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Abstract: Local Fisher discriminant analysis (LFDA) has been widely applied to dimensionality
reduction and fault classification fields. However, it often suffers from small sample size (SSS)
problem and incorporates all process variables without emphasizing the key faulty ones, thus
leading to degraded fault diagnosis performance and poor model interpretability. To this end, this
paper develops the sparse variables selection based exponential local Fisher discriminant analysis
(SELFDA) model, which can overcome the two limitations of basic LFDA concurrently. First, the
responsible faulty variables are identified automatically through the least absolute shrinkage and
selection operator, and the current optimization problem are subsequently recast as an iterative
convex optimization problem and solved by the minimization-maximization method. After that, the
matrix exponential strategy is implemented on LFDA, it can essentially overcome the SSS problem by
ensuring that the within-class scatter matrix is always full-rank, thus more practical in real industrial
practices, and the margin between different categories is enlarged due to the distance diffusion
mapping, which is benefit for the enhancement of classification accuracy. Finally, the Tennessee
Eastman process and a real-world diesel working process are employed to validate the proposed
SELFDA method, experimental results prove that the SELFDA framework is more excellent than the
other approaches.

Keywords: matrix exponential; SSS problem; sparse variables selection; fault diagnosis

1. Introduction

Due to the gradually increasing requirements on system property, product quality
as well as economic benefits, modern industrial processes have become even more
complicated [1]. Hence, modern industrial processes urgently need advanced fault
detection and isolation (FDI) techniques. Reviewing the existing FDI methods, there
are two main subclasses: the data-based ones and the model-based ones. Specially,
the data-based methods have been ever-accelerated recently with the continuously
development of data collection and storage technologies, and received broad attention
in both academy and industry domains [2–5]. Recently, lots of mature data-based
approaches have been found applications in FDI field with great successes, which is
also the focus of this paper.

Among all the data-based methods mentioned above, it is noteworthy that Fisher
discriminant analysis (FDA) [6,7] and principal component analysis (PCA) [8,9] are the
two most popular ones. In general, PCA and its extensions are an unsupervised feature
extraction method and ignore the correlations among different faults. Hence, it is more
suitable for fault detection rather than fault classification. In contrast, FDA belongs to
supervised dimension reduction and feature extraction method, it selects a set of vectors
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that maximize the distance among classes while minimize the distance between classes
simultaneously, have also becomes one of the research hotspots in classifying the detected
process abnormalities nowadays [10].

Despite the fact that FDA is a popular fault classification model, it tends to show
degraded performance if the samples in a class show multimodality. In response to
this problem, a method named local Fisher discriminant analysis (LFDA) was originally
presented in [11] for dimensionality reduction. LFDA aims to overcome the limitations of
local preserving projection (LPP), which cannot select the most discriminative basis vectors
to construct the subspace. Simultaneously, LFDA addresses the issue of unsatisfactory
classification performance of traditional FDA when dealing with multi-modal problems.
By combining locality-preserving projection and Fisher Discriminant Analysis, LFDA
enhances the discriminative power of features. It achieves this by preserving similarity
within the local structure of the data and optimizing global discriminability through the
Fisher criterion. LFDA is particularly suitable for handling multi-modal data. Then,
Yu applied this method to complex chemical process monitoring [12] and shown high
sensitivity in diagnosing multiple faults. After that, the authors of [13] extended the
LFDA to its multiway variation and performed much better in classifying faults as well as
detecting abnormal operating conditions in fed-batch operation. Furthermore, the authors
of [14] developed JFDA method to describe the process dataset from both the global and
local view in a high-dimensional space and received satisfactory diagnosis performance in
Tennessee Eastman (TE) process. Recently, Zhong et al. [15] proposed the sparse LFDA
model, which can exploit the local data information from multiple dimensions and ease
the problem of multimodality and nonlinearity. Ma et al. [16] presented the hierarchical
strategy based on LFDA and canonical variable analysis (CVA) for hot strip mill process
monitoring.

Nevertheless, the above LFDA-based methods typically assume that the relationships
between samples have been correctly described. However, this assumption can be easily
violated since the relations among the operating variables are also intricate. In such
context, the variable selection strategy is necessary for feature filtering and better model
interpretability, drawing great attention in both industry and academia. What is more,
when the dimension of dataset is bigger than the number of samples (i.e., the small-
sample-size (SSS) problem). Then the LFDA-based methods will confront with singular
problem due to the irreversibility of the within-class scatter matrix. Given the reliability of
LFDA in the field of fault diagnosis and classification, the following two problems maybe
formidable challenges: One major challenge is how to implement proper improvements
on LFDA to release the hypothesis that every sample of training data should be labeled
accurately beforehand. Another challenge lies in the adverse effects on model classification
performance that caused by singular data matrix.

