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Abstract: It was observed recently that the giant magnetoimpedance (GMI) effect in Fe-rich glass-
coated amorphous microwires with positive magnetostriction can be improved significantly by
means of post-annealing. The increase in the GMI is attributed to the induced helical magnetic
anisotropy in the surface layer of the microwire, which appears after the annealing. The application of
external stresses to the microwire may result in changes in its magnetic structure and affect the GMI
response. In this work, we study theoretically the influence of the tensile and torsional stresses on the
off-diagonal magnetoimpedance in annealed amorphous microwires with positive magnetostriction.
The static magnetization distribution is analyzed in terms of the core–shell magnetic structure. The
surface impedance tensor is obtained taking into account the magnetoelastic anisotropy induced by
the external stresses. It is shown that the off-diagonal magnetoimpedance response exhibits strong
sensitivity to the magnitude of the applied stress. The obtained results may be useful for sensor
applications of amorphous microwires.

Keywords: magnetoimpedance; amorphous microwires; annealing; induced anisotropy;
magnetostriction; magnetoelastic anisotropy

1. Introduction

The giant magnetoimpedance (GMI) effect consists of a significant change in the
impedance of a soft magnetic conductor upon the application of an external magnetic field.
The GMI can be explained by the skin effect, and the field dependence of the impedance is
attributed to changes in the permeability with the external magnetic field. The GMI was
intensively studied in various soft magnetic amorphous and nanocrystalline materials (see,
for example, [1–3] and references therein). The high field sensitivity of the GMI attracts
considerable attention due to its possible use in different technological applications, in
particular, for the development of biosensors, position sensors, magnetometers, systems
for non-destructive testing, etc.

Glass-coated amorphous microwires are one of the most promising materials for appli-
cations of GMI. These microwires are produced by Taylor–Ulitovsky method and represent
composite materials consisting of a metallic nucleus with a diameter of
1–50 µm covered by glass with a thickness of 2–20 µm [4–8]. Strong GMI effects are
observed in Co-rich amorphous microwires with nearly-zero magnetostriction [7,8]. The
specific distribution of the residual stresses emerging during fabrication leads to the ap-
pearance of circular or helical magnetic anisotropy in the microwires [5,9]. As a result,
Co-rich glass-coated amorphous microwires exhibit high values of transverse permeability
resulting in the strong GMI effect [1,2].

Another type of microwire is Fe-rich glass-coated amorphous microwire with positive
magnetostriction. The residual stresses result in a fundamentally different distribution
of the magnetic anisotropy in Fe-rich microwires in comparison with Co-rich microwires.
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Fe-rich amorphous microwires have predominately axial anisotropy, low transverse per-
meability, and, consequently, possess a weak GMI effect. However, recently it has been
demonstrated that post-annealing of Fe-rich glass-coated amorphous microwires may
enhance significantly the GMI effect. In particular, the magnetic softness and GMI can
be improved by means of stress-annealing [10–14]. It was observed that the GMI ratio
increases by an order of magnitude after stress-annealing [11,12]. It was found also that the
GMI field dependence changes drastically with an increase in frequency, transforming from
single-peak behavior to two-peak dependence. A similar increase in the GMI effect has been
observed recently in Fe-rich glass-coated amorphous microwires after Joule heating [15–17].

A theoretical description of the changes in magnetic properties of stress-annealed
glass-coated amorphous microwires with positive magnetostriction has been proposed [18].
It was shown that the heating of the microwire in the presence of the tensile stress changes
the distribution of the residual stresses in the metallic amorphous nucleus. After the
stress-annealing, the tangential residual stresses in the surface region of the amorphous
nucleus become maximum, which results in the appearance of circular anisotropy in this
region [18].

To describe the GMI effect in stress-annealed Fe-rich amorphous microwires an elec-
trodynamic model has been developed [19]. In the framework of the model, the static
magnetization distribution within the metallic part of the microwire was described by
means of the core–shell magnetic structure, assuming the existence of the inner core with an
axial magnetic anisotropy and external shell having a helical anisotropy. The model allows
one to describe qualitatively the experimental GMI field and frequency dependences in
field-annealed glass-coated amorphous microwires with positive magnetostriction [10–14].

