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Abstract: Programming by demonstration has shown potential in reducing the technical barriers
to teaching complex skills to robots. Dynamic motion primitives (DMPs) are an efficient method of
learning trajectories from individual demonstrations using second-order dynamic equations. They
can be expanded using neural networks to learn longer and more complex skills. However, the
length and complexity of a skill may come with trade-offs in terms of accuracy, the time required by
experts, and task flexibility. This paper compares neural DMPs that learn from a full demonstration
to those that learn from simpler sub-tasks for a pouring scenario in a framework that requires few
demonstrations. While both methods were successful in completing the task, we find that the models
trained using sub-tasks are more accurate and have more task flexibility but can require a larger
investment from the human expert.

Keywords: learning from demonstrations; robot manipulator; machine learning; neural dynamic
motion primitives

1. Introduction

Robotic manipulators have the potential for many benefits in our society. They have
been applied in many settings to increase productivity by automating repetitive tasks,
improving efficiency, increasing safety, and enhancing reliability [1,2]. Recently, there has
been increased research into using robotic manipulators in complex environments with
high degrees of uncertainty and requiring a high level of expertise, such as in medical ap-
plications [3–5] and maintenance settings [6,7]. These new applications of robotics increase
the need for programming interfaces that can be quickly customized and programmed to
complete different tasks to suit the needs of the expery without relying on programming
and robotics expertise.

Learning from demonstration, also known as behavioral cloning or imitation learning,
is a supervised machine learning technique designed to be a more intuitive and flexible
method of robot programming [8] that can also be used to transfer skills from users who are
not experts in programming or robotics. Instead of designing specific control architectures,
learning from demonstration frameworks allows users who are experts in the desired tasks
to interact directly with robots to transfer skills. Demonstrations performed by one or more
experts are collected by the system and are used to generate a model of how the task should
be completed. This model can then be used to complete the same task and potentially
generalize to variations in the task or environment. The ability to learn from demonstration
frameworks to be utilized by non-programmers allows them to be an important step toward
the flexible programming of robotic manipulators.

Dynamic motion primitives (DMPs) are a learning-from-demonstration method and
represent trajectories using second-order dynamic systems [9]. They have several charac-
teristics that make them attractive for learning from demonstrations in robotics, including
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stability guarantees, learning from a single demonstration, and the capability for general-
ization. They are a flexible framework that can be formulated in different task spaces, such
as joint space or Cartesian space, making them suitable for various purposes. They can also
learn from a single demonstration, which can reduce the time and resources required to
collect training data.

DMPs can be combined with neural networks to extend the functionality of DMPs
by forming what is known as neural DMPs [10]. This allows for further generalization of
DMPs through training from multiple demonstrations. However, this can come at the cost
of requiring more investment into the demonstration collection process, which can be time-
consuming and expensive, as experts are required for very specialized tasks. Additionally,
leveraging the function approximation capabilities of neural networks, neural DMPs can
increase the complexity and duration of tasks that can be modeled. This presents the option
of learning from a full demonstration instead of dividing it into sub-tasks, eliminating the
need for experts to process and divide the demonstrations once they have been collected.

1.1. Motivation

A common approach used when programming robots for tasks, including for learning
from demonstration, is to break down tasks into sub-tasks. Segmenting tasks in this manner
has several advantages, such as reducing the complexity where modeling is required
and some flexibility to combine motions in different orders, and it can be very effective
in controlled and well-structured environments such as manufacturing [8]. However,
decomposing tasks can introduce challenges in current DMP-based controllers, such as
requiring a carefully designed framework to combine the sub-tasks, which may need to
be modified for changes in the task and require a larger time investment into collecting
and processing demonstrations. As such, the systems are still reliant on individuals with
robotics and programming expertise, particularly when the system may need to be retrained
quickly and often for specific tasks such as in medical and maintenance applications. This
limits their usefulness and customization to the user’s specific needs. As such, this paper
aims to compare the use of DMPs when using demonstrations of complete tasks to DMPs
using demonstrations of individual sub-tasks, with the goal of reducing the necessary
technical expertise and resource investment required for programming from demonstration.

Decreasing the reliance on expert programmers and roboticists when teaching new
skills is one step toward reducing the barrier to entry for robotic systems for widespread
use. Leveraging neural DMPs is one avenue of learning sequences of tasks from com-
plete demonstrations to create a programming interface for robot manipulators. This will
allow experts to provide demonstrations in applications such as leg positioning during
rehabilitation, or machinery repairing sequences, which can then be transferred to a robot
manipulator without modifying the underlying framework. However, while this can result
in a faster transfer of skills, it may come with trade-offs when compared to a segmented
approach. Comparisons between learning from full and segmented approaches have not
been thoroughly addressed in current research.

Collecting a sufficient number of high-quality demonstrations is another challenge
to be overcome to increase the prevalence of learning from demonstration for robotics.
The lack of available demonstrations is more prevalent in tasks that occur infrequently
or that may occur in dangerous locations, such as deep sea welding or maintenance tasks
in outer space. The number of training samples varies between different learning meth-
ods, meaning methods that are effective with few samples can reduce the time and effort
required during data collection. Synthetically generated data have also been used to
train models for certain tasks [11], although this is limited by the ability to simulate the
completion of the objective and can often negate the modeling benefits obtained from learn-
ing by demonstration. Data augmentation can also be used to circumvent this challenge
by increasing both the number and variety of samples in the datasets [12].
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1.2. Contributions

In this paper, we demonstrate the ability of neural DMPs to learn a skill with few
human demonstrations and compare it to a model that has learned from demonstrations
split into sub-tasks, as traditionally performed in DMPs. The trade-offs in accuracy, along
with other important factors such as the amount of input required from human experts
and the potential task flexibility capabilities between the two models, are then analyzed.
To assess these trade-offs quantitatively and qualitatively, we utilize neural DMPs with
a simple yet nontrivial task—pouring water into a glass. We perform the learning both
from a full demonstration and by segmenting the demonstration into sub-tasks; then, we
compare them in terms of the required human input, accuracy, and potential for flexibility.
The main contributions are as follows:

• We demonstrate that neural DMPs can be used to learn a task made up of multiple
sub-tasks from full demonstrations (unsegmented).

