Figure 2. For this purpose, we use the principle
of virtual works (PVW) method. Specifically, when analyzing the constraint conditions, the
only forces acting are Fm and FC (these forces are that applied by the operator to compress
the mechanism during positioning, or that exerted by the pipe wall during operation). The
PVW can be written as follows:

δW = Fm δx − FC δz = 0 (1)

where δx and δz represent the virtual displacements in the x and z directions, respectively.
In addition, geometrical considerations show that:

x = −2 l cos(α) (2)

z = 2 l sen(α) (3)
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consists of the link from D to B and the free body (2) consists of the link from A to C with addition of
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Substituting Equations (2) and (3) into Equation (1), we obtain:

δW = 2 l sen(α) Fm δα− 2 l cos(α) FC δα = 0 (4)

From Equation (1), one can obtain:

FC = tan(α)Fm (5)

The mechanism has two singularity positions with respect to the angles of 0◦ and 90◦,
so, to be on the safe side, the working range is assumed to be between the angles of 30◦

and 60◦. To reduce the mass of the device, aluminum profiles were selected. Considering
one of the wheels of the robot in contact with the pipe, in the static condition, the force
distribution can be modeled as shown in Figure 3. Considering the acting forces, the
following equilibrium equations can be calculated as referring to the driving wheels as:

N = FC
µ N =

m g
6 +

FS g
6(

m g
6 +

FS g
6

)
r = τ

(6)
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Figure 3. Diagram of forces acting on a wheel.

Considering our specific case, from the third equation in Equation (6), one can calculate
the minimum value of the torque, which allows for the equilibrium condition of the system
to be obtained as being about 0.25 Nm. This information will be needed for selecting the
proper motor for the wheels.

Figure 4 shows a schematic of the proposed functional structure of the robot with
folding arms, based on a rod-crank mechanism. A preliminary illustration of the spring
mechanism that holds the wheel to the chimney wall is shown in the proposed diagram.
This scheme was used to perform the dimensional synthesis of the primary components
and to estimate the action and reaction forces as follows:{

Fm1 = k ∆x1 = 20.97 N
Fm2 = k ∆x2 = k (∆x1 + 2 l (cos(α2)− cos (α1))) = 30.23 N

(7)

From the system of Equation (7), it is possible to obtain the values of the lumped spring
stiffness k and compliant displacement ∆x1 of the spring number 1, which give exactly
the desired values of the elastic force, 0.73 N/mm and 28.69 mm, respectively. Given the
value of ∆x1 one can calculate similarly the value of the compliant displacement ∆x2 of
the spring 2 as equal to 41.36 mm. Considering thin beams, shear deformations are not
considered, and the cross-section of the connection is given by a rectangular aluminum
profile. The middle section of the connection, which contains a 4 mm hole at point D, is
the most stressed. A rotary joint must be accommodated in this hole. This leads to the
adoption of a 3 mm × 10 mm by 1 mm cross-section and a structural study. As explained
in [23], the hole results in a stress concentration with a compression coefficient of 2.25 and a
unit bending coefficient. The following conditions are imposed and checked using a factor
of safety (FOS) of 2, and: {

σt = Kc
t + σM ≤ Sy

FOS
σc = Kc

t − σM ≥ − Sy
FOS

(8)

σN = −Fm cos α
A

(9)

σM = −Fm L sin α
I

h
2

(10)
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where σt is the tensile stress, σc is the compression stress, Kc
t is the compression tension

concentration factor, σM is the bending moment tension, σN is the normal stress tension,
Sy is the yield stress, Fm is the spring force, α is the mechanism angle, I is the moment of
inertia, A is the link cross-section, L is the link length, and h is the distance between the
end of the robot body and the axis of the cylindrical guide. To dimension the connections
correctly, it is therefore necessary to specify the range of pipe diameters in which the robot
can be used, as well as to dimension the diameter of the wheel to be used. According to
the design specifications, the device can be used in pipes with a diameter range between
250 mm and 300 mm. Following the minimum–maximum principle [23], the criteria used
for choosing the wheel diameter are to:

• maximize the transmission force;
• ensure isotropy of movement in the three directions.
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The optimum wheel radius, for a pipe diameter of 250 mm, is obtained from the
intersection of the two curves, as shown in Figure 5.

