
Citation: Ahmed, Z.; Xiong, X.

Adaptive Impedance Control of

Multirotor UAV for Accurate and

Robust Path Following. Machines 2024,

12, 868. https://doi.org/10.3390/

machines12120868

Academic Editor: Zheng Chen

Received: 26 September 2024

Revised: 10 November 2024

Accepted: 22 November 2024

Published: 29 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Adaptive Impedance Control of Multirotor UAV for Accurate and
Robust Path Following
Zain Ahmed 1 and Xiaofeng Xiong 2,*

1 Faculty of Drones and Autonomous Systems, University of Southern Denmark (SDU), 5230 Odense, Denmark;
zaahm14@esmaza.dk

2 Section Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark (SDU),
5230 Odense, Denmark

* Correspondence: xizi@mmmi.sdu.dk

Abstract: Unmanned Aerial Vehicles (UAVs) have become essential tools in various industries for
tasks such as inspection, maintenance, and surveillance. An Online Impedance Adaptive Controller
(OIAC) is proposed for the online modulating of UAV control gains to obtain better performance
and stability of tracking curved trajectories than the traditional methods, Model Reference Adap-
tive Controller (MRAC) and Proportional–Integral–Derivative (PID). Two UAV path planners with
minimal jerk and snap were integrated into OIAC, MRAC, and PID. These six controllers were imple-
mented and compared in a simulated UAV with perceptional noise, which follows curved pipelines
and avoids obstacles. Experimental results show that the OIAC controller achieves at least an 80%
improvement over the PID controller across all trajectory types in terms of the trajectory tracking
error. Additionally, OIAC demonstrates an over 20% improvement in jerk trajectories and a more
than 30% improvement in snap trajectories when compared to the MRAC controller. These results
indicate that OIAC offers enhanced trajectory tracking accuracy and robustness against perceptual
noise. Our work presents an advanced controller of a UAV and its preliminary validation in accurate
and robust path tracking.

Keywords: adaptive controller; impedance control; UAV; trajectory tracking; simulation

1. Introduction

Unmanned Aerial Vehicles (UAVs) have revolutionized fields such as inspection,
maintenance, and surveillance, among others. These devices are characterized by their
intelligence, lightweight design, cost-effectiveness, environmental friendliness (zero emis-
sions), and user-friendly operation. However, UAVs face significant challenges, particularly
in the form of disturbances. Factors such as sensor noise, wind, variations in pressure, and
shifts in the center of gravity can perturb and potentially destabilize the drone, hindering
its ability to perform its intended functions. In addition, certain UAVs, especially larger
multirotor and fixed-wing models, face difficulties in executing tight turns during forward
flight. Such maneuvers can impose stress and cause wear to the motors, propellers, and
supporting arms. To address these challenges, adaptive controllers have been implemented
in UAV systems to effectively reject both internal and external disturbances. For larger
drones tasked with surveillance, achieving optimal performance necessitates the planning
of efficient trajectories and precise adherence to these paths, even in the presence of en-
vironmental disturbances. This approach ensures that UAVs can operate with maximum
efficiency and reliability.

Other Works

PID controllers are a foundational control architecture in UAV systems, valued for
their simplicity and reliable performance in linear environments. For UAVs and other
nonlinear systems, adaptive PID controllers have been developed to improve control

Machines 2024, 12, 868. https://doi.org/10.3390/machines12120868 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12120868
https://doi.org/10.3390/machines12120868
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0009-0004-6157-0303
https://orcid.org/0000-0001-5358-3498
https://doi.org/10.3390/machines12120868
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12120868?type=check_update&version=1

Machines 2024, 12, 868 2 of 31

flexibility and robustness. Chang et al. (2001) introduced a self-tuning PID control strategy
grounded in Lyapunov stability theory, effectively addressing nonlinear behaviors where
conventional PID tuning is inadequate [1]. Building on this, Xiong and Fan (2007) applied
Model Reference Adaptive Control (MRAC) techniques to PID controllers in DC motor
applications, allowing the real-time adaptability of PID parameters [2]. This adaptability
enhances performance under changing system conditions, demonstrating the potential of
MRAC in adaptive PID control. Sahputro et al. used adaptive PID controller to control a
DC motor, where the adaptation is done through Recursive Least Square (RLS) [3].

Rothe et al. (2020) further advanced adaptive PID techniques with a Modified MRAC
(M-MRAC) designed specifically for UAV altitude control. By incorporating an updated
MIT rule, this approach significantly improves stability in UAV operations under variable
payloads [4]. Mareels et al. used the MIT rule for adaptation of the MRAC [5]. Hanna et al.
(2022) introduced an adaptive PID controller based on a Polynomial Weighted Output
Recurrent Neural Network, reducing the number of tunable parameters and enhancing com-
putational efficiency, thereby offering robust performance in uncertain environments [6].
Uçak and Arslantürk (2023) contributed an adaptive MIMO fuzzy PID controller that em-
ploys a peak observer to dynamically adjust parameters, improving tracking accuracy and
disturbance rejection in complex multi-input systems [7]. Furthermore, Zhang et al. (2023)
developed an intelligent adaptive PID controller for marine electric propulsion systems,
using the evidential reasoning rule for optimizing PID parameter optimization in real time
under nonlinear disturbances [8]. Maaloul et al. used Lyaponov theorem to create an
adaptive PID controller to the quadrotors through modulation of the PID gains [9].

Model Reference Adaptive Control (MRAC) is another influential method that has
evolved as a powerful solution for managing uncertainties and nonlinearities in dynamic
systems. This technique offers robust performance across applications, including UAV
control, industrial automation, and precision manufacturing. Gai et al. (2021) introduced
the latest MRAC-PID configuration for CNC machine tools, significantly enhancing motion-
control accuracy and noise suppression. Although not directly related to UAVs, Gai et al.’s
work exemplifies the versatility of MRAC-PID in achieving high-precision control, relevant
to adaptive control applications across various domains [10].

Further advancements in MRAC have been driven by integrating deep learning tech-
niques. Joshi and Chowdhary (2019) pioneered a Deep MRAC framework that utilizes
neural networks to model complex nonlinearities while ensuring stability in uncertain en-
vironments. This deep learning-enhanced MRAC architecture is a significant step forward,
enabling high-performance adaptive control where conventional methods may struggle [11].
Huo and Dai (2023) extended MRAC applications to UAV trajectory tracking and collision
avoidance, underscoring the role of adaptive control in maintaining safety and operational
reliability in complex flight scenarios [12].

The Adaptive Neuro-Fuzzy Inference System (ANFIS), initially developed by Jang
(1993), combines the learning ability of neural networks with the rule-based reasoning of
fuzzy logic, providing a robust framework for adaptive control. Pham and Han (2022)
applied ANFIS to marine rescue drones, improving trajectory tracking by mitigating
environmental disturbances such as wind. This approach highlights ANFIS’s adaptability
in dynamic and unpredictable environments, reinforcing its applicability beyond traditional
PID-based methods [13,14].

Sliding Mode Control (SMC) techniques have also been widely applied to UAVs,
enhancing control robustness and disturbance rejection capabilities. Noordin and Basri
et al. developed an Adaptive PID integrated with Sliding Mode Control for micro air
vehicles (MAVs), which outperformed traditional PID controllers in robustness against
external disturbances, such as wind gusts [15]. They also created adaptive PID controller to
control thrust with a fuzzy compensator [16]. Xiao et al. (2022) designed an SMC-based
trajectory-tracking controller for aerial photography, significantly improving UAV stability
and control in dynamic operations [17]. Zhao et al. (2020) addressed uncertain dynamics
by employing high-order sliding mode observers for effective disturbance estimation,

Machines 2024, 12, 868 3 of 31

ensuring robust trajectory tracking under dynamic conditions [18]. Mechali et al. (2022)
introduced a fixed-time nonlinear homogeneous sliding mode control strategy tailored
for multirotor aircraft, providing guaranteed robust tracking with fixed-time convergence
despite external perturbations and unmodeled dynamics [19]. In summary, these adaptive
control strategies, particularly MRAC and its integration with deep learning, along with
SMC and ANFIS approaches, underscore the ongoing advancements in control systems for
UAVs and other complex systems. The increasing use of neural networks and fuzzy logic
in adaptive control represents a shift towards more intelligent and robust solutions, paving
the way for future innovations in this field.

The Online Impedance Adaptation Controller (OIAC) is a real-time adaptive control
mechanism that, while not widely recognized for its application in UAVs, has gained
significant traction in the fields of Human–Robot Interaction (HRI) and bio-robotic sys-
tems [20–22]. The OIAC exemplifies an advanced adaptive control strategy, wherein the
control gains are automatically adjusted in real time to ensure system stability within
dynamic environments. This adaptive capability is crucial for effectively managing the
variability and unpredictability that often arise during UAV operations. Previous research
has demonstrated the versatility of the OIAC across various applications, including the
control of wearable robotic exoskeletons, the achievement of human-like motor control,
and the management of a robotic arm manipulating a whip for precisely targeting in highly
nonlinear systems, all while reducing computational complexity [23,24]. Furthermore,
the OIAC has been utilized as a sensory feedback control mechanism for human arms
within Sensorimotor Learning and Adaptation (SEED) systems [25]. Motivated by these
findings, we propose to implement the OIAC in the control of drones to demonstrate
their superior controllability in this context. The adaptive mechanisms inherent in the
OIAC, combined with its integration into advanced control strategies, are expected to
significantly enhance the performance, stability, and responsiveness of drones across a
variety of operational conditions.

