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Abstract: The lack of real-world data on Connected and Autonomous Vehicles (CAVs) has prompted
researchers to rely on simulations to assess their societal impacts. However, few studies address
the operational and technological challenges of integrating CAVs into existing transport systems.
This paper introduces a new CAV driving model featuring a constant time gap longitudinal control
algorithm that accounts for sensor errors and platoon formations of varying sizes. Additionally, it
develops a high-level route-based decision-making algorithm for CAV path choice. These algorithms
were tested in a calibrated motorway corridor simulation, examining different market penetration
rates, platoon sizes, and sensor error scenarios. Traffic conflicts were used as a primary safety
performance indicator. The findings indicate that CAV sensors are generally adequate, but optimal
platoon sizes vary with market penetration rates. To further explore factors influencing traffic
conflicts, a hierarchical Bayesian negative binomial regression model was used. This model revealed
that in addition to unobserved heterogeneity and spatial autocorrelation, the standard deviation of
speeds between lanes and the CAV market penetration rate significantly affect conflict occurrences.
These results corroborate the simulation outcomes, enhancing our understanding of CAV deployment
impacts on traffic safety.

Keywords: Connected and Autonomous Vehicles; traffic microsimulation; statistical modelling;
safety impact; sensor error; platoon size; route-based decision-making

1. Introduction

Connected and Autonomous Vehicle (CAV) technology has advanced significantly
over the past few years. As the deployment of CAVs in the road network is expected to
bring about a radical overhaul in existing transport systems, this disruptive technology has
attracted a great deal of interest from original equipment manufacturers, policymakers,
and academics. CAV technology has the potential to revolutionise our economy and society
by reducing traffic congestion, road traffic crashes, and vehicle emissions [1]. In particular,
regarding road safety, since 94% of the crashes include a form of human error as a contribut-
ing factor [2], CAVs are expected to decrease road traffic crashes by 90% at high market
penetration rates [1]. However, such an estimate is yet to be quantitatively confirmed.

According to a recent study, using real-world data to verify the safety benefits of CAVs
is currently impractical because hundreds of millions of miles, or in some cases, hundreds
of billions of miles of real-world CAV operational data, are needed to obtain statistical
evidence of potential safety benefits [3]. This amount of data would take several decades
to be collected [3]. As a result, research has focused on identifying alternative methods to
assess the impacts of CAVs, such as traffic microsimulation.

Machines 2024, 12, 371. https://doi.org/10.3390/machines12060371 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12060371
https://doi.org/10.3390/machines12060371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-5530-2503
https://doi.org/10.3390/machines12060371
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12060371?type=check_update&version=1


Machines 2024, 12, 371 2 of 16

Simulating CAVs is a complex task that involves multiple subsystems, including
sensing, perception, planning, and control. These subsystems must be simulated to address
the challenges posed by various road network layouts. For the longitudinal and lateral
control of CAVs, numerous algorithms for path tracking [4] and lane-changing [5–7] have
been developed. Additionally, extensive research has utilised traffic simulation to examine
the traffic and safety impacts of longitudinal control algorithms and the formation of vehicle
platoons on motorways and freeways [8–11]. However, these studies primarily focus on
accurate vehicle kinematic characteristics and often overlook inherent uncertainties at
strategic, tactical, and operational levels [12]. Such uncertainties, particularly regarding
sensor measurements and vehicle control systems, can significantly affect the performance
of a CAV simulation model, potentially leading to suboptimal results [13]. Moreover,
further challenges from a macroscopic flow perspective, such as the use of collaborative
route-based decision-making algorithms and the impact of CAV platoon size on safety,
remain to be addressed.

This paper attempts to address these shortcomings, targeting Level 4 or 5 CAVs [14]. A
calibrated motorway corridor is created in a traffic microsimulation environment. Then, an
external code is used to control the longitudinal movement and the lateral decision-making
of CAVs, taking into consideration a route-based decision-making algorithm and uncertain-
ties in vehicle sensor measurements. Additionally, a sensitivity analysis is conducted to
identify the optimal CAV platoon size that maximises the safety benefits. Multiple scenarios
are formulated to examine several different CAV characteristics and market penetration
rates. The safety evaluation of the simulation methodology is conducted by using traf-
fic conflicts calculated by the Surrogate Safety Assessment Model (SSAM) [15] as a key
performance indicator.

Finally, even though safety research over the years has focused on the statistical mod-
elling of accident count [16,17], there is a lack of studies investigating the underlying factors
behind the occurrence of traffic conflicts in a traffic microsimulation environment. For this
purpose, using data collected through the developed simulation framework, a Bayesian
hierarchical negative binomial model that takes into account spatial autocorrelation is de-
veloped to derive a functional relationship between the number of traffic conflicts occurring
in a motorway and the contributing factors associated with traffic characteristics.