From the point of view of sensor applications, much attention is paid to off-diagonal
magnetoimpedance (ODMI). The ODMI consists of the appearance of the field-dependent
voltage in the pick-up coil wound around a conductor and is attributed to the cross-
magnetization process [20,21]. The studies of the ODMI in Co-rich glass-coated amorphous
microwires show that the pick-up coil voltage signal is very small and irregular [22,23].
This fact is attributed to the so-called bamboo domain structure in the surface region of
the microwire. To eliminate the effect of the domain structure, the direct bias current is
used, which leads to the asymmetric field dependence of the ODMI. The asymmetric ODMI
response is promising for applications due to its linear field dependence and enhanced
sensitivity. It was found also that a magnetometer based on the asymmetric ODMI effect
exhibits better noise performance in comparison with the GMI [24,25].

The ODMI was investigated also in Fe-rich amorphous microwires [11–13]. In as-
prepared Fe-rich amorphous microwires, the observed ODMI response was very small.
After stress-annealing, the ODMI increases, and it can be enhanced further by using the
bias current [11–13].

Since the domain structure and GMI response in an amorphous sample strongly
depend on the residual stress distribution, the application of external stresses may change
significantly the conductor impedance. The phenomenon is often referred to as the stress
impedance effect [26–28]. The stress impedance could be promising for the development
of stress and strain sensors. Furthermore, the application of stresses to an amorphous
conductor leads to changes in the domain structure and, hence, to variations in the GMI.
The influence of the tensile and torsional stresses on the GMI effect in Co-rich glass-coated
amorphous microwires have been intensively studied (see, for example, [29–33]). At the
same time, the effect of external stresses on the GMI in annealed Fe-rich amorphous
microwires remains completely unexplored.

In this work, we present a theoretical study of the influence of the tensile and torsional
stresses on the ODMI in annealed glass-coated amorphous microwires with positive mag-
netostriction. The static magnetization distribution is described based on the core–shell
magnetic structure taking into account the magnetoelastic anisotropy induced by the exter-
nal stresses. The expressions for the microwire impedance tensor are found through the
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values of the transverse permeability in the core and shell. The ODMI effect is analyzed as
a function of the external field, frequency, and magnitude of the applied stress.

2. Model
2.1. Static Magnetization Distribution

Following the approach developed previously in [19], let us assume that a glass-coated
amorphous microwire with the diameter of metallic nucleus 2R consists of two regions
with different types of magnetic anisotropy. In the inner region (core) with the diameter 2r,
the anisotropy is axial, and the outer region (shell) has a helical anisotropy induced after
stress-annealing. The microwire is subjected to the alternating current I(t) = I0exp(–iωt)
(here t is the time, ω is the angular frequency and i is the imaginary unit) and to the direct
bias current Ib, and the external magnetic field He is parallel to the microwire axis. The
tensile stress σt and uniform torsional stress with the angular displacement per unit length
τ are applied to the microwire. The microwire cross-section and a sketch of the coordinate
system used for analysis are shown in Figure 1. Since all fields lie within the ϕ–z plane, the
magnetization vector is limited to the same plane.
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Figure 1. (a) The microwire cross-section and unit vectors n , nφ  and nz of the coordinate system 

used for analysis. (b) A sketch of the angles in the model lying within the nφ – nz plane. 
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Figure 1. (a) The microwire cross-section and unit vectors nρ, nϕ and nz of the coordinate system
used for analysis. (b) A sketch of the angles in the model lying within the nϕ–nz plane.

Further, we assume that the magnetization is uniform within two regions of the
microwire, and the exchange and magnetostatic coupling between the regions can be ne-
glected [19]. Note that it was demonstrated that account of the exchange coupling between
the core and shell regions can improve an agreement between theory and experiment
for the GMI response in amorphous wires [34]. As a matter of principle, the coupling
can be taken into account by introducing the effective interaction field between the core
and shell [32,34]. However, in this case, the model becomes more complicated. In this
regard, to simplify the model we neglect the coupling between the core and shell regions of
the microwire.