To optimize energy efficiency in UAV navigation for surveillance and inspection,
this project explores two trajectory planning methods: Minimal jerk and minimal snap
trajectories [26]. Minimal snap trajectories have been shown to be effective in prior studies
on drone navigation [27], while minimal jerk trajectories are widely used in robotics
for smooth motion and stability [23,24]. These trajectories are designed to minimize
discontinuities, thereby preventing the motors from rapidly spooling to execute sharp
turns. This approach not only conserves energy but also enhances the longevity of the
UAV’s components. This study aims to identify the most suitable trajectory for UAV
surveillance by comparing these two approaches in terms of efficiency and adaptability in
complex, real-world environments. The project employs the CoppeliaSim (V4.6.0 EDU) [28]
simulator for UAV modeling, with the controller implemented as a ROS 2 [29] node using
Python, allowing for modular and real-time adjustments in trajectory control. Performance
metrics are assessed by measuring the error distance between the ideal trajectories and
the actual paths generated by three controllers: PID, MRAC, and OIAC. Additionally,
an RRT* algorithm is integrated for obstacle avoidance, known for its efficient motion
planning capabilities in dynamic environments. Building on Medhy Vinceslas’ UAV-
Autonomous-Control repository [27], this project incorporates significant enhancements.
These include the use of higher-order derivatives for optimized trajectory planning and
an adapted RRT* algorithm capable of detecting and navigating around rotated cuboid
obstacles. These improvements ensure that the navigation system can effectively handle
the complex and confined environments typical of inspection. Furthermore, ren et al.
incorporated an advanced path planning techniques involving dynamic mapping and
real-time sensory feedback to evaluate path feasibility in changing environments [30].
To assess controller performance, this study utilizes integral error metrics, including the
Integral of Squared Error (ISE), Integral of Absolute Error (IAE), Integral of Time-weighted
Absolute Error (ITAE), and Integral of Time-weighted Squared Error (ITSE). These metrics
provide a comprehensive evaluation of both transient- and steady-state performance, with

Machines 2024, 12, 868 4 of 31

particular emphasis on minimizing sustained and large errors, thereby ensuring efficiency
and stability in UAV navigation. The OIAC’s performance is benchmarked against the PID
and MRAC.

2. Methods

In this section, we define the controllers, the quadcopter dynamics, optimal trajectories,
and the use of integral errors for performance measurements. The drone, being simulated
in CoppeliaSim, is controlled by external ROS2 script through messaging communica-
tion system. Figure 1 shows how the ROS 2 controller node and CoppeliaSim’s drone
communicate with each other.

Figure 1. CoppeliaSim and ROS 2 node communication diagram.

2.1. Controllers
2.1.1. OIAC

To set up the Online Impedance Adaptive Controller (OIAC), a control law is given by:

τ(t) = −F(t)− K(t)e(t)− D(t)ė(t) (1)

where τ(t) is the resulting control output, F(t) is force, K(t) is stiffness impedance, and
D(t) is damping impedance. The impedance parameters have t as the input parameter, as
they all change with respect to time, hence why the controller can tune its gains online to
adapt in a given environment. Additionally, a is introduced as an I-term:

e(t) = q(t)− qd(t), (2)

ė(t) = q̇(t)− q̇d(t), (3)

ϵ(t) = e(t) + βė(t) (4)

e(t) and ė(t) are position and velocity errors, respectively. qd and q̇d are desired
position and velocity, respectively. ϵ(t) is the tracking error usually used in robot control.
The β is a positive constant that controls the tracking error. To allow adaptation to occur in
real time, a set of adaption laws are given:

F(t) =
ϵ(t)
γ(t)

(5)

K(t) = F(t)eT(t) (6)

D(t) = F(t)ėT(t) (7)

γ(t) =
a

1 + b||ϵ(t)||2 (8)

The γ is the adaptation scalar controlled by tracking error ϵ(t) and two positive
constants a and b. By looking at Equation (8), increasing a will slow the response time, and
b controls the convergence of the tracking error. The input parameters for OIAC are a, b,
and β. The stability proof of the OIAC is found in Appendix B.

Machines 2024, 12, 868 5 of 31

2.1.2. MRAC

The Model Reference Adaptive Control (MRAC) system comprises a system model
and a reference model (see Equations (9)–(12)).

ẋm(t) = Amxm(t) + Bmr(t) (9)

ym(t) = Cmxm(t) (10)

ẋ(t) = A[x(t)]x(t) + B[x(t)]u(t) (11)

y(t) = C[x(t)]x(t) (12)

In these equations, xm(t) represents the state of the reference model, Am is the reference
state matrix, Bm is the reference input vector, r(t) is the reference input, Cm is the reference
output matrix, and ym(t) is the reference output. Given that a quadcopter is a highly
nonlinear system, a nonlinear plant model is utilized to provide a more accurate state-space
representation. Here, x(t) denotes the actual plant state, and A[x(t)], B[x(t)], and C[x(t)]
are the state, input, and output matrices, respectively. These matrices are dependent on the
state x(t) due to the system’s nonlinear nature.

Unlike the traditional MRAC, where we control one adaptation parameter, we instead
implement it on the PID controller [31], where MRAC is used to update the P-, I-, and
D-term continuously in real time in order to adapt against continuous changes in both the
system and the environment, so that is why we using a PID controller for the control input
u(t), as shown in Equation (13). Consequently, the MRAC-PID control law is expressed in
Equation (14):

upid(t) = KPe(t) + KI

∫
e(t)dt + KD ė(t) (13)

umrac_pid(t) = KP(t)e(t) + KI(t)
∫

e(t)dt + KD(t)ė(t) (14)

Here, the error e(t) is calculated as e(t) = r(t)− y(t), where r(t) is the reference signal
and y(t) is the system output. To achieve adaptation, we choose the MIT rule [4] as it is
the simplified version of Lyapunov’s stability criterion. The objective of the MIT rule is to
minimize the squared error cost function J(t) = 1

2 e2(t) using gradient descent, given by

K̇(t) = −γ
δJ(t)
δK(t) , to determine the optimal gains for KP(t), KI(t), and KD(t). By applying

the chain rule in the gradient descent process, we derive the following adaptation laws:

K̇P(t) = −γPe(t)2 (15)

K̇I(t) = −γIe(t)
∫

e(t)dt (16)

K̇D(t) = −γDe(t)ė(t) (17)

where γk are the learning rates for the proportional, integral, and derivative terms. See
Appendix A for the step-by-step method to obtain these results.

2.2. Quadcopter

The quadcopter is a highly nonlinear, underactuated system. Pitch and roll influence
the x and y movements, while yaw changes the drone’s orientation, misaligning its body
reference frame with the Earth’s reference frame. The researchers behind IHODFC [32] used
Euler angles for rotation, valued for their intuitive representation and simplicity. However,
Euler angles are susceptible to singularities, leading to the phenomenon known as gimbal
lock, where the system loses a degree of freedom. Additionally, trigonometric functions in
rotation matrices are computationally expensive, slowing down the system.

Machines 2024, 12, 868 6 of 31

Luckily, quaternions have resolved these issues. As four dimensional numbers,
q = [w, x, y, z]T , they provide numerical stability and computational efficiency by adhering
to this multiplication rule:

i2 = j2 = k2 = ijk = −1 (18)

They are also compatible with ROS2’s attitude publisher, which uses them to determine the
orientation of the drone.

The dynamics of a UAV can be described below:

η̇ = J(q)ν (19)

τ = MRBν̇ + CRB(ν)ν (20)

where:

• MRB is a 6 × 6 symmetric, positive definite mass matrix expressed as

MRB =

[
mI3×3 03×3
03×3 IC

]
(21)

where

– I3×3 is the 3 × 3 identity matrix;
– 03×3 is the 3 × 3 zero matrix;
– m is the mass of the drone;
– IC is the inertia matrix.

The inertia matrix is expressed as

IC =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Ixy Izz

 (22)

For quadcopters, the inertia matrix is typically

IC =

Ixx 0 0
0 Iyy
0 0 Izz

 (23)

• CRB is a 6 × 6 Coriolis matrix expressed as

CRB =

[
03×3 −mS(ω)

−mS(ω) −S(ICω)

]
(24)

where

– m is the mass of the drone;
– 03×3 is the 3 × 3 zero matrix;
– IC is the inertia tensor;
– ω is a vector of angular velocities in the body reference frame defined as

ω =
[
p q r

]T (25)

– S(·) is a function that creates skew-symmetric matrix of vectors defined as

S(a) =

 0 −az ay
az 0 −ax
−ay ax 0

 (26)

Machines 2024, 12, 868 7 of 31

• J(q) is a transformation matrix defined as

J(q) =
[

R(q) 0
0 R(q)

]
(27)

where R(q) is a rotation matrix derived from the quaternion q = [q0, q1, q2, q3]
T . R(q)

can be expressed as

R(q) =

1 − 2(q2
2 + q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 1 − 2(q2

1 + q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1 − 2(q2
1 + q2

2)

 (28)

• η is a position vector in the Earth’s reference frame given as

η =
[
pT qT] (29)

where p = [x, y, z]T is the position in the Earth reference frame.
• ν is a velocity vector in the body reference frame given as

ν =
[
vT ωT]T (30)

where v = [vx, vy, vz]T is the velocity in the body reference frame.
• τ is the force vector acted upon the quadcopter which consist of thrust, gravity,

and aerodynamics.