To deal with the first predicament, an alternative way could be utilizing the useful
information from labeled and unlabeled samples simultaneously [17,18], thus both the
supervised information and intrinsic global structure are considered. Such methods are
called the semi-supervised ones and they also have been applied to fault classification
field. For example, ref. [18] proposed the semi-supervised form of the FDA (SFDA), which
incorporated the supererogatory unlabeled samples when conducting the fault diagnosis
model, showing better fault classification over FDA and PCA. Yan et al. presented the
semi-supervised mixture discriminant analysis (SMDA) [19] to monitor batch processes and
both the known and unknown faults have been diagnosed correctly. Recently, researchers
combined the active learning with the semi-supervised EDA model and applied to process
industries successfully [20], thus improving the applicability of the traditional EDA model
in real industrial processes. However, the semi-supervised LFDA for fault classification has
not been studied yet in existing literatures.

When encountering the likely and common SSS problem in practical scenarios, none
of these approaches can be applied to that case directly since the within-class scatter matrix
in question is singular, if an appropriate technique is utilized to solve up the SSS problem,
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then the model could be more broadly applicable. Fortunately, several modified methods
have been provided in [21,22] to relieve the SSS problem to some extent. Nevertheless, the
intrinsic limitation of FDA has not eliminated and the SFDA model could completely solve
the SSS problem neither. Afterwards, Zhang et al. [23] proposed a novel advantageous
FDA model from the matrix exponential perspective, which has settled the SSS problem
thoroughly and show superior performance on various experiments. Soon after that, Adil
et al. [24] applied the EDA model to fault diagnosis in industrial process with improved
classification accuracy. Note that the authors of [25] also incorporated the exponential
technique into LDE and showed better performance than the current discriminant analysis
techniques in face recognition. More recently, Yu et al. [26] developed the exponential slow
feature analysis (SFA) model for adaptive monitoring, which can correctly identify various
operation statuses in different simulation processes. Nevertheless, the intentions of these
advanced approaches are not overcome or provide practical solutions to solve the SSS
problem in LFDA.

Based on the above discussions and current research status. We tend to present the
sparse variables selection based exponential local Fisher discriminant analysis, referred
to as SELFDA, which has not been reported in fault diagnosis field before. The salient
contributions of this paper lies in the following aspects:

• The SELFDA can maximize the between-class separability and reserve the within-class
local structure simultaneously through the localization factor. That is means, the
multimodality of operating data has been preserved from sample dimension.

• The least absolute shrinkage and selection operator (LASSO) is used to select the
responsible variables for SELFDA model effectively. Then the sparse discriminant
optimization problem is formulated and solve by minimization-maximization method.
Thus, the data characteristics can be well exploited from the variable dimension.

• Besides, the matrix exponential strategy is integrated into the framework of LFDA.
As a consequence, the SELFDA method can function well when encountering the
common SSS problem in despite of the dimensions of the input samples.

• Although SELFDA is an LFDA-based method, it is able to jointly overcome the two
limitations of conventional LFDA. Thus, SELFDA is more feasible and universal in
engineering practices. To our best knowledge, this paper is also the first time to
leverage the SELFDA for fault classification of real-world diesel engine.

The outline of this work is structured as below. In Section 2, the classic LFDA model is
reviewed. The motivation of this study as well as the specific description of the proposed
SELFDA algorithm is presented in detail in Section 3. Simulation experiments are conducted
on a simulation process and a real-world diesel working process in Section 4. Finally,
conclusions are made in Section 5.

2. Revisit of LFDA

Assume the XL = {x1, x2, . . . , xl} ∈ Rm×l is the labeled dataset matrix, where the
vector xi is from m-dimensional space Rm. And we assume that there are nk labeled samples
in the kth (1 ≤ k ≤ K) class Ck.

Let Sb and Sw be the between-class scatter matrix and within-class scatter matrix.
In order to better understand LFDA, the pairwise manner of FDA [18] is the necessary
prerequisite knowledge.