2. Related Work

Depending on the desired level of CAV simulation details, studies attempting to simu-
late CAVs can be categorised into two main groups. The first group accurately represents
each subsystem of a CAV with a different software [18–21]. For instance, the sensors and
control algorithms of a CAV are controlled by a sub-microscopic simulation software, and
the information coming from the vehicle sensors is communicated via a Transmission
Control Protocol to a traffic microsimulation software where the surrounding traffic is
simulated accurately. This type of framework achieves a high-detail CAV simulation but
has limitations; the complexity and computational needs that accompany them limit the
size of the conducted experiments and make the collection and interpretation of their
results challenging [22].

The second group includes studies that either perform a high-level simulation of
CAVs [9] or focus on simulating only specific characteristics of CAVs, such as CAV platoon-
ing and CAV longitudinal control. For instance, Li et al. [23] assessed the effects of three
CAV driving strategies—adaptive cruise control, follower-stopper, and jam-absorption
driving—on both ring roads and freeways in mixed traffic conditions. Hou [24] explored
the impact of CAVs on traffic efficiency and safety in mixed traffic under varying weather
conditions. Liang et al. [25] created a multi-agent system-based hierarchical architecture for
CAV platoon control, enhancing efficiency and safety through coordinated decision-making
and actions. Zhou et al. [26] introduced a platoon-based intelligent driver model that
improves car-following stability in CAVs by enhancing resistance to periodic perturbations.
Liang et al. [27] proposed a robust predictive control scheme for autonomous vehicle path
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tracking that combines a polytopic model, non-parallel distributed compensation state-
feedback control, and robust H∞ compensation to address time-varying parameters and
disturbances, validated through simulations and field tests for improved performance. This
type of study includes simplifications such as an indirect simulation of vehicle sensors
or communication. However, despite their assumptions and their lack of in-depth CAV
path planning algorithms, these studies developed large-scale experiments and managed
to obtain significant results that provide useful recommendations to policymakers. The
simulation platforms used in this approach use traffic simulation software such as VISSIM,
AIMSUN, or PARAMICS [8–10,28–30]. Most of these studies attempted to simulate CAV
driving behaviour either within the simulation software by adjusting the human-driver
model parameters [30], or externally, by using an application programming interface or
component object model. A few of these studies that evaluated the safety impact of the
proposed framework [8,10,22] demonstrated significant safety benefits. However, their
proposed platforms did not include important inherent challenges of CAV driving that
arise from the use of sensor technology such as sensor measurement error. Additionally,
even though the existing literature has expressed concerns about platoons compromising
road safety and traffic stability [11,31], none of the aforementioned simulation studies
has studied the impact of platoon size on safety or the safety effect of CAV cooperative
decision-making in terms of route choice [32].

Traffic conflicts calculated through the SSAM were used as a safety measure in most
simulation studies discussed above. Their results usually included a presentation of the
number of conflicts produced by the scenarios developed [33,34]. However, none of
them investigated the explanatory variables affecting the number of traffic conflicts from a
statistical point of view that could provide useful insights to identify the root of the problem.
The modelling of traffic conflict counts is a task that can be related to the modelling of
accident count, which has been widely researched in the past. Accidents and conflicts,
when examined proportionally (yearly accidents versus hourly conflicts), are similar in
nature; they are non-negative integer values that are characterised by low mean values
and heteroscedasticity. Hence, negative binomial models might be a suitable approach to
model them [35]. Additionally, when examining these counts within a certain area such
as a motorway environment, their numbers might demonstrate spatial correlation; the
number of traffic conflicts observed in one motorway segment might be correlated with
the conflicts observed in neighbouring segments. To tackle these challenges, hierarchical
Bayesian negative binomial models that take into account unobserved heterogeneity and
spatial autocorrelation have been developed and used in the literature [16,36].

In summary, most of the studies identified in the literature have a narrow scope and
focus on certain elements of CAV driving without investigating the safety impact of CAVs
in depth. There is a need to incorporate and address as many CAV challenges as possible
in an integrated framework that will evaluate the safety impact of CAVs and study the
underlying factors affecting them. Hence, this study initially presents an integrated CAV
simulation framework. The framework contains a CAV longitudinal control and lateral
decision-making algorithm but most importantly, for the first time, sensor error, platoon
size, and collaborative CAV decision-making are included in an experiment to evaluate the
safety impact of CAVs. Finally, a hierarchical Bayesian negative binomial model that takes
into account unobserved heterogeneity and spatial correlation is developed to study the
occurrence of traffic conflicts within a traffic microsimulation environment in depth.

3. Method and Data
3.1. Microsimulation Model Study Area

The traffic microsimulation software PTV VISSIM 9.0 was chosen for this study as it has
been widely used for safety-oriented research purposes in the existing literature [10,22,34,37,38].
Additionally, the External Driver Model API of VISSIM was used to simulate advanced
user-defined algorithms and scenarios that are explained in the following paragraphs.
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A segment of the three-lane M1 Motorway in the United Kingdom between the cities
of Leicester and Rugby was designed in the microsimulation software, consisting of three
junctions (J19, J20, and J21). Both directions of the motorway were designed according to
real-world geometry. The simulated network was 44.7 km long and contained 4 vehicle
input points and 8 merging and diverging areas (See Figure 1 [39]).
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Figure 1. Outline of the simulated motorway network [39].