2.2.1. Thrust Control

To complete the quadcopter model, we define the thrust matrix M, thrust coefficient
Ct, moment coefficient Cm, and the squared motor speeds ω2

m for each motor. Each motor i
generates a thrust Ti and moment τi based on its angular speed ωmi :

Ti = Ctω
2
mi

(31)

τi = Cmω2
mi

(32)

The total thrust T along the quadcopter’s body frame z-axis is the sum of the thrusts
from all motors:

T = T1 + T2 + T3 + T4 (33)

To relate ωmi to the total thrust and torques, based on the free body diagram in Figure 2,
we define a thrust matrix M:

M =


Ct Ct Ct Ct

−dCt dCt dCt −dCt
dCt −dCt dCt −dCt
Cl Cl −Cl −Cl

 (34)

where

• d is the distance from the quadcopter’s center to each motor.
• The first row gives the total thrust T.
• The subsequent rows provide the torques τx, τy, and τz around the roll, pitch, and yaw

axes, respectively.

Machines 2024, 12, 868 8 of 31

Using this thrust matrix, we can control the quadcopter by adjusting motor speeds,
thereby producing the desired thrust and torque outputs. The control torque vector τ and
thrust vector T can be expressed as

TF =


T
τx
τy
τz

 = M


ω2

m1
ω2

m2
ω2

m3
ω2

m4

 (35)

This enables us to solve for motor speeds to achieve the desired thrust and torques in the
quadcopter control system. Consequently, to obtain motor speed squared, we inverse the
thrust matrix and multiply it with the force vector:

ωmi = M−1TF (36)

Figure 2. Free body diagram of a quadcopter.

2.2.2. Control Schema

The multirotor UAV operates with four primary control inputs: throttle, roll, pitch,
and yaw. As an underactuated system, adjusting roll influences the drone’s position along
the y-axis, while adjusting pitch affects its x-axis position within the body frame. This
coupling of axes requires a cascade control approach to maintain precise x and y positions
in the global (world) frame.

In this experiment, the setup was simplified by aligning the drone’s body frame with
the world frame in the XY plane, allowing us to disregard world-to-body transformations,
which is why the yaw angle was set to zero.

In typical multicopter control setups, six controllers are often used: two for position,
one for yaw, two for altitude, and one for thrust. However, in this project, these controllers
were vectorized and simplified to reduce their number to three: throttle, position, and
angle. Figure 3 illustrates the control diagram for this.

The throttle controller independently regulates the drone’s altitude. The position and
angle controllers, however, are cascaded, forming outer- and inner-loop controls. The outer-
loop (position) controller has two elements, while the inner-loop (angle) controller has three
elements, with the third element dedicated to yaw control. For optimal responsiveness, the
inner-loop controllers must operate significantly faster than the outer loop—a principle
that holds across all control techniques.

Machines 2024, 12, 868 9 of 31

Figure 3. Control diagram used in simulation. (Yaw is set to 0.)

2.3. Path and Motion Planning

To generate an optimal, collision-free path from the start to the goal, the RRT* planner
was combined with an optimal trajectory generator. Since the RRT* algorithm typically
considers only two points at a time, while the trajectory generator requires an optimal
path across multiple points (more than seven in this case), the RRT* algorithm was run
iteratively for each waypoint. This approach connected local points effectively while also
benefiting from the RRT* algorithm’s inherent obstacle avoidance capabilities.

The objective for using minimal jerk is to minimize this cost function:

J =
∫ t f

t0

(
d3x(t)

dt3

)2

dt =
∫ t f

t0

...
x (t)2 dt (37)

where J is the cost function representing the total jerk. x(t) is the position as a function of
time.

...
x (t) is the jerk, the third derivative of position with respect to time. t0 and t f are the

initial and final times of the trajectory. Minimizing this cost function results in
...
x (t) = 0.

The solution to this optimization problem, assuming boundary conditions for position,
velocity, and acceleration at the start and end of the movement, is a fifth-degree polynomial:

x(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 (38)

The coefficients a0, a1, a2, a3, a4, and a5 are determined based on the boundary condi-
tions. This polynomial ensures that the trajectory is smooth, with continuous derivatives
up to the third order.

Similarly, the minimal snap trajectory minimizes this cost function:

J =
∫ t f

t0

(
d4x(t)

dt4

)2

dt =
∫ t f

t0

....
x (t)2 dt (39)

where
....
x (t) is the snap, the fourth derivative of position with respect to time. Furthermore,

the solution is a septic polynomial, assuming that position, velocity, acceleration, and jerk
are given boundary conditions:

x(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 + a6t6 + a7
7 (40)

Machines 2024, 12, 868 10 of 31

2.4. Minimal Jerk Trajectory Planning

To design a minimal jerk trajectory, we represented the position x(t) over time t as a
5th-degree polynomial in Equation (38). This polynomial allowed us to control position,
velocity, and acceleration at the start and end of the trajectory, while minimizing jerk
throughout the motion.

To ensure smooth transitions, we defined boundary conditions for position x, velocity
ẋ, and acceleration ẍ at the start time t = 0 and end time t = T. These conditions are
as follows:

x(0) = x0, ẋ(0) = v0, ẍ(0) = a0, (41)

x(T) = x f , ẋ(T) = v f , ẍ(T) = a f . (42)

Using these boundary conditions, we substitute t = 0 and t = T into the polynomial and
its derivatives, resulting in the following system of equations:

1. Position Constraints: x(0) = a0,
x(T) = a0 + a1T + a2T2 + a3T3 + a4T4 + a5T5

2. Velocity Constraints: ẋ(0) = a1,
ẋ(T) = a1 + 2a2T + 3a3T2 + 4a4T3 + 5a5T4

3. Acceleration Constraints: ẍ(0) = 2a2,
ẍ(T) = 2a2 + 6a3T + 12a4T2 + 20a5T3

We can instead write these equations in matrix form b = Ax, where

• x is the vector of polynomial coefficients [a0, a1, a2, a3, a4, a5]
T ;

• b is the vector of boundary conditions [x0, v0, a0, x f , v f , a f]
T ;

• A is the matrix formed by substituting t = 0 and t = T into the polynomial equations.

Thus, we have 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 T T2 T3 T4 T5

0 1 2T 3T2 4T3 5T4

0 0 2 6T 12T2 20T3





a0
a1
a2
a3
a4
a5

 =



x0
v0
a0
x f
v f
a f

 (43)

Solving for Coefficients

To find the coefficients, [a0, a1, a2, a3, a4, a5], that define the minimal jerk trajectory, we
solve the linear system

x = A−1b

where x represents the polynomial coefficients, which provide the desired minimal jerk
trajectory from the start- to the endpoint.

2.5. Artificial Disturbances

To further prove why OIAC is a well-performing controller for a real world appli-
cations compared to MRAC and PID, 2 copies of the optimal trajectories were distorted
with Gaussian noise (with stds of 0.05 and 0.1). This matches the measurement noise of
the instruments and uncertainty from the environment. The controllers got fed not only
a noisy positional trajectory but also a noisy velocity trajectory, since the Gaussian noise
was applied on every derivative of the optimal trajectory. This bumps the total number of
experimentations up to 18. Furthermore, an additional 18 experimentation were created
with doubled velocity to make trajectory tracking more difficult for the controllers and to
make it easier to differentiate the performance between them. With added doubled velocity
for all trajectories, the total number of experimentation was 36.

Machines 2024, 12, 868 11 of 31

2.6. Performance Measurements

To actually estimate the performance for each controller in their trajectory tracking
performance, we measured their mean and std errors. The error, e, is the difference between
the reference signal and system output (e = yd − y). The mean error is the average of all
error data points in the recorded time frame:

µe =
1
T

T

∑
i=1

ei (44)

where at calculating the standard deviation is calculated as

σe =

√√√√ 1
n − 1

T

∑
i=1

(ei − µe)2 (45)

We also used Integral Absolute Error (IAE), Integral Square Error (ISE), Integral
Time Absolute Error (ITAE), and Integral Absolute Square Error (ITSE) to evaluate the
performance of a control system:

1. Integral Absolute Error (IAE): Measures the cumulative absolute error over time:

IAE =
∫ ∞

0
|e(t)| dt (46)

where e(t) is the error at time t. IAE penalizes the overall error without emphasizing
the magnitude of individual errors.

2. Integral Squared Error (ISE): Measures the cumulative squared error over time, penal-
izing larger errors more heavily.

ISE =
∫ ∞

0
e(t)2 dt (47)

This metric is useful for applications where minimizing larger deviations is critical,
but it may allow small persistent errors.

3. Integral of Time-weighted Absolute Error (ITAE): Weights the absolute error by time,
penalizing errors that persist longer and encouraging faster error reduction.