Sb =
1
2

n

∑
i=1

n

∑
j=1

Wb
i,j
(
xi − xj

)(
xi − xj

)T (1)

Sw =
1
2

n

∑
i=1

n

∑
j=1

Ww
i,j
(
xi − xj

)(
xi − xj

)T. (2)
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where

Wb
i,j =

{
1
n −

1
nk

if xi ∈ Ck, xj ∈ Ck
1
n otherwise

(3)

Ww
i,j =

{
1
nk

if xi ∈ Ck, xj ∈ Ck

0 otherwise
. (4)

Based on the pairwise forms of FDA, the pairwise forms of LFDA can be rewritten as
below [11]:

Slb =
1
2

n

∑
i=1

n

∑
j=1

W lb
i,j(xi − xj)(xi − xj)

T

Slw =
1
2

n

∑
i=1

n

∑
j=1

W lw
i,j (xi − xj)(xi − xj)

T.
(5)

The weighting matrices W lb
i,j and W lw

i,j are given as

W lb
i,j =

{
Ai,j

(
1
n −

1
nk

)
if xi ∈ Ck, xj ∈ Ck

1
n otherwise

(6)

W lw
i,j =

{
Ai,j
nk

if xi ∈ Ck, xj ∈ Ck

0 otherwise.
(7)

where Ai,j is the (i, j)th element of affinity matrix A, being the affinity between the ith
sample and jth sample. Then the projection vectors of LFDA are obtained by the objective
function described as below.

JLFDA = arg max
vl,i 6=0

{ vT
l,iSlbvl,i

vT
l,iSlwvl,i

}
. (8)

where vl,i represents the i-th discriminant vector in LFDA. It has already been proved that
the solution of the above optimization problem is given by:

S−1
lw Slbwl,i = λl,iwl,i. (9)

where λl,i, wl,i, i = 1, 2, . . . , m are the generalized eigenvalues and corresponding eigenvec-
tors, respectively.

3. Methodology
3.1. Problem Statement and Motivation

Statement and Motivation 1: Generally speaking, there are always plentiful variables
in real cases, especially in the complex industrial process, often resulting in inaccurate
classification models. To improve the suboptimal classification performance caused by
imbalanced number of normal and faulty samples, the model should explore the useful
discriminant information and manifold structures from both the labeled and unlabeled
samples, which is beneficial for fault classification.

However, most of the exciting LFDA models are unable to carry out variable selection
in fault diagnosis area, which incorporates all process variables without emphasizing the
key faulty ones. Therefore, the LASSO method is used to select the responsible variables
for SELFDA model effectively. Then the sparse discriminant optimization problem is
formulated and solve by feasible gradient direction method. Thus, the data characteristics
can be well exploited from the variable dimension.
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Statement and Motivation 2: Since the within class matrix Slw of LFDA is non-invertible
when encounter the frequent SSS problem, thus the discriminant information corresponding to
the eigenvalues of Slw that are equal to 0 has been ignored by LFDA, hence the LFDA cannot
be applied to the SSS case. As a consequence, the application scope of fault classification
methods that developed upon LFDA is largely narrowed, which has brought bottlenecks to
the popularizations and implement of these methods in actual industrial process. Therefore, an
efficient LFDA-based classification model able to cope with the SSS problem is badly needed.

As described in former sections, if the dimension of dataset exceeds the number of
samples, then the Slw in (9) is non-invertible. Thus, the optimization problem of (8) is
unsolvable and the fault cannot be accurately classified through the LFDA-based methods.
Actually, the SSS problem is quite common in the complex industrial process since the
faulty samples are insufficient and hard to obtain in most cases. Therefore, to alleviate
the SSS problem is imperative for fault classification models. In the proposed method,
the matrix exponential strategy is carried out to develop the favorable model, which can
completely solve the SSS issue without reducing the data dimensionality compulsively,
and more practical and robust in practical applications. What is more, it also inherits the
discriminant nature from LFDA and allows for the enhanced classification performance by
the distance diffusion mapping.

3.2. SELFDA

(1) Sparse Local Fisher Discriminant Analysis (SLFDA): Based on LFDA, SLFDA with
LASSO sparsity makes the model more concise and interpretable, the object function (9)
can be reformulated as below:

max
ŵk

ŵT
k Ŝbŵk

s.t. ŵT
k Ŝwŵk ≤ 1

ŵT
k Ŝwŵi = 0 (∀i < k). (10)

where ŵk is the kth discriminant direction of SLFDA.
The LFDA model can realize variable selection through adding L0 penalty term, which

is a NP-hard problem. So the LFDA in (10) can be reformulated by adding LASSO penalty
as follows:

max
ŵk

ŵT
k Ŝbŵk − λ||ŵk||1

s.t. ŵT
k Ŝwŵk ≤ 1

ŵT
k Ŝwŵi = 0 (∀i < k). (11)

where λ is the LASSO penalty factor. In general, the interpretability and discriminant
performance of SLFDA model increase with the increase of λ within a certain range, and
then decrease.