• We compare the accuracy of neural DMP models trained using full demonstrations to
those trained using simpler sub-tasks and examine key trade-offs between the models
trained using full demonstrations to those trained using simpler sub-tasks.

• We demonstrate the ability of neural DMP models to learn from a dataset that requires
minimal human demonstrations to generalize for a pouring task.

The remainder of this paper is structured as follows. Section 2 explores the related
works and knowledge gaps. Next, Section 3 describes the theoretical foundation and
training methods for DMPs. Section 4 outlines the process used to collect demonstrations
to form the dataset, and Section 5 presents the results after training the models and imple-
menting them on the robot. Section 6 discusses the results, and Section 7 summarizes the
conclusions and presents potential future directions.

2. Related Works

Dynamic motion primitives (DMPs) are a versatile method of learning from demonstration
that represents trajectories using second-order dynamical systems [13]. They are composed
of a set of basis functions, learned weights, and attractor dynamics, allowing a model to
be trained from a single demonstration. DMPs have been formulated for both joint space
and Cartesian space and have been augmented to incorporate environmental feedback and
external stimuli [14]. They are a proven method of effective learning from demonstrations,
but they can have certain drawbacks, such as only learning from a single demonstration,
which can limit the ability to generalize.

While traditional DMPs are formulated for joint or Cartesian position control, for-
mulations for both quaternion [15] and rotation-matrix-based orientations [16], as well
as combined positions and orientation for Cartesian spaces [17,18], have been developed.
Joint-space DMPs tend to be popular when recording robot joint states during demon-
strations, such as for kinesthetic teaching or teleoperation-based interfaces [19]. While
joint-space DMPs can be used with passive observations, this often requires overcoming the
correspondence problem or mapping human joints to robot joint space (retargeting), which
can be challenging due to different kinesthetic makeups and redundancies [20]. As such,
position, orientation, and Cartesian space DMPs are popular when humans perform the
demonstrations independently of the robot. Additionally, DMPs can represent point-to-
point motions or periodic motions or even have goals with a non-zero velocity [14]. While
each method is rooted in similar theoretical formulations, selecting the correct DMP for a
particular task representation is crucial. In this paper, demonstrations were collected using
passive observation; therefore, Cartesian DMPs were selected to control the position and
orientation of the end effector in completing the task. Point-to-point DMPs were selected as
the demonstrations, and segmented demonstrations had zero starting and ending velocities
and accelerations.
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While modifications to adapt to uncertain environments serve to improve the ro-
bustness of DMPs, applying them to more complex tasks requires additional strategies.
Integrating via-points into the DMP formulation allows further control when specific and
known points in a trajectory are critical for task execution. These can be incorporated based
on knowledge of the desired trajectory [21] and have also been implemented at run time for
dynamic obstacle avoidance or changing environmental factors [22]. However, it should be
noted that even with via points, the amount to which a motion primitive can be adapted
to meet the constrained point in the trajectory is limited [21]. Further control over tasks
with multiple distinct steps can be obtained by training and executing multiple consecutive
DMPs, which is a common strategy [17,23]. While the segmentation can be performed
autonomously, typically using zero velocity crossing [24], this can require human oversight,
which can become more difficult to obtain when highly trained experts are required. When
combined with a higher-level planner that selects from a library of primitives [25,26], this
can provide further task generalization and adaptability. However, the system is still
limited to the primitives that it has and requires the processing of environmental data to
select the correct primitive.

Adding more control to DMPs through via points and DMP chaining introduces addi-
tional control for tasks but requires more effort to implement and train. Sidiropoulos and
Doulgeri [22] utilize via points in real time, but this requires monitoring the environment
for obstacles or changes in the environment that are known to impact the current task.
Similarly, static via points require known points critical to the trajectory, which need to be
selected in some manner [21]. While DMP chaining can be performed through velocity
zero-crossing [24], it may still require human oversight to correct segmentation or when
specific augmentations are required. These techniques reintroduce task knowledge hand-
crafted human inputs, albeit to a lesser extent, which are preferably to be avoided when
using learning from demonstration.

A key feature of DMPs is that they learn from a single demonstration, which pro-
vides both advantages and disadvantages. Data-driven models that do not require large
amounts of data are useful in machine learning to reduce the time and effort required to
collect datasets. In robotics, particularly for techniques that collect demonstrations from
the robot, the ability to learn from small datasets is even more advantageous as it can
reduce the physical wear on the system. However, it is often desirable to learn using
multiple demonstrations to integrate characteristics of different experts and generalize
over tasks. As such, different methods have been explored to allow DMPs to learn from
multiple demonstrations.

A variety of techniques have been used to train DMPs from multiple demonstrations.
Early methods have explored adding an additional term to the DMP known as the style
parameter [27]. Other approaches focus on training multiple DMPs and finding locally
optimal solutions through quadratic optimization [28,29]; however, these methods tend
not to scale efficiently, as training and storing DMPs for each demonstration is required.
A combination of Gaussian mixture models (GMMs) and Gaussian mixture regression
(GMR) [30] has also been used to train DMPs for multiple demonstrations, including
demonstrations of correct and incorrect behaviors [31]. Using DMPs along with a learned
cost function in model predictive control (MPC) has also been used [32] and has been
shown to scale more efficiently with the number of demonstrations. Linear regression
has also been used to learn unique weights throughout a task space based on multiple
demonstrations [33].

Currently, neural networks are a popular method being used to generalize over
multiple demonstrations [10]. Often referred to as neural DMPs, this technique uses a
neural network to approximate the weights of a DMP using environmental factors as inputs
and using trajectory representation characteristics of the DMPs. End-to-end policies, which
take images of the environments, have been developed to avoid hand-crafted features [11].
Neural DMPs for orientation are less common but have been investigated [18], and the
weights are learned by comparing the forcing functions. Different types of neural networks,
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including traditional networks and recurrent neural networks (RNNs) [34], as well as
convolutional neural networks (CNNs) [35], have been used.