The real-world mainline corridor of the M1 motorway as well as all the on and off-
ramps were equipped with inductive loop detectors approximately every 500 metres. Each
set of detectors provided traffic data such as speed, headway, traffic volume, occupancy,
and composition for each lane at 1-min intervals [40].

3.2. Data Collection and Traffic Microsimulation Model Validation/Calibration

For a traffic microsimulation model to provide reliable outcomes, it is of utmost
importance to be calibrated and validated. Since the final output of the simulation platform
is related to safety, a two-stage calibration and validation approach is followed [34,37]. The
first stage of the calibration ensures that traffic characteristics such as traffic volume or
speed are accurately represented in the simulation, while the second stage of the calibration
confirms that the existing safety conditions are simulated efficiently. The developed model
was calibrated and validated for traffic conditions between 11:00 and 12:00 am due to
data availability. The number of simulations needed to achieve a 95% confidence level
for the simulation output was calculated using Equation (1). This equation represents a
standard method for estimating the required sample size, which is derived from the normal
distribution, where t denotes the number of standard deviations corresponding to the
desired confidence level (e.g., 95%) [41].

N =

( t(1− α
2 ),N−1 × σ

E

)2

(1)

where N is the required number of simulation runs, σ is the sample standard deviation of
the simulation output, t denotes the Student’s t-statistic for the two-sided error of α/2 with
N − 1 degrees of freedom, and E represents the allowed error range.

The results showed that 15 simulation runs are sufficient for each calibration and
validation stage. The first 800 s of the simulation were used as a warm-up period.

3.2.1. First-Stage Calibration of the Traffic Microsimulation Model

Using historical data (between January 2016 and December 2017) from inductive loop
detectors, the input of the simulation was calculated. The dataset was split equally into
a calibration and validation dataset. After cleansing and fusing this dataset, the traffic
flow values per minute were input in the simulation, along with the speed and time
headway distributions for the corresponding time of the day. The performance measures
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chosen for the first stage of the calibration were the travel time and traffic flow values
observed in the field versus the simulated values. To compare the real-world traffic volume
measurements to the simulated ones, the Geoffrey E. Havers (GEH) statistic shown in
Equation (2) was used:

GEH =

√
2(E − V)2

E + V
(2)

where E stands for the simulated traffic volume and V is the observed traffic volume in the
real world. For the calibration to be successful, the GEH statistic should be less than 5 for
85% of the compared cases. On the other hand, for travel time calibration and validation,
FHWA suggests the direct comparison of the simulated values to the observed ones [42].
According to the same guidelines, the simulated values should be within ±15% of the
observed values for more than 85% of the simulated cases. The simulation outputs indicated
that 94.18% of the travel time simulated values were within the real-world measurements,
and 100% of the traffic volume measurements had a GEH statistic value lower than 5.

3.2.2. Second-Stage Calibration of the Traffic Microsimulation Model

For the second-stage calibration, data collected using the radar-equipped vehicle
of Loughborough University were used. Fifteen real-world trips between the simulated
junctions on the motorway were conducted between April 2017 and December 2017 with
a total duration of 600 min. Using the radar data collected, a Time-To-Collision (TTC)
distribution was calculated. TTC is defined as the time that remains until a collision
between the leading and following vehicles occurs if they remain on the same path while
keeping their current speeds [43]. The TTC equation is presented in Equation (3).

TTC =

{ xl−x f −Ll
vl−v f

i f v f > vl

∞ otherwise
(3)

where xl and vl indicate the position and the speed of the leading vehicle, x f and v f are
the position and the speed of the following vehicle, respectively, and Ll is the length of the
leading vehicle.

The TTC distribution was calculated from the radar data using an automated algorithm
developed in [44]. To complete the second-stage calibration process, a simulated TTC
distribution was used. An external code was developed in C++ using the External Driver
Model API of PTV VISSIM that could record the TTC values of the simulated vehicles in
a data file. The real-world TTC distribution was compared to the TTC distribution from
the simulated vehicles using the non-parametric Mann–Whitney statistical test. During
the calibration process, the Wiedemann 99 parameter CC3, which is the threshold time
gap that a VISSIM vehicle enters the following state, was changed from 8 s to 5 s. After
this change, the significance value calculated by the Mann–Whitney test was 0.611, which
indicated that the calibration was acceptable. The calibration was also validated using the
validation dataset. More details regarding the calibration and validation of the network
can be found in [39].