The complete prototype consists of a frame structure, four servomotors, a wire brush,
and three drive mechanisms with one spring each. Sensors and control hardware complete
the robot. Figure 6 shows a diagram of the main parts of the robot body. The cross-section
of the primary body is triangular. The primary body of the robot contains the controller
and battery. A guide mechanism (retractable crank) is attached to each flat surface. This
allows for a spring to be used to adjust and push a wheel against the inner surface of the
stack. The front of the robot is equipped with a static wire brush.
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Three-dimensional CAD models of the full robot are developed, as based on the
scheme in Figure 6. In particular, Figure 7a shows a 3D CAD model of the leg structure
as the main component of the proposed design. Figure 7b shows a 3D CAD model of the
attachment of the wheel motor to the leg structure, where careful attention has been taken
to avoid any interference with the pipe or any robot part.
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design; and (b) attachment of the wheel motor to the leg structure.

3. Prototype of the Robot

The robot’s physical prototype was created using 3D printing, with the exception of
its motors, connecting parts and the brush, which are off the shelf components.

Wheels Manufacturing

We decided to create the wheels in search of a substance that would provide superior
adhesion and friction on the chimney wall. After a careful review of the scientific literature,
it emerged that silicone is the material most frequently used in situations involving the
development of a robot inside a vertical pipe. A closed-mold casting procedure was used to
create the silicone wheels (Figure 8). The wheel rim was molded in plastic and has a unique
shape. A single mesh was molded on the outer wall of the rim so that the cast silicone
could be mechanically attached more securely to the rim.

Several tests were conducted during the production of the wheels, resulting in a last
version that was superior to the drawbacks of previous versions:

• Wheel rim: it was decided to make the spokes thinner to lighten the wheel, to make
the rim smaller to increase the thickness of the silicone, and to make the “mesh”
configuration less dense;

• Molded mold: it was produced in two separate halves. In addition, the depth of the
grooves was increased to improve the grip of the wheel;

• Bottom mold: the centering pin was removed and a circular guide was inserted to
center the edge and prevent the silicone from flowing to the bottom of the mold;

• To create an exactly symmetrical mold, the upper mold is identical to the lower mold.

Figure 9a shows the main 3D printed components and Figure 9b shows the fully
assembled device at the University of Calabria.
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4. Main Hardware Features

The control hardware is based on a commercial Arduino with a motor shield that has
been customized. Each brushed DC motor’s battery pack absorption was calculated to be
1.2 A. A working period of 6 min was anticipated to cover a distance of 50 m at a speed
of 0.15 m/s, and a 9.6 V and 2 Ah BAKTH rechargeable commercial battery was utilized.
A static and dynamic analysis was used to choose Hi-Tech D485HW servomotors. The
servomotors were modified to rotate continuously. Servo motor modifications included
the removal of the mechanical block that restricts the rotation of the output shaft and the
replacement of the potentiometer with resistors that allow for the signal to be stabilized.
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The maximum motor output torque requires a 7.4 V power source. Because the
Arduino Mega board does not support this voltage, an external power supply is necessary.
A bespoke circuit was also constructed and fabricated to include an ultrasonic sensor
HC-SR05 for detecting obstructions that could hinder the robot from moving forward.
We used DC brushed motors for the final product, since continuous motion is necessary,
with only a planned change in direction. The device’s progress speed is specified in the
technical specifications. Based on this criterion, the rotational speed of the wheel shaft can
be calculated as:

ω =
v
r
=

0.075 m/s
0.034 m

= 2.21
rad

s
(11)

The required mechanical power is calculated as:

Pm = τ ω = 1.10 W (12)

For this design, a higher electrical power motor was sought out and successfully
identified as the Walfront mo48pt3v9d, which has an electrical power of Pe = 1.50 W.
Figure 10 shows the size of the chosen motor. To ensure optimal performance, elements
like efficiency, torque, and compatibility were also analyzed with the device’s specifications
during the research process.
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The following are the features of the identified motor:

• Free speedωfree = 4.19 rad/s;
• Stall torque τstall = 1.42 Nm;
• Stall current istall = 1.15 A;
• No-load current ifree= 0.31 A;
• Supply voltage V = 12 V;
• Reduction ratio = 1:224.