Different loss functions have been used while learning the weights for DMPs from
neural networks. When this is performed, it must be differentiable with respect to the
desired outputs, generally the weights and desired goal position, to ensure that back-
propagation can occur in the network. The forcing functions from the learned model and
the demonstrations have been used to generate the loss function and neural network weight
updates for both position and orientation representations [18]. Another method computes
the loss function for training a position of neural DMP by comparing the output trajectory
to the demonstration, as opposed to comparing the weights, which do not have a physical
meaning [36], and is found to increase the performance of the networks. Auto-encoders
have also been used to learn latent space representations of tasks for motion generation [37],
so they are also able to compare reconstructed trajectories to demonstrations. For this
system, the loss function for the position was determined by comparing the demonstration
trajectory and the modeled trajectory as in [36], while the orientation loss function compared
the learned and modeled forcing function as in [18].

While the use of DMPs has been common in robotics, limited research has explored
the use of neural DMPs to learn longer sequences of tasks from a single demonstration.
This paper aims to fill this gap by first developing a neural DMP model trained from a
single demonstration and then comparing it to one trained from segmented demonstrations.
The comparison is performed in terms of task precision, the additional time required to
process demonstrations, and the potential for flexibility within the framework.

3. Methodology
3.1. Dynamic Motion Primitives

Equations (1) and (2) show the transformation system and auxiliary variable for
the classical formulation for DMPs [14]. Together, these form a second-order differential
equation that defines the shape of a trajectory while ensuring convergence to the goal.

τż = αz(βz(g − y)− z) + f (x) (1)

τẏ = z, (2)

where τ is the time scaling factor, g is the final goal point, y is the trajectory variable, and z
is the auxiliary variable as formulated in [14]. The variables αz and βz are hyper-parameters
that create a critically damped system when αz = 4βz. The variable x is the canonical
variable that makes the transformation system independent of time through the canonical
system given by Equation (3). This allows for easier deployment, analysis, and control over
the properties of the DMP. The forcing term f (x) defines the shape of the trajectory between
the initial position and the goal through a set of weights learned from a demonstration and
a corresponding set of basis functions, and its formulation is shown in Equation (4).

τẋ = −αxx, (3)

The canonical system shown in Equation (3) is an exponential function described by
the parameter αx. Equation (4) shows the forcing term.

f (x) =
∑N

i=1 ωiψi(x)

∑N
i=1 ψi(x)

x (4)

It is composed of a set of Gaussian basis functions ψ(x) and learned weights ωi, where
N is the number of basis functions used. The basis functions are given by

ψi(x) = exp(−hi(x − ci)
2), (5)
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where each ci represents the center of a Gaussian basis function and hi controls its width.
When τ is set to the duration of the demonstration, and N is known, the centers of the
basis functions can be distributed according to the following equations.

ci = exp(
αx(i − 1)

N − 1
) (6)

hi =
1

(ci+1 − ci)2 , hN = hN−1 (7)

To represent trajectories in multiple dimensions, multiple DMPs can be used and
synchronized through a common canonical system. The weights are typically learned
through a Locally Weighted Regression (LWR) from a single demonstration [38].

3.2. Orientation Dynamic Motion Primitives

The quaternion formulation for orientation DMPs [37] is used in this framework
and was selected to have a method of representing orientations without singularities.
Additionally, it only uses four parameters, as opposed to the nine required for rotation
matrices [16]. The formulation is briefly described here, with a quaternion represented by a
vector q = w + u ∈ S3, where w is the real component and u ∈ R3 are the imaginary com-
ponents. Equations (8) and (9) show the transformational system for the quaternion DMP.

τη̇ = αz(βz2Logq(g ∗ q̄)− η) + f q(x) (8)

τq̇ =
1
2

η ∗ q (9)

Here, η̇ ∈ R3 represents the scaled angular velocity, q̇ ∈ R4 is the quaternion derivative,
q̄ is the quaternion conjugate, and αz and βz are parameters to tune the DMP. The ∗
operation represents a quaternion multiplication, and the quaternion logarithm Logq(·) is
shown in Equation (10), in which || · || is the l2 norm of a vector.

Logq(q) =

{
arccos(w) u

||u|| , u ̸= 0

[0 0 0]T , otherwise
(10)

The quaternion DMP uses the same canonical function, forcing term, and basis function
center and width equations shown in Equations (3), (4), (6) and (7), respectively. As with
classical DMPs, LWR is often used to learn the weights of the forcing term.

3.3. Neural Dynamic Motion Primitives

Neural networks that use the Euclidean distance between the trajectory and the
predicted trajectory have been shown have a higher performance than with the loss function
based on forcing terms [36]. The parameters have been shown to be differentiable with
respect to the loss, allowing for the use of backpropagation [11,36]. As such, the network is
trained by predicting a set of parameters for the DMP and then simulating the resulting
output trajectory through numerical integration. The loss is then calculated based on the
difference between the predicted and demonstrated trajectories, as shown in Equation (11).

Lposition,j =
1
Tj

Tj

∑
i=1

||y(xi,j)
DMP
j − ydemo

i,j || (11)

Tj is the number of points in the jth sample, and y(xi,j)
DMP ∈ R3 and ydemo

i,j ∈ R3 are
the Cartesian position predicted by the DMP and from the demonstration, respectively.
One drawback of this method is that the required numerical integration at each step can
reduce training speeds.
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Research regarding the formulations of loss functions directly from trajectories for
quaternion neural DMPs is limited, and developing such a method is beyond the scope
of this paper. As such, the loss function of neural DMPs for orientation involves learning
the parameters of the DMP to approximate the forcing term. It has been shown that the
weights of DMPs can be attained using a gradient descent approach on demonstration
data [18]. Similarly to the position model, the method used in this paper uses a neural
network to predict the basis function weights and goal orientation. However, as opposed
to predicting the orientation, the forcing term is predicted and used in the loss function, as
shown in Equation (12).