3.3. CAV Driving Behaviour

The External Driver Model API of VISSIM allows the development of a user-defined
driver model in C++ programming language. The code is assigned to a specific CAV type
in VISSIM. The developed API can access surrounding traffic data such as nearby vehicles’
speeds, accelerations, and distance to the ego vehicle and calculate the state of the vehicle
in the next time step. One of the main goals of the developed API is to simulate all the
subsystems of the CAV as accurately as possible and address the challenges that are not
covered in the existing literature.
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3.3.1. Sensing and Perception

The sensing subsystem of a CAV uses a plethora of vehicle sensors, such as radar,
lidar, camera, and communication equipment for raw data gathering, while the percep-
tion subsystem translates the raw data into useful information about the vehicle and its
surroundings. This behaviour is programmed in this paper as follows:

The API-controlled vehicle can scan surrounding traffic up to an infinite range. This
assumption was considered unrealistic; therefore, the detection range of the API-controlled
vehicle in this study is programmed to represent the scanning range of a typical radar sensor
used in motor vehicles (200 m). The raw data initially gathered by the API include 100%
accurate data on the surrounding vehicles’ relative speed, distance, lane, and destination.
This may not be realistic as real-world sensors are characterised by their operating limits
where anomalies are inevitable. Hasch et al. [45] indicate that the typical distance and
inaccuracy values of a generic long radar sensor are 0.1 m and 0.1 m/s, respectively,
while the manual of a typical automotive long-range radar [46] specifies that the distance
and inaccuracy values might reach 0.25 m and 0.14 m/s, respectively. There is a lack of
information on how this error in the radar measurements is distributed, and there are
significant differences in distance accuracy measurements. According to Zhou et al. [12], a
reasonable assumption is that the error follows a normal distribution.

Based on the abovementioned considerations, a first group of scenarios is defined,
where the impact of sensor inaccuracies is examined. Since 95% of the observations of a
normal distribution fall within the range of two standard deviations from the mean, the
standard deviation of the sensor errors with respect to distance and speed measurement
pairs (distance s.d and speed s.d.) are 0.05 m and 0.05 m/s, 0.1 m and 0.06 m/s, 0.15 m and
0.07 m/s, and 0.2 m and 0.08 m/s, respectively. These sensor error rates were added to the
equations used to control the API-controlled vehicle, which are presented below.

3.3.2. Planning and Control Subsystems

The planning subsystem in a real-world CAV usually includes trajectory planners and
behaviour planners, whereas the control subsystem includes the actuators and commands
to drive the car.

In the developed API, CAVs are programmed to follow a high-level route choice
decision-making algorithm. The flowchart of this route choice algorithm is presented in
Figure 2. In the route-based decision-making algorithm, a CAV first dynamically selects
lanes according to their path planning algorithms, optimising traffic flow and safety. For
example, if the destination of the API-controlled vehicle is one of the two upcoming off-
ramps on the motorway, the CAV chooses to drive in the outermost lane of the motorway
to facilitate a smooth exit. This decision-making process ensures that vehicles intending to
exit can do so efficiently without causing disruptions in the inner lanes.

On the other hand, if the destination is not near, the CAV can select from the remaining
lanes of the motorway depending on traffic conditions and other factors such as speed
and congestion. For instance, if an API-controlled vehicle is travelling in the middle lane
of a three-lane motorway and the preceding vehicle is not a CAV, the system assesses the
traffic situation. If a leading CAV is identified in the outermost lane, the system initiates a
lane change to the outermost lane. This manoeuvre aims to form a vehicle platoon in the
outermost lane, leveraging the benefits of platooning, such as reduced air resistance and
improved traffic flow.

This high-level route choice plan results in an even distribution of traffic flow across
lanes. By strategically selecting lanes, CAVs contribute to a balanced use of motorway
space, preventing congestion in any single lane. Additionally, forming platoons of CAVs
with similar destinations enhances traffic efficiency and safety. Platoons can travel at
more consistent speeds, maintain shorter following distances safely, and respond to traffic
conditions more effectively. Therefore, the dynamic lane selection and platooning behaviour
of CAVs based on their path planning and real-time traffic assessments lead to optimised
traffic flow, reduced congestion, and improved safety on motorways. This advanced
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routing and lane-changing strategy ensures that CAVs do not disrupt other vehicles in
the network.
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All the lane-changing manoeuvres are initiated through the control algorithm of the
designed API if a predefined time gap in the target lane is found. The required time
gap in this study was 0.6 s from the vehicle upstream and downstream in the target lane.
Assuming all road agents are cooperative, the surrounding traffic (both CAVs and human-
driven vehicles) can facilitate the lane change process by decelerating if a CAV with an
intention to change lanes is identified in an adjacent lane. The start and end times of
the lane change, as well as the lane angle and the number of target lanes, are controlled
by VISSIM.