(2) Solution of SLFDA: As orthogonal constraint in (11) is difficult to satisfy directly.
Aiming at this problem, a new between class scatter matrix Ŝb

k is designed to replace Ŝb.
So that the kth discriminant direction can be calculated as Ŝb

k = ΨTP⊥k Ψ. If k = 1, let
P⊥1 = I, then Ŝb

1 = Ŝb. Or else, the Ŝb can be expressed as Ŝb = ΨTΨ through Cholesky
decomposition. Then, a new orthogonal projection matrix M⊥k projects onto the space that
orthogonal to Ψwi (i = 1, 2, . . . , k− 1), which can be written as:

M⊥k = I −ΨW(ΨW)+. (12)

where W = [ŵ1, ŵ2, . . . , ŵk−1], (ΨW)+ is the Moore Penrose pseudoinverse of ΨW.
Generally speaking, problem (11) can be worked out by Lagrangian multiplier regard-

less of the LASSO penalty as
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Ŝb
kŵk = λkŜwŵk. (13)

And Equation (13) can be turn into the following form by multiplying ŵT
i

ŵT
i Ŝb

kŵk = λkŵT
i Ŝwŵk. (14)

Then, the left part of (14) can be changed into

ŵT
i Ŝb

kŵk = (Ψŵi)
T{I −ΨW[(ΨW)TΨW]−1(ΨW)T}Ψŵk. (15)

Set mi = Ψŵi, so mT
i mi = ŵT

i Ŝbŵi = λiŵT
i Ŝwŵi = λi, and mT

i mj = 0 when i 6= j. Set
M = ΨW, then M = [m1, m2, . . . , mk−1]. Therefore, Equation (15) can be changed into (16)

λkŵT
i Ŝwŵk = [mT

i −mT
i M(MTM)−1MT]mk. (16)

Since (MTM)−1 in (16) is diagonal matrix that consist of 1
λi

, so mT
i M(MTM)−1MT can

be expressed as:

[0, . . . , λi, . . . , 0]

1/λ1
. . .

1/λk−1




mT
1

mT
2

...
mT

k−1

 = mT
i . (17)

Then we have λkŵT
i Ŝwŵk = 0, that is to say ŵT

i Ŝwŵk = 0. After that, Equation (11) can
be calculate as

max
ŵk

ŵT
k Ŝb

kŵk − λ||ŵk||1

s.t. ŵT
k Ŝwŵk ≤ 1. (18)

since the problem in (18) is non-convex. And the minimization-maximization (MM) method
that is a common choice for figuring out nonconvex functions. Thus, (18) is finally trans-
formed into the following iterative optimization problem by MM algorithm:

max
θ

θTŜb
kŵi

k − λ||θ||1

s.t. θTŜwθ ≤ 1. (19)

where θ is the parameter vector used to maximize the objective function. ŵi
k is the optimal

solution of the last iteration. In this way, the kth discriminant direction can be approximated
by iterated operation, which can be solved by the feasible gradient direction method [15].

Then, the regularized forms of scatter matrixes Srlb and Srlw are defined in following form:

Srlb = (1− β)Ŝb
k + βSt.

Srlw = (1− β)Ŝw + βIm.
(20)

where St is the total scatter matrix of the whole dataset [18], Im is an identity matrix, and
β ∈ [0, 1] denotes the weighting factor. Under most condition, one may choose different β
value to increase the flexibility of the model.

(3) Derivation Procedure of SELFDA: In order to extract the discriminant information
contained in the null space of within-class scatter matrix, the matrix exponential strategy is
carried out here. Analogous to the kernel methods, in SELFDA model, suppose there is
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a non-linear distance diffusion mapping ϕ, then the scatter matrices Srlb and Srlw can be
mapped into a new high-dimensional space.

ϕ : Rn → F (21)

Srlb → ϕ(Srlb) = exp(Srlb). (22)

Srlw → ϕ(Srlw) = exp(Srlw). (23)

Specifically, taking the covariance matrix Srlb as an example, its exponential form can
be calculated as below:

exp(Srlb) = I + Srlb +
S2

rlb
2!