Lorientation,j =||qNN
g,j − qg,j||+

(
1
Tj

Tj

∑
i=1

|| f (xi,j)
NN − f (xi,j)||)

(12)

where qNN
g,j and qg,j are the predicted and actual final orientations, f (xi,j)

NN is the forcing
term generated using the predicted DMP weights, and f (xi,j) is the forcing term generated
using weights learned from LWR. Using the L2 norm for the loss function for the forcing
terms is in line with previous quaternion-orientation DMPs [17]. While the two terms
in Equation (12) have different units (quaternions vs. forcing function values), the loss
function can be weighted, and the conversion factors can be absorbed into those weights.
Weights of 1 were used during training, so they were not included in the formulation of
the loss function. Methods for directly comparing the quaternion trajectories in the loss
function are not extensively researched, and developing this method is beyond the scope of
this paper.

3.4. Chaining Consecutive DMPs

The transition between consecutive motion primitives for robotic systems requires
care to ensure the output accurately represents a coherent task and is within the physical
constraints of the robot. As such, two main concerns when chaining multiple dynamic
motion primitives are ensuring a smooth transition between consecutive primitives and
guaranteeing that each primitive has been completed before proceeding to the next [14,23].
This is achieved through a combination of analyzing the output of the DMP, as well as its
first and second derivatives to ensure a smooth transition, and monitoring the canonical
system of the DMP to track completeness.

The classical formulation of DMPs imposes several constraints that can be leveraged
when chaining consecutive DMPs. Namely, the standard formulations of position and
orientation DMPs represent trajectories with first and second derivatives of zero at the
start and end of the trajectory. As such, if these formulations are used, as is the case for
this system, a DMP can be started when the velocity of the previous DMP has dropped
below a threshold and sufficient time has passed to allow the DMP to progress through
its full learned motion. Other DMP formulations that allow for starting and stopping
with non-zero velocities [14,17], but were not required for the given task. Continuity in
the position of the primitives can be ensured by initializing each new DMP with the final
position reached by the previous primitive.

The canonical system can be used to track the completion of the DMP. With the time
scaling properties inherent in DMPs, the canonical variable will decay relative to the
progression of the trajectory and independently of the passing of time [9]. As such, the final
value of the canonical value can be calculated given the length of the demonstration and
the learned trajectory, and this value can then be used to check for the completion of the
primitive regardless of what time scaling has been applied to the primitive.
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3.5. Robot Control

An overview of the entire framework, including the execution on a physical robot,
can be seen in Figure 1. This demonstrates the process by which the input features are
transformed by the neural networks to generate DMP parameters based on the current
environment and used to create Cartesian trajectories. The Cartesian space trajectory was
converted into joint space using the Rigid Body Dynamics Library (RBDL) [39] and used to
command the robot via joint impedance control (this was chosen for this paper, but different
control modalities may also be employed). The joint impedance controller for the robot was
a standard PD joint impedance controller with compensation for gravity and Coriolis forces.

Figure 1. Control structure overview, showing the transformation of the input features through the
position and orientation neural networks to predict the weight and goal parameters of their respective
DMPs, which then generate trajectories. Inverse kinematics generate a joint position trajectory from
the Cartesian trajectory, which the robot follows using a joint impedance controller.

3.6. Using Cross Validation for Reduced Overfitting

The hyperparameter selection for the models was performed using a k-fold cross-
validation. For each fold, the validation data set was separated from the training data set
by removing all trajectories from specific configurations. The specifics of the configurations
and how they were separated for each fold are further described in Section 4. A model was
then trained on a subset of configurations and validated using the remaining configurations.
The training and validation losses used for the evaluation of the models were average
across all folds. The number of epochs for which the model was trained was included in
the hyperparameters and was used to train the final model. The process of separating the
demonstrations for this project is further discussed in Section 4.2.

Originally, samples were selected at random to be removed from the training data sets
to be added to the validation data sets. However, it was found that while the training and
validation sets appeared to have similar errors, the test set with completely new trajectories
performed significantly worse. As such, the validation set and training strategy were
modified to better select hyperparameters that could generalize to new inputs.

Once the hyperparameters and number of epochs had been identified, the final model
was trained using the full set of training data. This combined all the configurations in the
training set to utilize all available data and increase the models’ ability to generalize. The fi-
nal model was trained for a number of epochs found while training the cross-validation
models to prevent overfitting.

3.7. Hyperparameter Tuning

To improve the efficiency of the model training process, the hyperparameter tuner
Ray Tune [40] was used. This allowed for the definition of search spaces, and the built-in
Asynchronus Hyperband Scheduler was used. This terminated underperforming models
early, allowing for the testing of more configurations. It also allowed for the implementation
of early stopping, which analyzed the validation metric over several epochs and terminated
the model once the change in loss dropped below a specific threshold. The hyperparameter
tuner evaluated models based on the average validation loss over a model trained on each
of the folds.



Machines 2024, 12, 872 9 of 25

A variety of parameters were tuned using the hyperparameter tuner. In addition to the
number of epochs, the number of layers and layer sizes, learning rate, and other optimizer
parameters such as weight decay were tuned. Due to the difference in formulations of the
loss function, some parameters, such as the β parameter in the DMP and the number of
basis functions, were only tunable by the hyperparameter tuner for the position model.
This was tuned manually during dataset, creating the orientation models. Additional
parameters, including the standard deviation and the number of previous epochs used to
check for early stopping, were selected through trial and error.

4. Demonstration Collection

Demonstrations were collected using the Xsens Awinda motion capture suit and soft-
ware (https://www.movella.com/products/xsens (accessed on 30 September 2024)), which
uses Inertial Measurement Unit (IMU) data to estimate human poses [41] at 60 frames per
second. The sensors are worn by the demonstrator, which is shown in Figure 2. The Carte-
sian position and orientations were extracted by the Xsens Awinda software relative to
a coordinate frame set during the calibration of the sensors. A rotational transformation
was required to convert and align the axes of the hand from the Xsens IMUs from data
collection to the robot end effector. This was implemented using rotations from the Scipy
version 1.13.0 Python Library [42] through Euler angle rotations.

Figure 2. The front (left) and back (right) of how the Xsens Awinda IMU motion capture sensors are
worn by the demonstrator.