Once the CAV is driving in the lane defined by the route planner, the longitudinal
constant time gap control algorithm proposed in [39] controls the acceleration, and as
a result, the speed of the vehicle. With the simplified vehicle physics in VISSIM, the
acceleration of the vehicle is continuously controlled by Equation (4):

a
′
1 =

(ul − uf)
2

2 × (d − D)
(4)

where ul is the speed of the leading vehicle, uf is the speed of the API-controlled vehicle
with the assumption that the desired time gap is not equal to the actual time gap, d stands
for the desired time gap, and D denotes the actual time gap in the current simulation step.
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The desired time gap chosen for this study when the API-controlled vehicle was fol-
lowing another CAV was 0.6 s according to previous similar studies [9,10,30]. Subsequently,
the upper limits of the acceleration and deceleration were set to 1.5 m/s2 and 2.5 m/s2,
respectively, through the GUI of PTV VISSIM following recommendations from Talepbour
et al. [47]. The high-level result of the longitudinal control algorithm is the formulation of
vehicle platoons.

This study finally evaluates the impact of platoon size on motorway safety. To sim-
plify the experiment, the inter-platoon time gap was set to 3 s according to [48] to allow
conventional traffic to navigate. Since three vehicles are required to form a platoon and a
platoon size of ten may not be practical in a motorway setting, particularly in a mixed traffic
scenario, the platoon sizes tested were three, five, seven, and nine vehicles. These tests were
conducted across different market penetration rates, and the safety results were compared
to a baseline scenario with no platoon size limit. Other platoon sizes, such as four, six, and
eight, were not tested due to the extensive time needed for simulation and the likelihood
that their findings would be similar to those already considered. It must be noted that all
the investigated platoon size and sensor error scenarios were examined ceteris paribus
across different market penetration rates. That means that when the safety impact of sensor
error was investigated, the platoon size was not considered in the experiment. Five discrete
market penetration rates (0%, 25%, 50%, 75%, and 100%) were selected for evaluation.

3.4. Traffic Conflict Identification and Statistical Modelling Method

To evaluate the safety impact of CAVs, the SSAM was employed. SSAM is a tool
developed and validated by FHWA that utilises automated algorithms to identify traffic
conflicts from vehicle trajectory files produced by VISSIM [15]. The SSAM processes one
simulation time step at a time and checks for traffic conflicts using predefined TTC and
Post Encroachment Time (PET) threshold values. The default values for TTC and PET were
1.5 s and 5.0 s, respectively [15]. While processing the vehicle trajectory files, the SSAM
projects the vehicles’ future positions for up to the duration of the predefined TTC value.
If a vehicle overlap is identified in this way, this pair of vehicles is recorded in the SSAM
output file.

Along with the identification of the conflicting vehicles, the SSAM provides data about
the conflict itself, such as the conflict type (i.e., rear-end and lane change), the simulation
time when the conflict occurred, and the coordinates of the location of the conflict. In this
paper, using the location of the conflict and data collected through the data collection points
placed in the VISSIM network, traffic conflict counts were matched to the corresponding
traffic-related measurements produced by VISSIM. Traffic data collection points were
placed in VISSIM at every 500 metres, and two consequent traffic data collection points in
VISSIM defined a motorway segment. The result of this process was a dataset containing
the variables presented in Table 1, along with their descriptive statistics.

Table 1. Summary statistics of conflict dataset.

Variable Description Mean Std. Dev Min Max

Segment ID Motorway segment identification number
(1–54) N/A N/A 1 54

Average speed per
segment (km/h)

Average speed observed among all the lanes in
the segment 99.05 4.40 92.92 108.94

Average speed in
lane 1 (km/h)

Average speed in the outermost lane of
the segment 100.56 5.01 93.25 110.091

Average speed in
lane 2 (km/h)

Average speed in the middle lane of
the segment 98.42 4.33 92.46 108.87

Average speed in
lane 3 (km/h)

Average speed in the innermost lane of
the segment 97.56 4.16 92.78 108.52
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Table 1. Cont.

Variable Description Mean Std. Dev Min Max

Global average
speed (km/h)

Average speed in the whole simulation
network (constant) 98.85 4.35 94.06 107.10

Standard deviation
of speeds in lane 1
(km/h2)

Standard deviation of speeds within vehicles
in the outermost lane of the segment 8.44 1.48 3.68 11.62

Standard deviation
of speeds in lane 2
(km/h2)

Standard deviation of speeds within vehicles
in the middle lane of the segment 7.66 2.27 3.62 11.49

Standard deviation
of speeds in lane 3
(km/h2)

Standard deviation of speeds within vehicles
in the innermost lane of the segment 7.65 2.12 3.41 11.01

Standard deviation
of speeds between
lanes (km/h2)

Standard deviation of speeds between lanes 1.6290 0.8352 0.2802 4.170014

Traffic flow in lane 1 Traffic flow in vehicles/hour in the outermost
lane of the segment 389.79 114.59 207.87 654