+ · · · = Qe∧Q. (24)

where Srlb = Q ∧QT, Q is an orthogonal matrix and ∧ is a diagonal matrix.
Similar to the LFDA introduced in Section 2, the projection directions of SELFDA

can be obtained by solving the exponential of Srlb and Srlw from the following optimiza-
tion problem:

JSELFDA = arg max
vce,i 6=0

{
vT

ce,i exp(Srlb)vce,i

vT
ce,i exp(Srlw)vce,i

}
. (25)

And the matrices Srlb and Srlw should be normalized beforehand to prevent the
appearance of large values of the numbers originating from exp(Srlb) and exp(Srlw). Since
the exp(Srlb) and exp(Srlw) are full-rank matrices according to the Theorem 3 in [23].
Thus, the SSS problem of LFDA is solved because there is no need for (25) to consider the
singularity of within-class scatter matrix.

Similarly, the solution of (25) is acquired through the following Lagrangian multi-
plier method:

exp(Srlb)wce,i = λce,i exp(Srlw)wce,i. (26)

where λce,i and wce,i are the eigenvalues and the corresponding eigenvectors, respectively.
The first d eigenvectors Wd = [wce,1, . . . , wce,d] are used to span the subspace.

3.3. Discriminant Power of SELFDA

It is noted that SELFDA is equivalent to transforming the original data into a new
space by exponential mapping, after that, the LFDA model with comprehensive sample
information is carried out in such a new space, which might shown some analogous
characteristics of kernel mapping. The only difference between them is that the latter maps
the feature vectors while the SELFDA maps the scatter matrices. After that, the SELFDA
may show enhanced performance over LFDA when involving nonlinear circumstance.

The LFDA tends to search the optimal discriminate direction, which can minimize
the within-class distance and maximize the between-class distance simultaneously. In
mathematics, the trace of the scatter matrices can be given:

trace(Srlb) =
K
∑

i=1
nk‖(µk − µ)‖2

2

= λrlb,1 + λrlb,2 + · · ·+ λrlb,m.
(27)

trace(Srlw) =
K
∑

k=1
∑

xi∈Ck

‖(xi − µk)‖2
2

= λrlw,1 + λrlw,2 + · · ·+ λrlw,m.
(28)

Since the eigenvalues of trace(Srlb) are often used to describe the separation between
classes, while the eigenvalues of trace(Srlw) are often used to describe the closeness of the
samples within classes. Hence, the discriminant vector that corresponds to the bigger ratio
of λrlb,i/λrlw,i owns stronger discriminant power.
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And the eigenvalue of the exponential matrix can be obtained by the following equation:

exp(Srlb)wrlb = Iwce + Srlbwrlb + · · · = eλrlb wrlb. (29)

where wrlb is the eigenvector of Srlb, and λrlb is its corresponding eigenvalue.
Therefore, the trace of the SELFDA can be calculated as following:

trace(exp(Srlb)) = eλrlb,1 + · · ·+ eλrlb,m

trace(exp(Srlw)) = eλrlw,1 + · · ·+ eλrlw,m .
(30)

It is noticeable that for most of the eigenvalues in (29) and (30), we have the inequality
λrlb,i > λrlw,i and eλrlb,i > eλrlw,i .

Since λrlb,i > λrlw,i > 0, then λrlb,i − λrlw,i > 0 and consequently since ∀a > 0, ea >
1 + a, we have

eλrlb,i−λrlw,i > 1 + λrlb,i − λrlw,i. (31)

Also we have 1 + λrlb,i − λrlw,i > 1 + λrlb,i−λrlw,i
λrlw,i

, since λrlw,i > 1 for large eigenvalues.
We obtain the following equation through transitivity

eλrlb,i−λrlw,i > 1 + λrlb,i − λrlw,i >
λrlb,i

λrlw,i
. (32)

That gives us
eλrlb,i

eλrlw,i
= eλrlb,i−λrlw,i >

λrlb,i

λrlw,i
. (33)

From the above analysis, we know that diffusion scale to between class distance is
bigger than that of within class. That is means, SELFDA can enlarge the margin between
different categories compared with LFDA, which is desirable for fault classification.

In order to better understand the working process of SELFDA algorithm, the pseudo-
codes are given in Algorithm 1.