ITAE =
∫ ∞

0
t|e(t)| dt (48)

ITAE is ideal for applications where prompt settling is important, as it emphasizes
reducing error over time.

4. Integral of Time-weighted Squared Error (ITSE): Combines the time-weighting of
ITAE with the squared error term of ISE, penalizing both large errors and errors that
last over time.

ITSE =
∫ ∞

0
te(t)2 dt (49)

This metric promotes a smooth response and penalizes both large and persistent errors.

These metrics were chosen based on the specific performance objectives of the control
system, such as minimizing the transient response and steady-state error.

3. Results

To conduct the simulations and obtain meaningful results, it is essential to understand
the physical properties of both the drone and its environment. In this setup, the drone’s
characteristics were already defined within a Lua script in CoppeliaSim. The Lua script

Machines 2024, 12, 868 12 of 31

models the quadcopter dynamics by simulating accelerated particles. The parameters used
for these particles are detailed in Table 1.

We excluded parameters such as particle lifetime, maximum particle count, and
scattering angle, as they do not influence the force exerted on the drone. To compute
the total force exerted on the drone by the moving particles, we utilized Equation (50)
provided below.

mbody =
4
3

π

(dparticle

2

)2

· ρparticle · Ṅparticle · v̄particle (50)

where dparticle is the particle diameter, ρparticle is the particle density, Ṅparticle is the particle
count per second, and v̄particle is the average velocity for all particles exerted by the drone.

We assumed the average velocity of each particle to be 9.2 m s−1. Using the calculation
from Equation (50), the combined mass of all four propellers was approximately 2.2 kg.
Assuming that the gravitational acceleration in the simulator was 9.8 N kg−1, the thrust
force was calculated as 2.2 kg × 9.8 N kg−1 = 21.56 N. According to the CoppeliaSim Lua
script, the feedforward control gain was set to 5.45, which we interpreted as 5.45 N per
propeller. For all four propellers, this resulted in a total thrust of 5.45 N × 4 = 21.8 N. The
slight difference in forces (0.24 N) causes the drone to descend slowly, facilitating easier
control of its position and attitude by the controllers. Sadly, the information of the drone
mass was roughly estimated and not defined directly in the Lua script. The arm length of
the drone was also not shown, so obtaining the inertia tensor was also not possible.

Table 1. Particle parameters.

Variable Value Unit

Particle count (per second) 430 s−1

Particle size (diameter) 0.005 mm
Particle density 8500 kg m−3

Particle lifetime 0.5 s
Max particle count 50 N/A

Scattering angle 30 deg

3.1. Environment

The environment was set up in CoppeliaSim’s simulator, and, as shown in Figure 4,
had multiple cylinders and boxes arranged in an orderly manner, so it closely resembled
pipelines in the real world.

Figure 4. The environment where the drone is simulated.

Machines 2024, 12, 868 13 of 31

To prevent the drone from flying too far off or getting flipped upside-down, boundaries
were set up as shown in Table 2. These boundaries were given because CoppeliaSim’s
ground dimension is 2.8 × 2.8 m2. The maximum z axis was chosen to be higher than the
structures and to maintain consistency.

Exceeding those boundaries stopped the simulation. This implementation made
debugging easier and sped up the project development. Since the simulator itself could be
controlled by ROS 2, modifying, debugging, and running the simulation was much easier
and more streamlined.

Table 2. Boundary constraints.

Variable Minimum Maximum Unit

x −3 3 m
y −3 3 m
z 0 3 m

roll −1.2 1.2 rad
pitch −1.2 1.2 rad

3.2. Controller Parameters

The PID gains were taken from Coppeliasim’s simulation presets for quadcopters. The
presets are shown in Table 3.

Table 3. PID controller parameters with FF (feedforward), LS (lower saturation), and US (upper saturation).

Parameter P I D FF LS US

Throttle 2 0 0 5.45 −1 2
Outer loop 0.025 0 0 0 −1 1
Inner loop 0.005 0 1 0 −1 1

Tables 4 and 5 display the selected parameters for OIAC and MRAC, respectively, used
in this simulation. These values were obtained experimentally and fine-tuned to achieve
optimal and satisfactory performance.

Table 4. OIAC controller parameters with FF (feedforward), LS (lower saturation), and US (upper
saturation).

Parameter a b β FF LS US

Throttle 1 0.2 5 5.45 −1 2
Outer loop 50 0 10 0 −1 1
Inner loop 10 0 1 0 −1 1

Table 5. MRAC controller parameters with FF (feedforward), LS (lower saturation), and US (up-
per saturation).

Parameter P I D γ FF LS US

Throttle 2 0 0 0.001 5.45 −1 2
Outer loop 0.1 0 0 0.00001 0 −1 1
Inner loop 0.2 0.001 1 0.001 0 −1 1

3.3. Simulation Results: Slow Speed

After running the controllers in the simulation, the recorded data were plotted for
analysis and comparison.

Figure 5 illustrates the minimal jerk trajectory without distortion, alongside the drone
paths for all controllers. The results indicate that the OIAC controller achieves the best

Machines 2024, 12, 868 14 of 31

tracking performance, with minimal deviation from the desired trajectory. The MRAC con-
troller exhibits some initial deviation but subsequently aligns closely with the trajectory. In
contrast, the PID controller experiences significant initial deviation and takes considerably
longer to converge to the desired path, reflecting its slower response to trajectory tracking.

With added distortion in Figures 6 and 7, the OIAC controller remains robust and
effectively controls the drone despite the disturbances. The MRAC controller exhibits some
difficulties but performs reasonably well overall. In contrast, the PID controller struggles
significantly, showing chaotic deviations and difficulty in maintaining trajectory tracking
under these conditions.

In the minimal snap trajectory shown in Figure 8, the OIAC controller performs
exceptionally well, maintaining close adherence to the desired path with minimal deviation.
The MRAC controller experiences a slight deviation at startup but quickly aligns with the
trajectory. The PID controller also performs reasonably well, though it exhibits noticeable
deviation during the final turn as it approaches landing.

Figure 5. Three-dimensional and two-dimensional plots for minimum jerk trajectory and drone paths
with STD: 0 for PID, MRAC, and OIAC at slow speed.

Figure 6. Three-dimensional and two-dimensional plots for minimum jerk trajectory and drone paths
with STD: 0.05 for PID, MRAC, and OIAC at slow speed.

Machines 2024, 12, 868 15 of 31

Figure 7. Three-dimensional and two-dimensional plots for minimum jerk trajectory and drone paths
with STD: 0.1 for PID, MRAC, and OIAC at slow speed.

Figure 8. Three-dimensional and two-dimensional plots for minimum snap trajectory and drone
paths with STD: 0 for PID, MRAC, and OIAC at slow speed.

The distorted snap trajectories in Figures 9 and 10 demonstrate varying levels of con-
troller performance under increased distortion. In Figure 9, the OIAC controller maintains
close adherence to the trajectory with stable performance, while the MRAC controller
follows reasonably well, despite some minor deviations. The PID controller, however,
struggles to track the trajectory accurately. In Figure 10, OIAC continues to show robust sta-
bility, but MRAC experiences significant instability, resulting in a loss of trajectory tracking,
likely due to crashes. The PID controller remains unable to handle the increased distortion
effectively, exhibiting chaotic behavior. Despite that, it reaches the end.

To assess the performance of each controller, we analyzed the error data obtained
by subtracting the drone’s path data from the reference trajectory: edronepath = xtrajectory −
xdronepatj. Figures 11 and 12 illustrate the controllers’ tracking errors across different levels
of distortion for both minimal jerk and snap trajectories. The results show that the OIAC
controller consistently outperforms the other controllers, maintaining the lowest error in
nearly all scenarios, except for the minimal jerk trajectory with a 0.1 standard deviation
distortion, where its performance slightly decreases.

Machines 2024, 12, 868 16 of 31

Figure 9. Three-dimensional and two-dimensional plots for minimum snap trajectory and drone
paths with STD: 0.05 for PID, MRAC, and OIAC at slow speed.

Figure 10. Three-dimensional and two-dimensional plots for minimum snap trajectory and drone
paths with STD: 0.1 for PID, MRAC, and OIAC at slow speed.

Table 6 provides a detailed summary of the mean and standard deviation for the tracking
errors across all trajectories and distortion levels. These metrics confirm that OIAC achieves the
most robust performance overall, followed closely by MRAC, while the PID controller exhibits
significantly higher tracking errors, particularly under increased distortion.

Table 6. Drone error values for slow minimal jerk and snap trajectories.

Trajectory Controller

STD Distortions for Slow Speed Trajectory Errors

STD = 0 STD = 0.05 STD = 0.1

Mean (µ) Std (σ) Mean (µ) Std (σ) Mean (µ) Std (σ)

Jerk
PID 0.424093 0.265418 0.636711 0.420711 0.971610 0.494974
MRAC 0.066785 0.074024 0.108929 0.061929 0.195925 0.088737
OIAC 0.037938 0.033395 0.095996 0.043910 0.216186 0.090714

Snap
PID 0.463688 0.197298 0.680411 0.373371 0.563635 0.321820
MRAC 0.065279 0.058119 0.112102 0.060479 0.892420 0.422787
OIAC 0.039897 0.035240 0.101333 0.048236 0.189155 0.080706

Machines 2024, 12, 868 17 of 31

It should be noted that the abbreviation STD is not same as std σ. The former is used
to distort the reference signal with Gaussian noise and the latter is the standard deviation
of the error trajectory.