Demonstrations for the training set were collected from four demonstrators, each of
which performed a pouring action in eight different configurations, shown in Figure 3a,
for three different amounts of water. For each demonstrator, this took approximately half an
hour, including the setup, calibration, and explanation of the demonstrations, resulting in a
total demonstration collection time of 2 h. Figure 4 depicts an actual demonstration data
collection session. The water levels were measured using weights, which had the following
values: 799 g, 522 g, and 273 g. One participant collected demonstrations from an additional
four configurations shown in Figure 3b and an additional two water levels of 397.5 g and
660.5 g to be used as a testing set. All our experiments received ethical approval from
the University of Waterloo Human Research Ethics Board at the University of Waterloo,
Ontario, Canada. Before the experiment, participants received proper information and
gave informed consent to participate in the study.

https://www.movella.com/products/xsens
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One demonstration consisted of the demonstrator starting with their hands at their
sides, reaching for the pouring container, pouring into the goal container until they judged
it to be full (as only the 273 g level could be entirely poured into the goal container) or
the pouring container was empty, returning the pouring container to its original location,
and returning their hand to their side. The demonstrators were also told to grip the
container in a specific region that was suitable for a robot gripper to grasp. While it was
not a specific exclusion criterion, each of the demonstrators was right-handed and used
their dominant hand to pour. The position of the pouring container was varied around the
goal container, as seen in Figure 3a,b, where the goal position is shown as a circle, while the
pouring container positions are shown as rectangles.

(a) (b)

Figure 3. Configurations with pouring container locations as rectangles and the goal container as
a circle. (a) Configurations used to collect demonstrations for training. (b) Configurations used to
collect demonstrations for testing.

Figure 4. A demonstrator performing a pouring task (left) and a robot performing the learned
pouring task (right).
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The trajectories were resampled using cubic splines to ensure consistent numbers of
data points. The orientation trajectories of the demonstrator’s pouring hand were used
to learn a forcing function with LWR to create the labels for the orientation model, while
the position trajectory of the demonstrator was used directly as the label for the position
model. The implementation of a full vision system was beyond the scope of this project,
as the same system would be added to frameworks using the full and segmented demon-
strations and would not meaningfully impact the comparison. Additionally, the input
features for the models consisted of elements that could feasibly be extracted from image
feature extractors. As such, features manually extracted from the demonstrations and
environment configuration were used. They included the starting position and orientation
of the demonstrator’s hand, the Cartesian position of the pouring container, and the goal
container, and the water level normalized to between 0 (empty) and 1 (largest water level).
The inputs also included the position difference between the pouring container and the
goal container, as well as between the starting hand position and the pouring container in
each Cartesian axis.

The collected demonstrations were segmented into three sub-tasks to train one set of
DMPs for the pouring task. The first segment included reaching for the container with water
and required the end effector to navigate the environment, avoiding the goal container.
The second segment began when the manipulator grasped the container and consisted
of transporting the container to the goal container, pouring the water, and returning the
container to its original location. This segment required the associated DMP to capture
the pouring motion, including factors such as the angle at which the pouring container is
tilted and the location of the end effector to successfully pour into the receiving container,
while also navigating the environment to avoid collisions with the goal container. The final
segment started after the pouring container had been released and required the manipulator
to return to its initial position without colliding with any containers.

The segmentation points for this task were selected to best align with the input features
and to best suit the DMP formulation. Each section was aligned with the available inputs
to the system, with each segment beginning and ending at one of the locations specified in
the input vector. The first segment, reaching for the pouring container, began at the initial
position and ended at the specified position of the pouring container. The third segment,
returning from the pouring container to the initial position, used the same two positions
but in opposite order. The second segment started and ended at the initial position of
the pouring container. Breaking the task into segments with defined starting and ending
points based on information from the environment helped ensure the neural DMP had the
necessary inputs required to learn the desired trajectories. These points also represented
points of low velocity in the demonstrations, which helped with the segmentation process
and was compatible with the standard formulation of DMPs.

The data were segmented through a combination of automated analysis and manual
point selection. After applying a low-pass filter to the demonstration, the Cartesian velocity
of the demonstrator’s pouring hand was used as an input for the data segmentation. The ve-
locity components were combined to find the magnitude of the velocity and were input into
the SciPy peak detection algorithm [42], which identified key points in the velocity profiles.
The key points were used to define segmentation candidates, which were presented to the
human supervisor. The human supervisor then used their experience and task knowledge
to approve the suggested segmentation points or select new and appropriate segmentation
points. Every demonstration of the same segment was normalized to be completed in a
fixed time.
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4.1. Dataset Formulation and Augmentation

The training datasets for the position and orientation models are described in this
section. The position dataset was formulated as follows:

{uj, ydemo
j }M

j=1 (13)

where uj ∈ RK is a vector of input features with K features, ydemo
j ∈ RTj×3 values are the

Cartesian position trajectories, and M is the number of training pairs. The input vector
remains the same as the position dataset; however, the output consists of two components,
as shown in Equation (14).

{uj, ( f demo
j , qg,j)}

M
j=1 (14)

where f demo
j ∈ RTj×3 are terms for each of the three dimensions used for the quaternion

DMP formulation calculated using LWR. qg,j is the final orientation in the form of a
quaternion and was added to the dataset so the neural DMP could learn the goal orientation
as well as the weights and used during the simulation of the DMP.

To reduce the over-fitting caused by the exposure of the model to repeated identical
input values, a small random deviation was added to each of the environment parameters
that made up the inputs. This included the position of the goal container and pouring
container, along with the initial position and orientation of the demonstrator’s pouring
hand. The deviation was sampled from a normal distribution and served to ensure the
model could generalize to different starting and environment parameters.

4.2. Training and Validation Sets for Cross Fold Validation

With the augmented datasets collected, the training and validation datasets for the
training process described in Section 3.6 were created. For this task, the training dataset
was split into four folds, with each fold removing two configurations for the validation set
and the remaining six configurations were used for training. The configurations removed
for each fold were selected to be far from each other to ensure the model’s training samples
were still distributed across the workspace. This resulted in the following pairing of
configurations to remove for each fold, with the configuration number denoted with a
capital letter “C” followed by the location of the starting container given by Figure 3a.

• Fold 1: C1 and C8 used for validation;
• Fold 3: C2 and C5 used for validation;
• Fold 3: C3 and C6 used for validation;
• Fold 4: C4 and C7 used for validation.