Traffic flow in lane 2 Traffic flow in vehicles/hour in the middle
lane of the segment 668.78 91.54 396.93 855.375

Traffic flow in lane 3 Traffic flow in vehicles/hour in the innermost
lane of the segment 563.68 117.86 137.68 817.81

Total flow Total traffic flow in vehicles/hour in all the
lanes of the segment 1622.26 192.71 1068.375 1868.467

Occupancy Average occupancy of the data collection point 0.049 0.0001 0.049 0.050

CAV market
penetration rate Market penetration rate of CAVs 50 31.64 0 100

Curvature Number of spinal points of the segment 6.74 3.25 2 15

Conflicts Number of corresponding traffic conflicts
calculated through the SSAM 2.40 3.32 0 33

Merging area
A dummy variable explaining whether a
segment was a merging or diverging area (1 if
merging/diverging, 0 otherwise)

To model segment-based traffic conflicts, a Bayesian hierarchical negative binomial
model that takes into account spatial autocorrelation was employed. The presence of spatial
autocorrelation with respect to traffic conflicts by segment was confirmed by the Moran’s
I statistic, which measures the similarities in observations across space. The Moran’s I
statistic was calculated through Equation (5), and its value for the dataset of this paper was
found to be 0.40, indicating the presence of spatial autocorrelation.

I =
N
W

∑i ∑j wij(xi − x)
(

xj − x
)

∑i(xi − x)2 (5)

where N is the number of spatial units indexed by i and j; x the variable of interest, and x
is its mean; wij a spatial weights matrix, where w is 1 if the i and j sections are adjacent or 0
otherwise; and W is the sum of all wij.

The formulation of the Bayesian hierarchical negative binomial model employed is
presented below:

ln(µi) = ln(ti) + (b0 + bXi) + SCi + UHi + SLj (6)
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Yi ∼ NB(r, p) (7)

µ =
r(1 − p)

p
(8)

where r and p are the parameters of the negative binomial distribution, ti is the exposure
variable, b denotes the coefficients of the explanatory variable (X), SCi represents the
random spatial effects, UHi represents the unobserved heterogeneity, SLj denotes the
random intercept at the segment level, and Yi is the observed number of conflicts, which
follows a negative binomial distribution. b always follows a highly non-informative normal
distribution with a mean of zero, and UH is assumed to follow a normal distribution,
N
(
0, τ2

UH
)
, where τ is the precision (i.e., 1/variance) with a gamma prior distribution Ga

(0.5, 0.0005). The effect of spatial correlation is included as a conditional autoregressive
prior with N

(
Sl , τ2

i
)
, with Si, τ2

i being defined by the following equations:

Si =
∑j SC

j
wij

∑j wij
(9)

τ2
i =

t2
sc

∑j wij
f or i ̸= j (10)

where t2
sc is assumed to follow a gamma prior distribution with Ga (0.5, 0.0005). The

Bayesian hierarchical model can be estimated using Bayesian inference using Gibb’s sam-
pling (WINBUGS) by employing the Markov chain Monte Carlo method. The goodness-of-
fit statistic, i.e., the Deviance Information Criterion (DIC), which is used to compare the
fit of models estimated on a full Bayesian inference approach, was employed (see Equa-
tion (10)). The most parsimonious model is defined as the model that accomplishes a good
level of explanation of the data using the least explanatory variables possible. This model
will have the smallest DIC value among all the possible models [49]. The mathematical
formulation describing the DIC is presented below:

DIC = D
(
θ
)
+ 2pD = D + pD (11)

where D
(
θ
)

is the deviance of the θ posterior mean of the model parameters, pD is the
effective number of parameters in the model, and D denotes the posterior mean of the
deviance, D

(
θ
)
.

4. Findings and Discussion

For each defined scenario, 15 simulations were conducted with different random
seeds. After each simulation run, the vehicle trajectory file obtained from PTV VISSIM was
processed by the SSAM, and the traffic conflicts were calculated. Only rear-end and lane-
changing conflicts were taken into consideration according to [50]. The results regarding
the route-based decision-making algorithm are presented in Figure 3. It can be seen that
the route-based decision-making algorithm (orange) has a positive safety effect; it reduces
the total number of traffic conflicts by 18.56%, 18.99%, 19.23%, and 25% in the 25%, 50%,
75%, and 100% market penetration rate scenarios, respectively. It must be emphasised that
the percent conflict reduction increases as the market penetration rate increases. This is
undoubtedly because as the percentage of CAVs in the motorway increases, they form
platoons that travel in the lane that corresponds to their destination, ultimately reducing
the sheer amount of unnecessary lane changes that could potentially lead to traffic conflicts.

The results regarding the safety impacts of platoon size for all the predefined market
penetration rates are presented in Figure 4. If the market penetration rate is examined
alone, it is obvious that CAVs provide a significant benefit in terms of reducing the number
of simulated conflicts. However, when examining the impact of platoon size within the
same market penetration rate, the results provide an interesting insight.
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Figure 4. Number of total conflicts (15 simulation runs per market penetration rate and platoon size).