Table 7 presents the measured performance in IAE (46), ISE (47) ITAE (48), and
ITSE (49) for the controllers.

The results show that OIAC consistently achieves the lowest error across most metrics,
particularly under lower distortion (STD: 0 and 0.05). MRAC also performs well, although
it exhibits higher errors than OIAC, especially as distortion increases. PID, however, has
significantly higher error values in all categories, indicating poorer tracking performance
and increased sensitivity to distortion. These data align with earlier observations, where
OIAC demonstrated superior robustness and stability in trajectory tracking.

Figure 11. Error distance plot for slow flight in simulation.

Machines 2024, 12, 868 18 of 31

Table 7. Integral errors for slow speed—Minimal Jerk and Snap Trajectories.

Trajectory Controller STD: 0 STD: 0.05 STD: 0.1

Integral Absolute Error (IAE)

Jerk
PID 60.539242 90.890445 138.697287
MRAC 9.533551 15.549565 27.968248
OIAC 5.415664 13.703397 30.860620

Snap
PID 66.191391 97.128676 80.458901
MRAC 9.318572 16.002529 12.583115
OIAC 5.695355 14.465326 27.001831

Integral Squared Error (ISE)

Jerk
PID 35.727003 83.128435 169.721095
MRAC 1.418623 2.241078 6.603333
OIAC 0.364606 1.590609 7.845936

Snap
PID 36.246955 85.980657 60.128606
MRAC 1.090317 2.315864 13.740835
OIAC 0.404444 1.797842 6.036984

Integral Time-weighted Absolute Error (ITAE)

Jerk
PID 3898.045138 6763.435317 11101.666233
MRAC 688.066381 1115.071907 2029.654984
OIAC 397.640910 975.187121 2262.754160

Snap
PID 5447.413744 5960.951961 4812.250856
MRAC 730.278684 1184.481592 111.896221
OIAC 418.633648 974.945498 1916.233038

Integral Time-weighted Squared Error (ITSE)

Jerk
PID 1762.282035 6162.443933 15331.482496
MRAC 74.827431 155.220659 476.820615
OIAC 26.116807 113.153155 591.743775

Snap
PID 3391.657467 4766.971413 2838.591459
MRAC 85.128259 176.741572 139.030097
OIAC 28.836938 111.528090 427.428784

3.4. Simulation Results: Fast Speed

Figure 13 compares the performance of PID, MRAC, and OIAC controllers in tracking
a minimum jerk trajectory at fast speed with no added distortion (STD: 0). The 3D and 2D
plots reveal that the OIAC controller achieves the most accurate tracking, staying closely
aligned with the target path with minimal deviation. The MRAC controller shows moderate
performance, initially diverging but gradually aligning with the trajectory, though with
some visible deviations. The PID controller performs the poorest, exhibiting significant
deviations, especially around sharp turns, indicating difficulty in maintaining stability
at a high speed. Overall, this comparison demonstrates that OIAC is the most effective
controller for high-speed tracking, offering robust and precise path adherence compared to
MRAC and PID under these conditions.

Machines 2024, 12, 868 19 of 31

Figure 12. Error distance bar plot for simulated slow flight in simulation.

Figure 13. Three-dimensional and two-dimensional plots for minimum jerk trajectory and drone
paths with STD: 0 for PID, MRAC, and OIAC at fast speed.

Figures 14 and 15 display the performance of the PID, MRAC, and OIAC controllers
on a minimum jerk trajectory at fast speed with added distortions (STD: 0.05 and STD:
0.1). In both the 3D and 2D plots, the OIAC controller maintains robust tracking, closely
following the desired trajectory despite the increasing distortion levels. The MRAC con-
troller performs reasonably well but shows more deviation than OIAC, particularly as
the standard deviation increases. The PID controller struggles the most under these con-

Machines 2024, 12, 868 20 of 31

ditions, exhibiting significant deviations from the target path, especially in sections with
sharp turns.

Figure 14. Three-dimensional and two-dimensional plots for minimum jerk trajectory and drone
paths with STD: 0.05 for PID, MRAC, and OIAC at fast speed.

Figure 15. Three-dimensional and two-dimensional plots for minimum jerk trajectory and drone
paths with STD: 0.01 for PID, MRAC, and OIAC at fast speed.

Figures 16–18 illustrate the performance of PID, MRAC, and OIAC controllers on a
minimum snap trajectory at fast speed under varying distortion levels (STD: 0, 0.05, and
0.1). In the undistorted scenario (STD: 0), OIAC achieves the best tracking accuracy, closely
following the desired trajectory with minimal deviation. MRAC performs moderately
well, with minor deviations, while PID exhibits noticeable tracking errors, especially in
turns. With a slight distortion (STD: 0.05), OIAC remains robust, though minor deviations
appear. MRAC shows slightly increased deviations but generally tracks the trajectory
adequately. PID, however, struggles significantly, especially around sharp turns, indicating
difficulty in handling even moderate disturbances. At a higher distortion level (STD: 0.1),
OIAC still demonstrates the most stable performance, though its deviation grows with the
disturbance. MRAC struggles further to maintain trajectory alignment, and PID shows
substantial errors, failing to maintain the path reliably.

Machines 2024, 12, 868 21 of 31

Figure 16. Three-dimensional and two-dimensional plots for minimum snap trajectory and drone
paths with STD: 0 for PID, MRAC, and OIAC at fast speed.

Figure 17. Three-dimensional and two-dimensional plots for minimum snap trajectory and drone
paths with STD: 0.05 for PID, MRAC, and OIAC at fast speed.

Figure 18. Three-dimensional and two-dimensional plots for minimum snap trajectory and drone
paths with STD: 0.01 for PID, MRAC, and OIAC at fast speed.

Machines 2024, 12, 868 22 of 31

For fast trajectory simulations, Figures 19 and 20 show that the OIAC controller
consistently achieves the lowest tracking errors across all levels of distortion (STD: 0, 0.05,
and 0.1) in both jerk and snap trajectories, demonstrating superior robustness and stability.
MRAC performs moderately well, with error levels that increase slightly with higher
distortion, yet it generally maintains effective tracking. In contrast, the PID controller
exhibits the highest error and significant variability, especially in conditions with increased
distortion, indicating its difficulty in handling fast trajectories under disturbance.

Table 8 provides a quantitative summary, confirming that OIAC has the lowest mean
and standard deviation of errors across all conditions, followed by MRAC. PID, however,
shows the highest mean errors and standard deviations, underscoring its instability and
sensitivity to disturbances at fast speeds.

Figure 19. Error distance plot for fast flight in simulation.

Machines 2024, 12, 868 23 of 31

Table 8. Drone error values for fast speed—minimal jerk and snap trajectories.

Trajectory Controller

STD Distortions for Fast Speed Trajectory Errors

0 0.05 0.1

Mean (µ) Std (σ) Mean (µ) Std (σ) Mean (µ) Std (σ)

Jerk
PID 1.285335 0.779812 0.980659 0.459973 1.009046 0.483717
MRAC 0.226612 0.090885 0.245459 0.107253 0.274217 0.124943
OIAC 0.097134 0.069914 0.162421 0.088769 0.220047 0.098730

Snap
PID 0.704517 0.412182 1.976887 1.862825 0.781348 0.273131
MRAC 0.234333 0.097156 0.254049 0.107618 0.300180 0.140742
OIAC 0.098827 0.070873 0.147033 0.077628 0.240399 0.110995

The four error metrics (IAE, ISE, ITAE, and ITSE) further demonstrate that OIAC
consistently achieves the lowest error values across all conditions, showcasing its robust-
ness and stability in accurately tracking fast-speed trajectories, even as disturbance levels
increase. These metrics also highlight the PID controller as the weakest performer, with
consistently high error values, indicating its limited effectiveness, particularly in noisy
environments. MRAC performs better than PID, with moderate error levels across metrics;
however, its performance declines under higher noise, especially in time-weighted error
metrics (See table 9).

Table 10 shows the percentage improvement of the OIAC over the PID and MRAC
controllers in terms of trajectory tracking. The OIAC performs, on average, approximately
83% better than PID, with a standard deviation of 7.81%. Compared to MRAC, the OIAC
shows an average improvement of around 32%, with a standard deviation of 19.4%.

Figure 20. Error distance bar plot for simulated fast flight in simulation.

Machines 2024, 12, 868 24 of 31

Table 9. Integralerrors for fast speed—minimal jerk and snap trajectories.