The datasets were created from the augmented dataset, and the number of samples in
the training and validation sets for each fold can be seen in Table 1. For the remainder of
the paper, “C” followed by a number indicates a training/validation configuration, and “V”
followed by a number indicates a testing configuration, with the number corresponding to
the configurations in Figure 3a and 3b, respectively. “L” followed by a number indicates
the water level described earlier in this section, with levels 1–3 indicating the levels in the
training set from least to most and levels 4–5 indicating the levels in the test data set from
least to most.

Table 1. Number of samples in each dataset before and after augmentation.

Dataset Sample Before Augmentation Samples After Augmentation

Full Train 96 4704
Full Test 8 392

Fold Train 72 3528
Fold Validation 24 1176
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5. Results

This section presents the results of the models trained from the full demonstrations and
from the models trained using the segmented demonstrations. First, it presents the losses
from the complete datasets, followed by an analysis of the individual trajectories. It also
demonstrates the implementation of the pouring task on the physical robot manipulator.

5.1. Model Losses

The average losses from the position models are presented in Table 2, and the av-
erage losses from the orientation models are presented in Table 3. Both of these tables
show the average losses for each of the models, including the model learned from the
full demonstrations and the models learned from each of the segments. The average
over the entire trajectory of the segmented models, weighted by the length of each seg-
ment, is also presented as a method of evaluating the loss over the full trajectory for the
segmented models.

The loss for the position models was calculated using the Euclidean distance between
the predicted and demonstrated trajectories, while the logarithmic mapping shown in
Equation (10) was used to measure the distance between the demonstrated and predicted
orientation quaternion trajectories. The losses were averaged over each trajectory and then
over the full dataset.

Table 2. Training, validation, and testing losses for each of the position models and the average loss
across all segments weighted by segment lengths. Cross-validation losses are averaged across each
fold shown in Table A1 in Appendix A.1.

Position

Cross Validation Full

Model Avg. Train Avg. Val. Train Test

Full 0.00142 0.00239 0.00123 0.00289
Segment 1 0.00112 0.00127 0.00104 0.00139
Segment 2 0.000903 0.00155 0.000866 0.000904
Segment 3 0.00133 0.00153 0.00129 0.00151

Avg. Segments 0.00106 0.00148 0.00102 0.00118

Table 3. Training, validation, and testing losses for each of the orientation models of the average loss
across all segments weighted by segment lengths. Cross-validation losses are averaged across each
fold shown in Table A2 in Appendix A.1.

Orientation

Cross Validation Full

Model Avg. Train Avg. Val. Train Test

Full 0.415 0.459 0.404 0.463
Segment 1 0.399 0.455 0.367 0.447
Segment 2 0.441 0.536 0.329 0.456
Segment 3 0.322 0.406 0.300 0.335

Avg. Segments 0.401 0.484 0.332 0.424

The average losses for each of the models were larger for the test set than for the train-
ing set, including during the cross-validation. Additionally, by comparing the weighted
average loss of the segmented models to the full model, we can see that the segmented
version has a lower average loss, indicating a high accuracy.
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5.2. Model Trained on Full Demonstrations

The position and orientation models trained on the full demonstrations used the
parameters shown in Table 4. Each neural network was composed of three dense layers,
and the number of epochs was 40 epochs for the position model and 7 epochs for the
orientation model. Rectified linear unit (ReLU) activation functions were used following
each layer in each of the networks.

Table 4. Model parameters for the position and orientation neural DMPs trained on the
full demonstrations.

Parameter Position Orientation

number of layers 3 3
layer sizes 300, 200, 300 700, 400, 300

β 25 25
epochs 40 7

number of basis functions 50 50

5.2.1. Training Set Performance

The three configurations of the pouring and receiving container selected from the
training set for visualization each had a different water level and were selected to analyze
the recall of the models. The Cartesian components of the position trajectories from the
demonstrations and the corresponding position trajectories generated from the neural DMP
for the selected samples are shown in Figure 5. The corresponding quaternion orientation
trajectories from the demonstrations and the predicted orientation trajectories from the
neural DMP are shown in Figure 6. In both cases, the demonstrated trajectory components
are shown by a solid black line, while the predicted trajectory components are shown with
a dashed red line.

Figure 5. Trajectory components of the demonstrated position and the position predicted by the
neural DMP for the model trained using the full demonstrations for samples from the training dataset.
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Figure 6. Trajectory components of the demonstrated orientation and the orientation predicted by the
neural DMP for the model trained using the full demonstrations for samples from the training dataset.

From the selected trajectories, we can see the neural DMPs that used the full demon-
strations while training are able to recall the shape of trajectories from the training set.
They are able to reproduce the shape of the demonstrations. However, there appears to be
more error near the end of the demonstrations in both the position and orientation plots in
Figures 5 and 6.

5.2.2. Testing Set Performance

The two configurations of the pouring and receiving containers selected from the
testing dataset had different water levels and were selected to assess the generalization
capabilities of the models. The Cartesian components of the position trajectories from the
demonstrations and the corresponding position trajectories generated from the neural DMP
for the selected samples are shown in Figure 7. The corresponding quaternion orientation
trajectories from the demonstrations and the predicted orientation trajectories from the
neural DMP are shown in Figure 8. As with the training set, the demonstrated trajectory
components are shown by a solid black line, while the predicted trajectory components are
shown with a dashed red line for both figures.

Figures 7 and 8 show that while the models trained from the full demonstrations are
able to maintain the general shape of the demonstrations of an expert, there is increased
error compared to the demonstrations from the training set. This is expected to a certain
extent as a byproduct of neural networks, which are not able to generalize perfectly,
and is also found in other works on neural DMPs [43]. However, this is also likely a
result of the neural networks learning from multiple demonstrators. By incorporating
demonstrations from multiple humans, the neural network should learn the common
elements between the demonstrators. As such, it may cause the models to miss some
elements from single demonstrators when generalizing, as it has learned the commonalities
across all the demonstrators, which could account for some of the errors. Despite the
increased error, examining these two plots shows the key movements stay aligned in time
with the demonstrations. This shows that while the movements may not be exactly the
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same as the demonstrator, they maintain similar elements at similar times and maintain
the structure of the underlying task. As such, this shows that the models have learned
key features of the task, and the errors may be explained by learning the commonalities
between demonstrators instead of replicating a single demonstrator.