In more detail, at the 25% market penetration rate, an increase in the number of
conflicts is observed as the platoon size increases. This result is surprising at first, but
it can be explained as follows: after observing the simulation environment, this increase
in conflicts is likely due to the fact that human-driven vehicles (75% of all traffic) can
manoeuvre more safely when the platoon size is 3 than when it is 5 or higher. In addition,
a relatively long platoon may cause disruptions in traffic dynamics such as restraining
human-driven vehicles to make lane change manoeuvres, especially near the diverging
areas of the motorway. A larger increase is noticeable when the platoon size increases from
3 to 5 than when the platoon size changes from 5 to 7 and 9, consecutively. This can be
explained by the fact that in this market penetration rate (25%), the formation of platoons
with five or more vehicles is a rare occasion due to the small relative numbers; hence, the
safety results were similar.

At the 50% market penetration rate, a safety benefit was observed when the platoon
size increased from three vehicles to five vehicles. However, there was no statistically
significant difference in simulated conflicts between platoon sizes five, seven, and nine
and no platoon size limit scenarios. This observation was confirmed using the Kruskal–
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Wallis statistical test, which compares samples to determine whether they originate from
the same distribution. The p-value of the statistic of the Kruskal–Wallis test was 0.911,
which indicates that the difference in the number of conflicts between these scenarios was
not significant.

When the CAV market penetration rate reaches 75% and 100%, a steady safety im-
provement is observed as the platoon size increases, which reaches 91.77% at the 100%
market penetration rate of the no platoon size limit scenario. This implies that, when
the CAV market penetration rate reaches 75% and higher, the impact of the platoon in
the motorway in terms of safety is immense. As most vehicles are organised in vehicle
platoons, the occupancy rate of the motorway is lower, creating free space for manoeuvring,
ultimately reducing the number of vehicle interactions that could potentially be dangerous.

These findings could be proven useful to network owners and policymakers regarding
the real-world CAV platoon implementation strategy on motorways. According to Figure 4,
there is not a single optimal platoon size that would provide the greatest safety benefit. The
optimal platoon size depends on the CAV market penetration rate. For example, platoon
size 3 provides a greater safety benefit than the other platoon sizes in low CAV market
penetration rates (25%), whereas a platoon size with five or more vehicles can provide a
larger safety benefit as the CAV market penetration rate increases.

The safety impact of the sensor error per market penetration rate is presented in
Table 2. The safety benefit of CAVs is obvious as the market penetration rate increases
throughout all sensor error values. However, the differences in simulated conflicts within
the same market penetration rate under different sensor error scenarios are statistically
insignificant. To confirm this observation, four Kruskal–Wallis tests were performed for the
25, 50, 75, and 100% market penetration rates. The p-values of the tests were 0.65, 0.51, 0.42,
and 0.40, respectively, and indicated that the null hypothesis that the samples originate
from the same distribution could be retained. It is worthwhile to note that the sensor error
is assumed to follow a Gaussian distribution (N =

(
0, σ2)) with a small standard deviation

compared to the average measured values. For example, in a formulated platoon that is
driving at a speed of 28 m/s (100 km/h) and a time gap of 0.6 s (17.8 metres), a sensor
error of 0.1 m for the distance measurement and 0.1 m/s for the speed measurement of the
leading vehicle might not be sufficient to cause additional traffic conflicts. However, the
proposed methodological framework is transferable, and any given sensor error rate can be
tested if it is deemed more appropriate.

Table 2. Total number of conflicts per market penetration rate and sensor error standard deviation.

Scenario 0% 25% 50% 75% 100%

Baseline 730 641 358 130 60
(0.05, 0.05) 730 623 357 134 53
(0.10, 0.06) 730 632 336 140 63
(0.15, 0.07) 730 627 300 135 59
(0.20, 0.08) 730 645 336 141 56

Finally, the posterior estimates for the significant variables of the statistical model are
presented in Table 3.

As can be seen, the posterior mean for the standard deviation of spatial correlation
(SC) is 0.73 and is statistically significant at the 95% confidence level, confirming that traffic
conflicts are spatially correlated among neighbouring motorway segments. However, the
value is low compared to other studies employing this method [16]. Similarly, the standard
deviation of the unobserved heterogeneity (UH) and the random intercept term at the
segment level (SL) are also statistically significant, indicating similarities in the number of
conflicts coming from the same segment.

The effect of the CAV market penetration rate is negative, meaning that as the market
penetration rate increases, the logarithm of the conflicts decreases, which is in line with the
simulation results presented above. The standard deviation of speeds between lanes seems
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to affect the number of conflicts per segment. Even though this result cannot be directly
compared to the existing literature, the standard deviation of speeds has been proven to
have a positive coefficient when used for the modelling of accidents [51,52]. In these results,
the standard deviation of speeds between lanes has a positive coefficient as well, which
can be interpreted as follows: as the standard deviation of speeds between lanes increases,
the logarithm of traffic conflicts increases. This result seems logical as speed differences
across lanes lead to more overtakes in adjacent lanes, which increases the possibility for a
potentially dangerous incident to occur.