Trajectory Controller STD: 0 STD: 0.05 STD: 0.1

Integral Absolute Error (IAE)

Jerk
PID 92.029972 14.513760 40.563653
MRAC 16.225442 17.574852 19.633917
OIAC 6.954794 11.629346 15.755365

Snap
PID 50.443443 3.953774 42.270936
MRAC 16.778266 18.189937 21.492884
OIAC 7.076001 10.527537 17.212540

Integral Squared Error (ISE)

Jerk
PID 161.799411 17.353791 50.324981
MRAC 4.267897 5.136954 6.500902
OIAC 1.025280 2.452656 4.164368

Snap
PID 47.694223 14.582894 37.060477
MRAC 4.607090 5.449815 7.869015
OIAC 1.058693 1.979065 5.019359

Integral Time-weighted Absolute Error (ITAE)

Jerk
PID 3378.399352 104.896452 876.841388
MRAC 610.935761 666.109526 729.586828
OIAC 265.248268 432.245458 594.496442

Snap
PID 1622.612437 5.887929 1184.488917
MRAC 637.450145 688.061436 797.093237
OIAC 274.577848 371.620820 577.609941

Integral Time-weighted Squared Error (ITSE)

Jerk
PID 5628.237222 121.267658 1246.987164
MRAC 183.654709 220.828068 263.814677
OIAC 43.116578 95.547126 167.521419

Snap
PID 1207.444748 24.026909 1069.677564
MRAC 201.067132 230.536721 312.023434
OIAC 46.265939 71.864491 155.035489

Table 10. Average and standard deviation of OIAC Improvement over PID and MRAC in slow and
fast trajectories.

OIAC vs. PID

Metric Trajectory Avg Improvement (%) Std Improvement (%)

Jerk Slow 85.40 4.58
Snap Slow 81.18 8.29
Jerk Fast 84.23 5.55
Snap Fast 80.96 12.83

Total Average 82.94 7.81

Machines 2024, 12, 868 25 of 31

Table 10. Cont.

OIAC vs. MRAC

Metric Trajectory Avg Improvement (%) Std Improvement (%)

Jerk Slow 21.08 23.49
Snap Slow 44.64 26.98
Jerk Fast 28.67 13.77
Snap Fast 32.65 13.37

Total Average 31.76 19.40

4. Discussion

The performance evaluation of error trajectories clearly demonstrates that the OIAC
controller consistently outperforms the PID controller and performs better than the MRAC
controller. Although MRAC provides comparable performance to OIAC, its reliability
is notably lower, as multiple attempts were required to achieve successful simulations,
whereas OIAC achieved success on the first attempt. However, initial data from simulations
often included outliers, which needed to be pruned before analysis and plotting.

The native PID controller in CoppeliaSim displayed commendable tracking perfor-
mance, but its effectiveness significantly decreased when exported as a ROS2 node. Due to
this discrepancy, different parameters were used for the outer and inner loop controllers,
refined through extensive debugging. The export to ROS2 was necessary because there is
currently no reliable way to import generated trajectories directly for a fair comparison or
to implement OIAC in a Lua script effectively, as Lua lacks vector norm math operations.
Additionally, ROS2 has become a standard framework for UAV and robotic control, making
it suitable for this project.

The PID controller was tested with various proportional (K), integral (I), and derivative
(D) gains, resulting in 27 possible combinations across three controllers. Unfortunately no
stable trials were found so all of them were discarded.

Initially, the experiment was intended to be conducted using PX4 SITL (Software
In the Loop) with custom controllers. However, adjusting the PX4 firmware to handle
angle control proved to be complex, time-consuming, and high-risk, leading to MATLAB-
based testing as an alternative. MATLAB offers a well-established quadcopter simulation
environment, complete with real-time dynamics and sensor emulation. Simple hover
control tests showed that all three controllers performed satisfactorily. However, with
active disturbances in position-holding tasks, OIAC showed superior stability. For trajectory
tracking, OIAC was the only controller to follow the designated path accurately, although
with some difficulty. Performance issues prevented reliable results in the Simulink visual
mode. This simulation used the model of Parrot Minidrone, which was unsuitable for PX4
and ROS 2 due to its size and hardware constraints. These limitations necessitated a shift
to CoppeliaSim as the primary simulation environment.

While CoppeliaSim facilitated OIAC evaluation effectively, it used particle-based
dynamics rather than rigid-body dynamics. Despite this fundamental difference, drone
behavior in CoppeliaSim closely approximated that of rigid-body dynamics, making it a
viable testing environment.

Field tests were originally planned for validation with a DJI F450 quadcopter frame
and a PX4 flight controller (see Figure 21). However, the project faced several constraints, in-
cluding limited empirical testing capabilities, constant trial and errors, and many revisions,
which ultimately prevented full implementation.

Machines 2024, 12, 868 26 of 31

Figure 21. Experiment setup of DJI F450.

5. Future Work

In future, this project will focus on validating the OIAC controller on a physical drone.
Specifically, experimentation on a DJI F450 frame equipped with a PX4 flight controller is
recommended. A controlled setup can be employed by mounting the drone on a 2D gimbal
to limit angular displacement and suspending it to restrict vertical movement and yaw. This
configuration, illustrated in Figure 21, allows for safe tuning and benchmarking without
risking hardware damage, and enables continuous power supply via a power supply unit.
Programming the PX4 flight controller can be achieved using Simulink, which offers an
accessible alternative to modifying the source code directly, avoiding the need for custom
firmware. Building on previous studies, such as IHODFC experiments in simulation and
real-world settings [32], this setup will allow cross-comparison and performance bench-
marking of OIAC against established controllers like IHODFC. Furthermore, the ANFIS
controller [13] could serve as another viable benchmark, given its established use within the
Simulink environment. The MNHOUNSADR controller [33] shows strong potential as a
candidate for UAV testing and benchmarking against the OIAC. However, a key takeaway
is its primary focus on third-order dynamics and beyond, whereas multirotor systems
are typically characterized by second-order dynamics. The OIAC is a relatively modern
controller, with improved versions currently under development. These advancements
are expected to further enhance the OIAC’s disturbance rejection capabilities and adap-
tation speed, making it an even more effective choice for UAV performance comparisons
and analysis.

6. Conclusions

The OIAC controller was implemented on a drone inside CoppeliaSim to evaluate its
viability for real-world applications, specifically for pipeline surveillance. Experiments
were conducted using minimal jerk and snap trajectories under two speed levels and three
Gaussian noise levels across three controllers (PID, MRAC, and OIAC), resulting in a total
of 36 experiments.

Based on the test results, the OIAC controller outperformed the PID controller signifi-
cantly, exhibiting lower mean errors and deviations. While its performance was comparable
to that of the MRAC controller, the OIAC demonstrated higher reliability; MRAC required
multiple restarts for successful experimentation, while OIAC succeeded consistently in a
single attempt. It should be noted that the PID controller did not perform as effectively

Machines 2024, 12, 868 27 of 31

in this test as the default PID preset in CoppeliaSim, though the MRAC controller was
rigorously tested for fair comparison.

The results suggest that the OIAC controller is well suited for real-world UAV applica-
tions due to its superior performance and reliability. Its consistent accuracy and low error
rates under various conditions, coupled with fewer operational issues than MRAC, make it
a viable candidate for practical deployment.

Performance Analysis

Based on Tables 7, 9 and 10,

• OIAC vs. PID: The OIAC controller consistently shows a significant average improve-
ment over PID, with an overall improvement of approximately 82.94% and a standard
deviation of 7.81%. For both slow and fast trajectories, in metrics of jerk and snap,
the OIAC has substantial advantages over PID, indicating that it provides smoother
control with lower error accumulation in various conditions.

• OIAC vs. MRAC: The OIAC also outperforms MRAC but to a lesser extent, with an
average improvement of about 31.76% and a standard deviation of 19.40%. Although
MRAC achieves reasonably low errors, its higher standard deviation indicates less
consistency, especially under noisy conditions, compared to OIAC.

• Integral Error Metrics: In both slow and fast trajectories (Tables 7 and 9), the OIAC
achieves the lowest values across all error metrics, including Integral Absolute Error
(IAE), Integral Squared Error (ISE), Integral Time-weighted Absolute Error (ITAE),
and Integral Time-weighted Squared Error (ITSE). These values highlight the OIAC’s
capability to maintain low cumulative errors over time, demonstrating its robustness
against disturbances and noise.

• Reliability: OIAC’s reliability is further underscored by the requirement for only one
experimental setup, whereas MRAC needed multiple restarts. This suggests that OIAC
is more robust in maintaining consistent performance without frequent recalibration.

In summary, the OIAC controller exhibits superior performance, particularly in terms
of error reduction and reliability, making it highly suitable for deployment in UAV applica-
tions such as pipeline surveillance, where stability and precision are crucial.

Author Contributions: Conceptualization, X.X.; Methodology, Z.A.; Software, X.X.; Validation, Z.A.;
Formal analysis, Z.A.; Writing—original draft, Z.A.; Writing—review & editing, X.X.; Supervision,
X.X. All authors have read and agreed to the published version of the manuscript.

Funding: The research was partially funded by Fabrikant Mads Clausens (2023-0210), P.A. Fiskers
(2024-0613) and EnergiFyn (2024-0325)

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Calculation of MIT Rule

1. Define the Error:
e(t) = ym(t)− y(t) (A1)

where ym(t) is the reference model output and y(t) is the plant output.
2. Cost function:

J(θ) =
1
2

e2(t) (A2)

The cost function J(θ) quantifies the error to be minimized.
3. Parameter Update Law:

θ̇ = −γ
∂J
∂θ

(A3)

where γ is the adaptation gain, and θ represents the PID gains.