Algorithm 1 SELFDA

Input: Training data X ∈ Rm×n

Output: The data matrix projection
1: Establish the of SELFDA model according to (10)–(20)
2: for i, j = 1 to n, β ∈ [0, 1] do

3: Slb ← 1
2

n
∑

i=1

n
∑

j=1
W lb

i,j(xi − xj)(xi − xj)
T

4: Slw ← 1
2

n
∑

i=1

n
∑

j=1
W lw

i,j (xi − xj)(xi − xj)
T

5: Srlb ← (1− β)Ŝb
k + βSt

6: Srlw ← (1− β)Ŝw + βIm
7: Implement the matrix exponential on Srlb and Srlw to construct the optimization prob-

lem of (25)
8: {λce,i, wce,i} ← Solve the optimization problem in (25) by exp(Srlb)wce,i =

λce,i exp(Srlw)wce,i
9: Rank the eigenvectors wce,i according to the eigenvalues λce,i in descending order

10: end for
11: for d < n do
12: Choose the first d eigenvectors associated with the first d eigenvalues defined by

Wd = [wce,1, . . . , wce,d]
13: end for
14: The projection of X into the discriminant subspace is given by WT

d X
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3.4. SELFDA-Based Fault Diagnosis Scheme

After introducing the theoretical framework of SELFDA, the Bayesian inference is
borrowed to realize fault classification. Suppose all the samples follow the Gaussian
distributions and thereby the priori probability of each category is P(x ∈ Ck) =

1
K . Hence,

the conditional probability density function (PDF) of the new testing sample x is given as:

P(x|x ∈ Ck) =

exp
[
− (x−xk)

TWdΣ−1
k WT

d (x−xk)
2

]
(2π)d/2 det[(Σk)]

1/2

Σk =
1

nk − 1
WT

d exp(Sk)Wd.

(34)

where xk and Sk are the mean vector and within-class scatter matrix of the labeled training
dataset in Ck. Wd is a matrix used for dimensionality reduction of the data. In the light of
Bayes rule, the posterior probability of the x belonging to ith fault category is expressed as:

P(x ∈ Ck|x) =
P(x|x ∈ Ck)P(x ∈ Ck)

∑K
i=1 P(x|x ∈ Ck)P(x ∈ Ck)

. (35)

As a result, the testing samples are classified into the certain type by the classification
criterion defined in (36).

C(x) = arg max
1≤k≤K

{P(x ∈ Ck|x)}. (36)

To simplify the discriminant task in practice, a discriminant function can be redefined
as follows

gk(x) = −
(x− xk)

TWdΣ−1
k WT

d (x− xk)

2
− ln[det(Σk)]

2
. (37)

In conclusion, the flowchart of the favorable SELFDA method is briefly showed in
Figure 1.
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4. Experimental Results and Discussion
4.1. TE Process

The TE process is a benchmark simulation platform of the real chemical process, which
is firstly proposed by Downs and Vogel [27]. It mainly composed of five parts: a reactor,
a condenser, a recycle compressor, a separator and a striper. In this process, each sample
contains 52 variables, including 12 manipulated variables and 41 measured variables. There
are also 21 types of programmed fault conditions. More information about the TE process
can refer to [26,28]. The process mainly produces two products with four raw materials.
And Figure 2 shows the schematic diagram of the TE process.
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Figure 2. The schematic diagram of benchmark TE process.

In order to carry out the fault classification experiment, all the 41 measurement
variables are used in this work, and Faults 1, 2 and 5 are taken as an example to carry out
detailed comparative studies between FDA and LFDA, SELF and SELFDA, since they are
all step faults involving process variables [18], hence it is suitable to verify the SELFDA
in this paper. The description and types of the three faults are showed in Table 1. Every
fault contains 200 samples for training and the labeled samples account for 5% of each
class, which are selected randomly. The testing dataset include 1200 faulty samples (each
failure contains 400 samples). For convenience, the value of weighting factor parameter β
is chosen as 0.4.

Table 1. Three Faults in The TE Process.

No Description Type

Fault 1 A/C feed ratio B composition constant Step
Fault 2 B composition, A/C ration constant Step
Fault 5 Condenser cooling water inlet temperature Step