Characteristic curves based on the available torque are developed to estimate the
motor’s operating point. The following equation describes the behavior of the output
angular velocity as:

ω = −ωfree
τstall

τ+ωfree (13)

The required mechanical power is calculated as:

Pm = τ ω (14)
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The following is the law that describes the trend of current i that is absorbed by the
motor as a function of the given torque τ as:

i =
istall − ifree
τstall

τ+ ifree (15)

at the end, the expression of efficiency is:

e =
τ ω

i V
(16)

To plot the motor’s characteristic curves as a function of the torque, a code was written
in the MATLAB application, which is included in the attachment. Figure 11 shows the
calculated values for the speed, power, current, and efficiency as function of the torque.
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5. Preliminary Experimental Tests

A basic prototype was created and tested at the University of Calabria using two
pipes with diameters of 250 mm and 300 mm, which are common flue pipe dimensions, as
illustrated in Figure 12a,b. The spring mechanism allowed the device to easily adapt to the
two diameters, ensuring the proper adhesion of the wheels on the chimney walls.
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A dynamometer was used to measure the resistance force of the brush. This test shows
that, during movement, the brush resists with a force of 1 kg (Figure 13).
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Figure 13. (a) Dynamometer used for the tests and (b) measured value.

The flexibility of the kinematics and the right initial configuration of the links were
evaluated during the device’s insertion into the pipes (Figure 14).
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Figure 14. Sequence for inserting device in the chimney: 1—manually approaching the chimney;
2—incipient insertion of the robot into the chimney; 3—completed insertion of the robot.

Actuation Tests

The first set of tests were performed on a horizontally oriented chimney. This test
specifically checked the absence of parts in contact, the adhesion of the wheels on the pipe,
the performance supplied by the motors, and the device’s balance during the journey. It is
worth mentioning that the static brush, as shown in Figure 10, aids in maintaining balance
along the chimney axis during motion in straight pipes. However, the device is constructed
to have a modular shape. The connection of multiple modules can also enable turning in
the case of non-straight chimneys. However, this case has not been implemented for the
built prototype.

The second series of testing was performed on a vertically positioned chimney with
the device being moved upwards. The outcome of this test demonstrated that the device
can perform the ascent phase, as illustrated in Figure 15. The electrical current consumption
was measured during the cleaning test for several cleaning cycles (Figure 16) in order to
determine the needed power and confirm the design stages. Due to the resistance of the
robot’s own weight and brush friction, the robot had a maximum current consumption
of 1.25 A during the ascending phase, as projected. The current consumption during the
descendent phase was around 0.4 A. Calculating the integral of the current drawn in a
cleaning cycle and dividing by the duration of the cycle, the average current consumption
was 0.837 A.

The robot performed very well in this test, easily overcoming obstacles and successfully
navigating through them again when the motion was reversed (Figure 17). This proves the
feasibility of the proposed design with a remarkably simple, low-cost, and user-friendly
control strategy, which are fundamental features for this specific application, where the
device needs to be operated by non-expert users who mostly need basic, semi-automatic
operations. It is worth noting that the addition of more sensors or a more complex control
scheme would lead to a significant increase in costs that is undesirable for this specific
application, where the price is of upmost significance for the market deployment of such
a device. Similarly, the application does not require a fast dynamics model, since that
would, again, negatively impact the costs. One should also note that, given the features
of our design, a simple close loop control scheme was proposed by using the position in
the pipe as the main measured feedback. Such a position control scheme does not require
complex kinematics or dynamics models while it is demonstrated to be fully effective for
the intended application.
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reaching the base; 4—robot starting the ascent phase to reach the chimney exit.
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Figure 16. Acquisition of the current consumption during the actuation cycles (numbers from 1 to 11
identify each of the 11 cleaning cycles that have been performed during the experimental test. Each
cleaning cycle consists of ascending and descending the full length of the chimney.
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Figure 17. Robot’s link movements during obstacle avoidance (numbers identify the phases of
obstacle avoidance; namely, in phase 1 the wheel approaches an obstacle; in phase 2 the robot leg
adshortens its size to overcome the obstacle; in phase 3 the robot leg returns to its original length
after overcoming the obstacle).

The robot comes to a halt when the dynamometer registers a force equal to the weight
of the robot (about 1.27 kg, as illustrated in Figure 18) plus the resistive force of the
brush. This is owing to the adoption of a safety factor of 2 during the analytical motor
sizing process.
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6. Conclusions

This paper addressed the design of a novel robot for robot for quick and safe semi-
automatic chimney cleaning. The main design steps were carefully described to achieve
a low-cost and user-friendly design solution. A first prototype was manufactured and
preliminary tested to validate its engineering feasibility and user friendliness in main
operation conditions. The tests showed very promising features, and a patent application
has been submitted. Future work will include further tests, as well as the addition of an
active rotating brush and a device for collecting the eliminated soot.
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