Machines 2024, 12, 868 28 of 31

4. Partial Derivative of the Cost function:

∂J
∂θ

= e(t)
∂e(t)

∂θ
(A4)

5. Control law for PID:

u(t) = Kpe(t) + Ki

∫
e(t)dt + Kd ė(t) (A5)

6. Error Sensitivity for PID Gains: Compute the sensitivity of the error with respect to
each PID gain:

(a) Proportional Gain (Kp):
∂e(t)
∂Kp

= e(t) (A6)

(b) Integral Gain (Ki):
∂e(t)
∂Ki

=
∫

e(t)dt (A7)

(c) Derivative Gain (Kd):
∂e(t)
∂Kd

= ė(t) (A8)

7. Parameter Update Laws: Applying the MIT rule, the update laws for the PID gains are as
follows:

(a) Proportional Gain (Kp):

K̇p = γe(t)e(t) = γe2(t) (A9)

(b) Integral Gain (Ki):

K̇i = γe(t)
∫

e(t)dt (A10)

(c) Derivative Gain (Kd):
K̇d = γe(t)ė(t) (A11)

Appendix B. Adaptation Law and Stability of OIAC

The feedforward force F and impedance (K, D) are online-optimized to modulate the
control input τ to the UAV (see Equation (1)). Its objective is to minimize the tracking error
e (see Equation (4)) of following curved lines. Specifically, the force (F) and impedance
(K, D) adaptations are online-tuned by minimizing task errors and maintaining control
stability [20,34]:

Jc(t) =
1
2

∫ T

0
∥vec(K̃)∥2

Qk
+ ∥vec(D̃)∥2

Qd
+ ∥F̃∥2

Q f
dσ (A12)

utilizing a linear second order impedance model [21] where ∥.∥Qk ,Qd ,Q f and vec(.) are the
weight norms and column vectorization, while maintaining control stability due to the
UAV dynamics through

Jp(t) =
∫ t

t−T
V̇(σ)dσ, V(t) =

1
2

εT(t)M(q)ε(t) (A13)

the overall minimized cost function is given by

J(t) = Jp(t) + Jc(t) (A14)

Machines 2024, 12, 868 29 of 31

a sufficient condition for the OIAC control stability is δJ ≤ 0.
Let FE(t), KE(t), and DE(t) be the expected force, stiffness, and damping matrices for

achieving stable joint motions and task adaptation:

F̃ = F − FE, K̃ = K − KE, D̃ = D − DE (A15)

combining with Equation (A12) yields

Jc(t) =
1
2

∫ t

t−T
vecT(K̃)Q−1

k vec(K̃) + vecT(D̃)Q−1
d vec(D̃) + F̃TQ−1

f F̃dσ (A16)

where Q f , Qk, and Qd are symmetric positive-definite matrices, and vec(.) stands for the
column vectorization. Now, Equations (5)–(7) can be written as

δF̃(t) = Q f [ε(t)− γ(t)F(t)] → 0, t → ∞

δK̃(t) = Qk[ε(t)eT(t)− γ(t)K(t)] → 0, t → ∞

δD̃(t) = Qd[ε(t)ėT(t)− γ(t)D(t)] → 0, t → ∞

(A17)

where all functions are unknown and periodic with T. Consider the difference between
Jc(t) (see Equation (A16)) of two consecutive periods

δJc = Jc(t)− Jc(t − T) =
1
2

∫ t

t−T
tr{K̃T(σ)Q−1

k K̃(σ)− K̃T(σ − T)Q−1
k K̃(σ − T)}

+ tr{D̃T(σ)Q−1
d D̃(σ)− D̃T(σ − T)Q−1

d D̃(σ − T)}
+ tr{F̃T(σ)Q−1

f F̃(σ)− F̃T(σ − T)Q−1
f F̃(σ − T)}dσ (A18)

where tr{.} stands for the trace of a matrix. Using the symmetry of Q−1
k and Equation (A17),

the first term of Equation (A18) can be written as,

tr{K̃T(σ)Q−1
k K̃(σ)− K̃T(σ − T)Q−1

k K̃(σ − T)}
= tr{[K̃T(σ)− K̃T(σ − T)]Q−1

k

× [2K̃T(σ)− K̃T(σ) + K̃T(σ − T)]}
= tr{δK̃T(σ)Q−1

k [2K̃T(σ)− δK̃(σ)]}
= −tr{δK̃T(σ)Q−1

k δK̃(σ}+ 2tr{δK̃T(σ)Q−1
k K̃T(σ)}

= −tr{δK̃T(σ)Q−1
k δK̃(σ}

+ 2ε(σ)K̃(σ)e(σ)− 2γ(σ)tr{K̃T(σ)K̃(σ)}

(A19)

then, similarly, the second and third terms can be

tr{D̃T(σ)Q−1
d D̃(σ)− D̃T(σ − T)Q−1

d D̃(σ − T)}
= −tr{δD̃T(σ)Q−1

d δD̃(σ}
+ 2ε(σ)D̃(σ)ė(σ)− 2γ(σ)tr{D̃T(σ)D̃(σ)}

(A20)

tr{F̃T(σ)Q−1
f F̃(σ)− F̃T(σ − T)Q−1

f F̃(σ − T)}

= −tr{δF̃T(σ)Q−1
f δF̃(σ}

+ 2ε(σ)F̃(σ)− 2γ(σ)tr{F̃T(σ)F̃(σ)}

(A21)

Machines 2024, 12, 868 30 of 31

substituting Equations (A19), (A20), and (A21) into Equation (A18),

δJc = −1
2

∫ t

t−T
δΦ̃T(σ)Q−1δΦ̃(σ)dσ

−
∫ t

t−T
γ(σ)Φ̃T(σ)Φ̃(σ)dσ

+
∫ t

t−T
ε(σ)K̃(σ)e(σ) + ε(σ)D̃(σ)ė(σ) + ε(σ)F̃(σ)dσ

(A22)

where the matrices Φ̃(t) and Q are given by

Φ̃(t) = [vec(K̃(t))T , vec(D̃(t))T , F̃(t)]T

Q = diag(I ⊗ Qk, I ⊗ Qd, Q f)
(A23)

similarly, using the skew symmetry of UAV dynamics, Equation (A15), δJp of
Equation (A13) can be written as

δJp = Jp(t)− Jp(t − T) = −
∫ t

t−T
ε(σ)K̃(σ)e(σ) + ε(σ)D̃(σ)ė(σ) + ε(σ)F̃(σ)dσ (A24)

combining Equations (A22) and (A24), the derivative δJ of Equation (A14) can be given by

δJ = J(t)− J(t − T) = δJc + δJp

= −1
2

∫ t

t−T
δΦ̃T(σ)Q−1δΦ̃(σ)dσ

−
∫ t

t−T
γ(σ)Φ̃T(σ)Φ̃(σ)dσ

(A25)

a sufficient condition for δJ ≤ 0 is that Q−1 is a positive-definite matrix and

γ(σ) > 0, Φ̃TΦ̃ ≥ 0. (A26)

the scalars a and b in γ(t) are set as

a = 1.0, b = 0.2 (A27)

References
1. Chang, W.-D.; Hwang, R.-C.; Hsieh, J.-G. A self-tuning PID control for a class of nonlinear systems based on the Lyapunov

approach. J. Process Control. 2001, 11, 1–10. [CrossRef]
2. Xiong, A.; Fan, Y. Application of a PID Controller using MRAC Techniques for Control of the DC Electromotor Drive.

In Proceedings of the 2007 International Conference on Mechatronics and Automation, Harbin, China, 5–9 August 2007;
pp. 2616–2621. [CrossRef]

3. Sahputro, S.D.; Fadilah, F.; Wicaksono, N.A.; Yusivar, F. Design and implementation of adaptive PID controller for speed control
of DC motor. In Proceedings of the 2017 15th International Conference on Quality in Research (QiR): International Symposium on
Electrical and Computer Engineering, Nusa Dua, Bali, Indonesia, 24–27 July 2017; pp. 179–183. [CrossRef]

4. Rothe, J.; Zevering, J.; Strohmeier, M.; Montenegro, S. A Modified Model Reference Adaptive Controller (M-MRAC) Using an
Updated MIT-Rule for the Altitude of a UAV. Electronics 2020, 9, 1104. [CrossRef]

5. Mareels, I.M.Y.; Anderson, B.D.O.; Bitmead, R.R.; Bodson, M.; Sastry, S.S. Revisiting the MIT Rule for Adaptive Control. In IFAC
Workshop Series, Adaptive Systems in Control and Signal Processing 1986; Åström, K.J., Wittenmark, B., Eds.; Pergamon: Oxford, UK,
1987; pp. 161–166, ISBN 9780080340852. [CrossRef]

6. Hanna, Y.; Khater, A.; El-Nagar, A.; El Bardini, M. Polynomial Recurrent Neural Network-Based Adaptive PID Controller with
Stable Learning Algorithm. Neural Process. Lett. 2022, 55, 1–26. [CrossRef]

7. Uçak, K.; Arslantürk, B. Adaptive MIMO fuzzy PID controller based on peak observer. Int. J. Optim. Control. Theor. Appl. (IJOCTA)
2023, 13, 139–150. [CrossRef]