(1) Analysis of the Visual Performance: To be noted, the classification results obtained
by different methods are shown in Figure 3a–d. Specifically, there is plenty of overlaps
between Fault 1 and Fault 5 in Figure 3a, that is means, the FDA cannot separate the three
faults well. And the similar situation happens in Figure 3b,c. In contrast, from the visual
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results in Figure 3d, we know that SELFDA method shows no overlaps in separating the
three faults, which means the SELFDA achieves best classification performance with least
misclassification points. To demonstrate the superiority of SELFDA better, the Euclidean
distance between the centers of the three faults in the low-dimensional space are calculated
and shown in Figure 4. The bar charts in different colors denote the distances obtained
by different faults, and normalized them into [0, 1]. From the figure, it is easy to conclude
that the three bar charts achieved by SELFDA is higher than the corresponding ones of the
competitors, that is to say, the three faults are farther parted by SELFDA, which verify the
classification capacity of SELFDA from another point of view.
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Figure 3. Classification results by (a) FDA, (b) LFDA, (c) SELF, and (d) SELFDA.
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(2) Discussions of the Classification Accuracy: Here, we choose accuracy as the perfor-
mance metric for diagnosis. Accuracy refers to the proportion of correctly classified samples
by a classification model among the total number of samples. Furthermore, the quanti-
fied classification results of different algorithms are given in Table 2. Both the FDA and
LFDA show undesirable performance since none of them can explore the comprehensive
discriminant information. The classification performance of SELF is improved to some
degree since it involves the whole dataset, however, the SSS problem is not included. By
contrast, SELFDA acquires the best classification accuracy (highlighted in bold) regarding
Fault 1 (100%), Fault 2 (100%) and Fault 5 (96.25%), respectively. And the average classi-
fication accuracy is also the highest (98.75%), which further explained the effectiveness
of the SELFDA method. The enhanced discrimination performance of SELFDA over the
comparing algorithms can be explained by two reasons. First, SELFDA makes full use of
the discrimination information that contained in both the labeled and unlabeled samples.
Second, it can enlarge the margins distance between different fault categories after the
introduction of matrix exponential strategy.

Table 2. Classification Accuracy of The Faults In TE Process.

FDA LFDA SELF SELFDA

Fault 1 83.25% 83.25% 64% 100%
Fault 2 39.5% 0.95% 100% 100%
Fault 5 63.75% 69.5% 66.5% 96.25%
Average 62.17% 54.08% 76.83% 98.75%

4.2. Real-World Diesel Working Process

Due to the thermal efficiency, long useful life and high reliability of the diesel engine,
it has been widely utilized in ships. Nevertheless, since the aging process of the machine is
irreversible, the working environment is harsh, and various faults occur frequently, thus
resulting in economic losses and even casualties. To this end, ever-increasing attention
should be paid to accurate and timely fault diagnosis for diesel engine. And abundant
scientific payoffs have been proposed recently from both academia and industry. For
example, the authors of [29] analysed the vibration data by artificial neural networks to
realize fault classification in a four-stroke gasoline engine. More recently, ref. [30] presented
LAMDA algorithm to classify the faults in an automotive diesel engine operating under
some smooth operating conditions.

However, in-depth analysis of the above researches, none of them can handle the SSS
problem or large number of unlabeled fault samples, which are quite common in diesel
working process. In this paper, two universal process failures are used to confirm the
superiority of SELFDA in fault classification. One of them is the exhaust pipe blockage
(i.e., fault 1), the other is insufficient cooling of the air cooler (i.e., fault 2), all the operating
data are collected during the working process of the 6S35ME-B9 diesel engine produced
by the MAN company, which is demonstrated in Figure 5, the main system parameters
and monitored sensor variables of 6S35ME-B9 diesel engine are given in Tables 3 and 4,
respectively. And the detail introduction of the system parameters and data acquisition
process can refer to [15].

In this experiment, each type of the faults contains 200 samples and 900 normal samples
for training and the labeled samples account for 10% of each class, which are selected
randomly. The testing dataset includes 100 normal samples (Fault 0) and 200 faulty samples
(each type of fault contains 100 samples). For simplicity, weighting factor parameter β is
set as 0.5 here. The detailed classification performance of different methods is shown in
Figure 6. The horizontal axis denotes the position of the sample points, the first 100 samples
are Fault 0, the 101–200th ones are Fault 1, and the last 100 ones are Fault 2, the vertical
axis presents the label of the corresponding sample. From Figure 6, all four methods show
excellent performance in classifying Fault 1. However, the classification performance of
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SELFDA is obviously better than the other three methods regarding Fault 0 and Fault 2.
This improvement is mainly ascribed to the advantages of SELFDA discussed earlier.

Turbocharger

Air inlet

Air cooler Scavenge box

Air
cylinder

Intake
manifold

Interface

Exhaust
manifold

TC

Figure 5. Layout and schematic diagram of 6S35ME-B9 diesel engine.
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Figure 6. Fault classification performance of testing samples by (a) FDA, (b) LFDA, (c) SELF, and
(d) SELFDA.

Table 3. Main System Parameters of 6S35ME-B9 Diesel Engine.