Figure 7. Trajectory components of the demonstrated position and the position predicted by the
neural DMP for the model trained using the full demonstrations for samples from the test data set.

Figure 8. Trajectory components of the demonstrated orientation and the orientation predicted by the
neural DMP for the model trained using the full demonstrations for samples from the test data set.

5.3. Model Trained on Segmented Demonstrations

The same configurations and water levels were selected for the segmented models as
were selected for the models trained on the full demonstrations, allowing for a comparison
between the two methods. As such, three samples and configurations were selected from
the training set, and two configurations were selected from the testing set. The parameters
for each position segment model are presented in Table 5, and the parameters for each
orientation segment model are presented in Table 6. The models were composed of fully
connected layers. It can be seen that for both the position and orientation models, the first
and third segments tend to have simpler models than the second in terms of the number of
layers, the number of nodes per layer, and the number of basis functions. This is because
they represent the more basic motions of reaching for the container and returning to the
original manipulator position, while segment 1 represents a more complex motion that
requires the actual pouring of the liquid. ReLU activation functions were used following
each layer in each of the networks.



Machines 2024, 12, 872 17 of 25

Table 5. Model parameters for the position of neural DMPs trained on the segmented demonstrations
for each segment.

Position Models
Parameter Seg. 1 Seg. 2 Seg. 3

number of layers 1 1 1
layer sizes 230 340 140

β 20 20 20
epochs 14 14 12

number of basis
functions 20 40 15

Table 6. Model parameters for the orientation of neural DMPs trained on the segmented demonstra-
tions for each segment.

Orientation Models

Parameter Seg. 1 Seg. 2 Seg. 3

number of layers 2 3 2
layer sizes 110, 110 200, 230, 200 170, 230

β 25 25 25
epochs 11 10 7

number of basis
functions 10 30 10

5.3.1. Training Set Performance

The trajectories and demonstrations from the same three configurations with the same
water levels that were shown for the models generated from the full demonstrations are
displayed for the models trained using the segmented demonstrations. The Cartesian com-
ponents of the position trajectories from the demonstrations and the corresponding position
trajectories generated from the neural DMP for the selected samples are shown in Figure 9.
The corresponding quaternion orientation trajectories from the demonstrations and the
predicted orientation trajectories from the neural DMP are shown in Figure 10. In both
cases, the demonstrated trajectory components are shown by a solid black line, the pre-
dicted trajectory components are shown with a dashed red line, and the locations where
the demonstration segmentation occurred are shown using a vertical blue dashed line.

Figures 9 and 10 show that the neural DMPs trained using the segmented models
are, for the most part, able to accurately reproduce previously seen trajectories. When
comparing the third orientation trajectory (bottom left) from the segmented demonstration
method in Figure 10 to the corresponding trajectory from the full demonstration method in
Figure 5, it appears to have a larger error, particularly near the middle of the trajectory. This
seems to contradict the average losses presented in Section 5.1, which are typically lower
for the segmented models. However, this serves to demonstrate that while average losses
may be lower for the segmented models, there may be individual trajectories that are better
represented by the models trained using full demonstrations. Also, unlike the models that
used the full demonstrations, the segmented models appear to have more consistent errors
throughout the trajectory as opposed to increased errors near the end of the demonstration.

5.3.2. Testing Set Performance

Once again, the same configurations and water levels that were used to demonstrate
the test performance for the neural DMPs that were trained using the full demonstra-
tions are shown to demonstrate the generalization capabilities of the segmented models.
The Cartesian components of the position trajectories from the demonstrations, and the
corresponding position trajectories generated from the neural DMP for the selected samples
are shown in Figure 11. The corresponding quaternion orientation trajectories from the
demonstrations and the predicted orientation trajectories from the neural DMP are shown
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in Figure 12. As with the training set, the demonstrated trajectory components are shown
by a solid black line, the predicted trajectory components are shown with a dashed red line,
and the segmentation points are shown with dashed blue lines for both figures.

Figure 9. Trajectory components of the demonstrated position and the position predicted by the neural
DMP for the model trained using the segmented demonstrations for samples from the training dataset.

As shown in Figures 11 and 12, the position and orientation generated by the seg-
mented neural DMPs are similar to those of the demonstrator. However, just as with the
models trained on the full demonstrations, there is an increased error, which is expected as
a result of neural networks not generalizing perfectly. Similarly, this is also likely due to
the models having learned from different demonstrators, thus incorporating elements from
the training trajectories from various demonstrations. This means that it may not perfectly
align with a single demonstrator when generalizing, which could account for some of the
error. Despite the increased error, examining these two plots shows that the key movements
stay aligned in time with the demonstrations. This shows that while the movements may
not be exactly the same as the demonstrator, they maintain similar elements at similar times.
As with the models learned from full demonstrations, this shows that while the movements
may not be exactly the same as the demonstrator, they maintain similar elements at similar
times and maintain the structure of the underlying task. As such, this shows that the
models have learned key features of the task, and the errors may be due to the learning
base explained by learning the commonalities between demonstrators instead of replicating
a single demonstrator.

5.4. Performance of the Robotic System

Both the models trained on the full demonstrations and those trained on the segmented
demonstrations were implemented on the Franka Emika Panda 7DoF robot manipulator.
A sequence of images showing the task completion for both sets of models can be seen
in Figure 13. This corresponds to the first configuration and water level selected in the
previous sections for the plotted trajectories. This was tested for multiple configurations
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and water levels and was found to be capable of completing the task. Additional examples
can be seen in the video attachment.

Figure 10. Trajectory components of the demonstrated orientation and the orientation predicted by
the neural DMP for the model trained using the segmented demonstrations for samples from the
training dataset.

Figure 11. Trajectory components of the demonstrated position and the position predicted by
the neural DMP for the model trained using the segmented demonstrations for samples from the
test dataset.
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Figure 12. Trajectory components of the demonstrated orientation and the orientation predicted by
the neural DMP for the model trained using the segmented demonstrations for samples from the
test dataset.