Table 3. Estimation results for the traffic conflict Bayesian hierarchical model.

Conflicts Mean Standard
Deviation MC Error 2.5%

Percentile
97.5%

Percentile

MPR −0.01896 0.001615 2.82 × 10−5 −0.0221 −0.0158

Standard deviation of
speeds between lanes 0.2688 0.06721 0.00016 0.1336 0.398

Spatial
Autocorrelation 0.1306 0.1068 0.004254 0.02441 0.4457

Unobserved
Heterogeneity 0.05894 0.03523 0.00237 0.02467 0.1504

Random effect
(segment level) 0.7352 0.06183 0.001425 0.5972 0.8468

Constant 0.9335 0.1998 0.008859 0.5689 1.29

DIC = 2066.93, pD = 50.24, D = 2016.69.

The lack of a dummy variable describing whether the segment is a merging or diverg-
ing area from the list of significant variables is surprising if one considers the conclusions
of the existing literature [39]. The merging areas of the motorway are conflict hotspots
where vehicles are using the acceleration lane to merge in terms of speed and traffic flow to
the motorway. Inevitably, there are larger speed differences between lanes in these areas
as the accelerating vehicles start from slower speeds to reach the average speed of the
motorway. Hence, it is considered that the effect of the merging area is captured by the
standard deviation of speeds between lanes.

5. Conclusions

The evidence regarding the potential safety benefits of CAVs has been limited due
to a lack of real-world data. The existing literature has focused on a few CAV driving
characteristics and has not addressed fundamental operational and technological challenges
or explained the underlying factors affecting CAV safety in depth. This paper addressed
this knowledge gap by presenting a traffic microsimulation platform that includes sensor
error according to accuracy values found in the literature, a route-based decision-making
algorithm for CAVs (i.e., path choice), and platoon size in the analysis to evaluate their
safety impact. It must be emphasised that due to the lack of CAV data, the aforementioned
CAV algorithms could not be calibrated. The safety impact of CAVs was statistically
modelled in terms of traffic conflicts using a hierarchical Bayesian negative binomial model
that considered spatial autocorrelation and unobserved heterogeneity.

The simulation results indicate that the inaccuracy rates of real-world automotive
radars do not significantly affect the number of simulated traffic conflicts. This supports the
reliability of current radar technologies in CAVs. Additionally, this study reveals that there
is no single optimal platoon size for all market penetration rates. Smaller platoons (three
vehicles) are more effective in reducing conflicts by 33.33% at lower market penetration
rates (25%). Conversely, larger platoons (five or more vehicles) offer better safety benefits at
higher market penetration rates (50%, 75%, and 100%), with an average conflict reduction
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of 63.30%. This finding suggests that adaptive platoon sizes could enhance motorway
safety during the transition to widespread CAV usage.

As the market penetration rate of CAVs increases, the total number of traffic conflicts
decreases significantly. This reduction is attributed to the formation of vehicle platoons
that minimise unnecessary lane changes and optimise traffic flow. Moreover, this study
identifies that a higher standard deviation of speeds between lanes increases the number
of traffic conflicts. This underscores the importance of redesigning motorway areas with
high-speed variability, such as merging zones, to improve safety.

The findings provide valuable insights for network operators, policymakers, and
legislative bodies. Implementing appropriate platoon sizes at various stages of CAV market
penetration can significantly enhance motorway safety. For instance, smaller platoons are
more effective at reducing conflicts at lower market penetration rates, while larger platoons
offer greater safety benefits as penetration rates increase. Additionally, addressing speed
variability in critical areas, such as merging zones, can further reduce traffic conflicts and
enhance overall traffic flow stability.

However, several limitations should be noted. First, the TTC distribution was calcu-
lated from instrumented data collected with a limited number of trips and drivers. A larger
and more representative dataset could produce more reliable real-world TTC distributions.
Second, this study relies on traffic flow data collected between 11 and 12 AM. The impact
of CAVs during peak hours could be significantly different and needs further investigation.
Third, in the platoon size scenarios, CAVs were assumed to have 100% compliance with the
given platoon size, and only one size was tested per scenario. Additionally, only rear-end
platoon joining was considered, and it was assumed that all CAVs could form platoons
with all the other CAVs, which may not be true due to differences in underlying hardware
and software.

Nonetheless, using the methodology presented in this study, more complex scenarios
can be evaluated in future work. This includes the real-time re-routing of CAV fleets in
response to motorway disruptions and integrating existing traffic management systems like
variable speed limits and ramp metering to evaluate their combined impact on CAV safety.
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