Parameter Value Unit

Rated power 3570 Kw
Rated speed 142 r/min

Cylinders 6 N
Fuel consumption 174.36 g/kw·h

Stroke 2 t
Oil MGO -

Viscosity 3–5 at 100 ◦C cSt
Density ≤0.887 at 15 ◦C g/cm3
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Table 4. Monitored Variables in Diesel Engine Working Process.

No. Variable Description Units No. Variable Description Units

1 Diesel power kW 9 Scavenge air pressure Bar
2 Exhaust manifold pressure Bar 10 Scavenge air temp ◦C
3 Press flow kg/c 11 Pressure difference Bar
4 Outlet temp of press ◦C 12 Exhaust gas tempe ◦C
5 Outlet pressure of press Bar 13 Exhaust pipe pressure Bar
6 Intercooler post temp ◦C 14 Turbocharger inlet tempe ◦C
7 Fuel consumption g/kw·h 15 Turbocharger outlet tempe ◦C
8 Intercooler post pressure Bar

Also, the discriminant functions of different methods are detailedly demonstrated in
Figure 7a–d, it is easy to see that the discriminant functions of Fault 1 produced by the
four methods own the maximum output in the corresponding interval (100–200th samples),
which means all of they can separate Fault 1 well. However, there are a lot of intersections
and overlaps between the discriminant function curves of Fault 0 and Fault 2, with a mass
of false and missing classified points in all the three contrast algorithms. However, this
situation is greatly relieved by SELFDA in Figure 7d, which further exhibit the superiorities
of SELFDA in complex industrial processes.
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Figure 7. Discriminant function curve of three faults achieved by (a) FDA, (b) LFDA, (c) SELF, and
(d) SELFDA.

Besides, the quantitative classification results are tabulated in Table 5. And the highest
classification accuracy (in bold) are all achieved by SELFDA (35% for Fault 0, 100% for
Fault 1, 95% for Fault 2 and 76.67% for average). More specifically, the classification
accuracy produced by SELFDA is 15% and 46% higher than the suboptimal SELF model
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for Fault 0 and Fault 2, respectively. The average classification accuracy of SELFDA is also
significantly enhanced compared to FDA (76.67% versus 37.00%), LFDA (76.67% versus
49%) and SELF (76.67% versus 56.33%).

Table 5. Classification Accuracy of The Faults In Real-Word Diesel Working Process.

FDA LFDA SELF SELFDA

Fault 0 1% 4% 20% 35%
Fault 1 100% 100% 100% 100%
Fault 2 10% 43% 49% 95%
Average 37% 49% 56.33% 76.67%

In addition, normalized weight of each variable regarding fault 1 and fault 2 of the
real-word diesel working process obtained by the four methods are given in Figure 8a–d.
Specifically, from Figure 8a, we know that the first three key variables of fault 1 are
misidentified as variables 11, 14, 15 by FDA. Analogously, the key variables fault 2 are also
misidentified as variables 6, 9, 14. And the similar situation happens in Figure 8b since
the LFDA approach is unable to handle the variable selection issue. By contrast, SLFDA
can recognize the real responsible variables (variables 2, variable 12 for fault 1, variable 7,
variable 9 and variable 10 for fault 2) in Figure 8c successfully, which is in consistence with
actual condition. Besides, the proposed SELFDA method can also automatically select the
key variables for different faults, and the details are demonstrated in Figure 8d.
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Figure 8. Normalized weight of each variable in Fault 1 (left) and Fault 2 (right) of diesel engine
working process. (a) FDA, (b) LFDA, (c) SLFDA, (d) SELFDA.

5. Conclusions

This paper presents an practical SELFDA model, which improves the discrimination
performance of conventional LFDA and provides a promising way to handle the challenges
of multimodality, model interpretability. Besides, the novel method is insensitive to SSS
problem that can enhance the performance of traditional LFDA in real industrial cases.
And the simulation results on both the simulated and real industrial process demonstrated
that this new fault classification framework outperforms the FDA and LFDA methods.
In the future work, embedding the classification method into software systems deserves
further explorations.
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Nomenclature
The following abbreviations are used in this manuscript:

FDA Fisher discriminant analysis
LFDA Local Fisher discriminant analysis
SSS Small sample size
FDI Fault detection and isolation
PCA Principal component analysis
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LPP Local preserving projection
TE Tennessee Eastman process
CVA Canonical variable analysis
SMDA Semi-supervised mixture discriminant analysis
SFA Slow feature analysis
LASSO Least absolute shrinkage and selection operator
SLFDA Sparse local Fisher discriminant analysis
PDF Probability density function
SELFDA Sparse variables selection based exponential local Fisher discriminant analysis
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