8. Zhang, X.; Xu, X.; Xu, X.; Hou, P.; Gao, H.; Ma, F. Intelligent Adaptive PID Control for the Shaft Speed of a Marine Electric
Propulsion System Based on the Evidential Reasoning Rule. Mathematics 2023, 11, 1145. [CrossRef]

http://doi.org/10.1016/S0959-1524(01)00041-5
http://dx.doi.org/10.1109/ICMA.2007.4303969
http://dx.doi.org/10.1109/QIR.2017.8168478
http://dx.doi.org/10.3390/electronics9071104
http://dx.doi.org/10.1016/B978-0-08-034085-2.50031-6
http://dx.doi.org/10.1007/s11063-022-10989-1
http://dx.doi.org/10.11121/ijocta.2023.1247
http://dx.doi.org/10.3390/math11051145

Machines 2024, 12, 868 31 of 31

9. Maaloul, B.; Elloumi, S. Adaptive PID Controller of a Quadrotor. In Proceedings of the 2023 IEEE International Conference on
Advanced Systems and Emergent Technologies (IC_ASET), Hammamet, Tunisia, 29 April–1 May 2023; pp. 1–6. [CrossRef]

10. Gai, H.; Li, X.; Jiao, F.; Cheng, X.; Yang, X.; Zheng, G. Application of a New Model Reference Adaptive Control Based on PID
Control in CNC Machine Tools. Machines 2021, 9, 274. [CrossRef]

11. Joshi, G.; Chowdhary, G. Deep Model Reference Adaptive Control. In Proceedings of the 2019 IEEE 58th Conference on Decision
and Control (CDC), Nice, France, 11–13 December 2019; pp. 4601–4608. [CrossRef]

12. Huo, D.; Dai, L.; Chai, R.; Xue, R.; Xia, Y. Collision-Free Model Predictive Trajectory Tracking Control for UAVs in Obstacle
Environment. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 1–15. [CrossRef]

13. Pham, D.-A.; Han, S.-H. Design of Combined Neural Network and Fuzzy Logic Controller for Marine Rescue Drone Trajectory-
Tracking. J. Mar. Sci. Eng. 2022, 10, 1716. [CrossRef]

14. Jang, J.-S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685.
[CrossRef]

15. Noordin, A.; Mohd Basri, M.A.; Mohamed, Z. Adaptive PID Control via Sliding Mode for Position Tracking of Quadrotor MAV:
Simulation and Real-Time Experiment Evaluation. Aerospace 2023, 10, 512. [CrossRef]

16. Noordin, A.; Mohd Basri, M.A.; Mohamed, Z. Real-Time Implementation of an Adaptive PID Controller for the Quadrotor MAV
Embedded Flight Control System. Aerospace 2023, 10, 59. [CrossRef]

17. Xiao, M.; Liang, J.; Ji, L.; Sun, Z.; Li, Z. Aerial photography trajectory-tracking controller design for quadrotor UAV. Meas. Control.
2022, 55, 738–745. [CrossRef]

18. Zhao, Z.; Cao, D.; Yang, J.; Wang, H. High-order sliding mode observer-based trajectory tracking control for a quadrotor UAV
with uncertain dynamics. Nonlinear Dyn. 2020, 100, 1–20. [CrossRef]

19. Mechali, O.; Xu, L.; Xie, X.; Iqbal, J. Fixed-time nonlinear homogeneous sliding mode approach for robust tracking control of
multirotor aircraft: Experimental validation. J. Frankl. Inst. 2022, 359, 1971–2029. [CrossRef]

20. Burdet, E.; Ganesh, G.; Yang, C.; Albu-Schäffer, A. Interaction Force, Impedance and Trajectory Adaptation: By Humans, for
Robots. In Experimental Robotics: The 12th International Symposium on Experimental Robotics; Khatib, O., Kumar, V., Sukhatme, G.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 331–345. [CrossRef]

21. Hogan, N. On the stability of manipulators performing contact tasks. IEEE J. Robot. Autom. 1988, 4, 677–686. [CrossRef]
22. Xiong, X.; Fang, C. An Online Impedance Adaptation Controller for Decoding Skill Intelligence. Biomim. Intell. Robot. 2023,

3, 100100. [CrossRef]
23. Xiong, X.; Manoonpong, P. Adaptive Motor Control for Human-like Spatial-temporal Adaptation. In Proceedings of the 2018 IEEE

International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 2107–2112.
[CrossRef]

24. Xiong, X.; Nah, M.C.; Krotov, A.; Sternad, D. Online Impedance Adaptation Facilitates Manipulating a Whip. In Proceedings of
the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1
October 2021; pp. 9297–9302. [CrossRef]

25. Xiong, X.; Manoonpong, P. Online sensorimotor learning and adaptation for inverse dynamics control. Neural Netw. 2021, 143,
525–536. [CrossRef]

26. Kyriakopoulos, K.J.; Saridis, G.N. Minimum jerk path generation. In Proceedings of the 1988 IEEE International Conference on
Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988; Volume 1, pp. 364–369. [CrossRef]

27. Vinceslas, M. AV-Autonomous-Control. Available online: https://github.com/Mdhvince/UAV-Autonomous-control/tree/
master?tab=readme-ov-file (accessed on 3 May 2023).

28. Coppelia Robotics. 2023. Available online: https://www.coppeliarobotics.com/ (accessed on 10 October 2023).
29. Open Source Robotics Foundation. ROS 2 Humble Hawksbill. 2022. Available online: https://docs.ros.org/en/humble/index.html

(accessed on 10 October 2023).
30. Ren, J.; Miller, H.; Feigh, K.M.; Coogan, S.; Zhao, Y. LTL-D*: Incrementally Optimal Replanning for Feasible and Infeasible Tasks

in Linear Temporal Logic Specifications. arXiv 2024. [CrossRef]
31. Iqbal, U.; Samad, A.; Nissa, Z.; Iqbal, J. Embedded control system for AUTAREP—A novel autonomous articulated robotic educational

platform. Tehnički Vjesnik 2014, 21, 1255–1261. Available online: https://www.researchgate.net/publication/280641667_Embedded_
control_system_for_AUTAREP_-_A_novel_AUTonomous_Articulated_Robotic_Educational_Platform (accessed on 8 November 2024).

32. Li, X.; Qi, G.; Guo, X.; Chen, Z.; Zhao, X. Improved high order differential feedback control of quadrotor UAV based on improved
extended state observer. J. Frankl. Inst. 2022, 359, 4233–4259. [CrossRef]

33. Yang, G.; Yao, J. Multilayer neurocontrol of high-order uncertain nonlinear systems with active disturbance rejection. Int. J. Robust
Nonlinear Control. 2024, 34, 2972–2987. [CrossRef]

34. Tee, K.P.; Franklin, D.; Kawato, M.; Milner, T.; Burdet, E. Concurrent adaptation of force and impedance in the redundant muscle
system. Biol. Cybern. 2009, 102, 31–44. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/IC_ASET58101.2023.10151140
http://dx.doi.org/10.3390/machines9110274
http://dx.doi.org/10.1109/CDC40024.2019.9029173
http://dx.doi.org/10.1109/TAES.2022.3221702
http://dx.doi.org/10.3390/jmse10111716
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.3390/aerospace10060512
http://dx.doi.org/10.3390/aerospace10010059
http://dx.doi.org/10.1177/00202940221115634
http://dx.doi.org/10.1007/s11071-020-06050-2
http://dx.doi.org/10.1016/j.jfranklin.2022.01.010
http://dx.doi.org/10.1007/978-3-642-28572-1_23
http://dx.doi.org/10.1109/56.9305
http://dx.doi.org/10.1016/j.birob.2023.100100
http://dx.doi.org/10.1109/ROBIO.2018.8665222
http://dx.doi.org/10.1109/IROS51168.2021.9636663
http://dx.doi.org/10.1016/j.neunet.2021.06.029
http://dx.doi.org/10.1109/ROBOT.1988.12075
https://github.com/Mdhvince/UAV-Autonomous-control/tree/master?tab=readme-ov-file
https://github.com/Mdhvince/UAV-Autonomous-control/tree/master?tab=readme-ov-file
https://www.coppeliarobotics.com/
https://docs.ros.org/en/humble/index.html
http://dx.doi.org/10.48550/arXiv.2404.01219
https://www.researchgate.net/publication/280641667_Embedded_control_system_for_AUTAREP_-_A_novel_AUTonomous_Articulated_Robotic_Educational_Platform
https://www.researchgate.net/publication/280641667_Embedded_control_system_for_AUTAREP_-_A_novel_AUTonomous_Articulated_Robotic_Educational_Platform
http://dx.doi.org/10.1016/j.jfranklin.2022.03.019
http://dx.doi.org/10.1002/rnc.7118
http://dx.doi.org/10.1007/s00422-009-0348-z
http://www.ncbi.nlm.nih.gov/pubmed/19936778

	Introduction
	Methods
	Controllers
	OIAC
	MRAC

	Quadcopter
	Thrust Control
	Control Schema

	Path and Motion Planning
	Minimal Jerk Trajectory Planning
	Artificial Disturbances
	Performance Measurements

	Results
	Environment
	Controller Parameters
	Simulation Results: Slow Speed
	Simulation Results: Fast Speed

	Discussion
	Future Work
	Conclusions
	Appendix A
	Appendix B
	References