Figure 13. Image sequence showing the first trajectory and water level (C1 L1) being performed
by the robot using the neural DMPs trained on the full demonstrations (top) and using the neural
DMPs trained using the segmented demonstrations (bottom). A video of the results can be seen in
Supplementary Video S1.

6. Discussion

When comparing the models generated from the full demonstrations to those that
utilized the segmented demonstrations, several factors are considered. These include
the accuracy of the models on cases seen and not seen during training, the amount of
expert human input that was required, and the potential for task flexibility within the
framework. These factors, and how they relate to the desired application, should also
be taken into account when selecting whether to use full or segmented demonstrations.
The desired accuracy, availability of demonstrations, expected timeline, and task complexity
should be balanced with the trade-offs of the different methods to select a suitable strategy.
For example, segmented demonstrations may be appropriate for a maintenance task such
as replacing a component in machinery, which is composed of distinct sub-tasks. Learning
from full demonstrations on the other hand may be more well suited to manipulating
human joints during rehabilitation, where there are fewer distinct sub-tasks, and would
require large amounts of time from physicians to annotate demonstrations. However, this
paper is not meant to be a guide for selecting a method, as the variability of applications
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and factors is large. Instead, this paper aims to present some of the trade-offs between the
two methods, which the reader can use in the context of their application.

The results show that the models trained from the segmented demonstrations are more
accurate in determining the correct trajectories for configurations seen during training,
and new configurations. This can be seen over the full set of trajectories by comparing the
losses in Tables 2 and 3. This can also be seen by comparing individual sample trajectories
generated from models trained using full demonstrations in Figures 5–8 to the correspond-
ing sample trajectories from models trained using segmented trajectories in Figures 9–12.
In particular, the trajectories from the models trained using full demonstrations show
increased error in later sections of the trajectories, which is similar to the position and
orientation trajectories presented in [14,17]. While both the full and segmented trajectories
were successfully implemented on the physical robotic system, the difference in accuracy
could have a larger impact for more precise tasks.

The models that learned from segmented demonstrations required additional time
and effort from the expert. The main source of added time was the segmentation and
annotation of the demonstrations, as discussed in Section 4, and required an additional
2 weeks to design the semi-automated segmentation and to supervise the segmentation.
While this was feasible for the relatively simple task presented in this paper, it would
require additional time for more complex tasks. This could be further extended in cases
where more demonstrations are required, or where the experimentation of the segmentation
points need to be experimented with to successfully learn a task.

The segmented models could achieve a higher task flexibility than the full models,
largely due to their potential to be combined into new sequences or used for new tasks.
For example, the reaching segment used in the pouring task could be reused for other
tasks that require this motion, such as sorting tasks or assembly tasks. A relatively simple
high-level planner was used in this paper, but this could be extended further to incorporate
additional functionality, such as confirming each sub-task is complete before moving to
the next [25]. In comparison, the models trained on full demonstrations would require
new demonstrations and full re-training to be applied to different applications and would
require structural changes to implement higher-level frameworks.

7. Conclusions

This paper presents a framework that uses neural DMPs for skill transfer between
humans and a robot manipulator. The neural DMPs were trained to complete a pouring
task using full demonstrations and demonstrations segmented into individual sub-tasks.
The neural DMPs required a small number of demonstrations, requiring only 24 human
examples, to learn and generalize for a pouring task and were able to generalize to new
configurations of the task not seen during training. The neural DMP formulation and robot
control strategy were discussed, followed by a description and analysis of the demonstra-
tion, collection, training, and testing processes, as well as an implementation of a Franka
Emika Panda 7-DoF manipulator. This allowed for a comparison of the accuracy of each
method while also allowing for some analysis of the input requirements from a human
expert and the task flexibility of each method.

Several trade-offs between the models trained on full demonstrations and the models
trained on segmented demonstrations were discussed. It was found that the model trained
using the segmented demonstrations had a higher accuracy on the training and testing
datasets, indicating that shorter motion primitives could increase the accuracy. Additionally,
the models trained on segmented demonstrations are anticipated to have higher task
flexibility, requiring fewer changes to the framework and minimal retraining to be applied
to new tasks. However, the segmentation and annotation of the demonstrations required
for this method significantly increased the amount of time required by the expert as they
are required to both perform and annotate the demonstrations.
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While this paper provides an in-depth comparison between neural DMP models that
learn from a full demonstration to models that learn from sub-tasks, future work could
expand on this comparison. This could include analyzing the differences in performance
for tasks with different lengths and complexities or finding the ideal locations of how to
subdivide different tasks. Further work could also be performed to assess the suitability of
sub-tasks to transfer to new skills.
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Appendix A

Appendix A.1

This appendix contains the losses for each fold during training and testing during the
training process. Table A1 shows the losses for the position models, and Table A2 shows
the losses for the orientation models.

Table A1. Average loss over each trajectory and dataset for each fold during training and validation
for the position models.

Position Models

Model Full Seg. 1 Seg. 2 Seg. 3

Fold 1 Train 0.00128 0.000945 0.000920 0.00132
Val. 0.00348 0.00189 0.00201 0.00168

Fold 2 Train 0.00150 0.00126 0.000858 0.00135
Val. 0.00197 0.00106 0.00196 0.00148

Fold 3 Train 0.00145 0.00113 0.000970 0.00151
Val. 0.00133 0.000876 0.000766 0.00119

Fold 4 Train 0.00146 0.00112 0.000864 0.00114
Val. 0.00277 0.00126 0.00147 0.00178

https://www.mdpi.com/article/10.3390/machines12120872/s1
https://www.mdpi.com/article/10.3390/machines12120872/s1
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Table A2. Average loss over each trajectory and dataset for each fold during training and validation
for the orientation models.

Orientation Models

Model Full Seg. 1 Seg. 2 Seg. 3

Fold 1 Train 0.377 0.372 0.459 0.307
Val. 0.380 0.475 0.517 0.383

Fold 2 Train 0.359 0.433 0.417 0.331
Val. 0.584 0.577 0.605 0.472

Fold 3 Train 0.545 0.387 0.419 0.298
Val. 0.353 0.387 0.419 0.298

Fold 4 Train 0.379 0.405 0.467 0.351
Val. 0.518 0.381 0.606 0.471
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