The static equilibrium magnetization distribution within the core and shell can be
obtained by the minimization of the free energy. The free energy density U can be presented
as a sum of the intrinsic magnetic anisotropy term, Zeeman energy, and magnetoelastic
anisotropy energy induced by the external stresses:

U = (MHa,j/2) sin2(θj − ψj)−MHe sin θj + Ub + Uten + Utor. (1)

Here and hereafter the subscript j = 1 and j = 2 corresponds to the core and shell region,
respectively; M is the saturation magnetization; Ha,j is the intrinsic magnetic anisotropy
fields in the core and shell; θj and ψj are the equilibrium magnetization angles and the
anisotropy axis angles with respect to the azimuthal direction (ψ1 = π/2 for the core region);
Ub is the Zeeman energy of the field of the bias current; Uten and Utor are the magnetoelastic
anisotropy energies induced by the tensile and torsional stresses.
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The term Ub can be written as follows

Ub = −2MIbρ cos θj/cR2, (2)

where ρ is the radial coordinate and c is the speed of light in a vacuum.
The magnetoelastic anisotropy energy Uten induced by the tensile stress has the

following form [1]:
Uten = (3/2)λsσt cos2 θj, (3)

where λs > 0 is the magnetostriction coefficient.
The torsional stress results in the appearance of the helical magnetoelastic anisotropy

in the microwire, with the easy magnetization axis being the angle of π/4 with azimuthal
direction. The magnetoelastic anisotropy energy Utor can be expressed as [1]

Utor = (3/2)λsGτρ sin2(θj − π/4), (4)

where G is the shear modulus.
It follows from Equations (2) and (4) that the Zeeman energy Ub of the bias field and

the magnetoelastic anisotropy Utor due to the torsional stress varies over the microwire
cross-section. To simplify the model, we assume further that the contributions of these
terms to the free energy density corresponding to the maximal values for the core (at ρ = r)
and shell (at ρ = R) regions.

Then, the minimization of the free energy density results in the following equations
for the equilibrium magnetization angles θj in the core and shell:

Ha,j sin(θj − ψj) cos(θj − ψj)− He cos θj + Hb,j sin θj
−(Hten/2) sin 2θj − (Htor,j/2) cos 2θj = 0 .

(5)

Here we introduce the fields

Hb,1 = 2Ibr/cR2, (6)

Hb,2 = 2Ib/cR, (7)

Hten = 3λsσt/M, (8)

Htor,1 = 3λsGτr/M, (9)

Htor,2 = 3λsGτR/M. (10)

Note that the general approach to describe the Ub and Utor energy terms consists of
the integration of the free energy density over the radial coordinate and the following
minimization of the resulting energy. Since both the Ub and Utor terms depend linearly on
the radial coordinate, the minimization procedure leads to Equation (2) for the equilibrium
magnetization angles, and the only difference is in the numerical coefficients in Equations
(6), (7), (9) and (10). Thus, the simplified model described above gives the same basic
predictions as compared to the general approach. In addition, the assumption that the
contributions of the Ub and Utor terms correspond to their maximal values in both regions
allows one to describe the conditions for the fields at the surface of the metallic nucleus of
the microwire.

It follows from Equation (5) that the magnetoelastic anisotropy interacts with the intrin-
sic magnetic anisotropy and changes the equilibrium magnetization angles θj. Equation (5)
can be rewritten in the following form with effective uniaxial anisotropy:

Heff,j sin(θj − αj) cos(θj − αj)− He cos θj + Hb,j sin θj = 0. (11)
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Here Heff,j and αj are the effective anisotropy fields and anisotropy angles, correspond-
ingly. After simple mathematical transformations, for αj and Heff,j we obtain [31]:

tan 2αj =
Ha,j sin 2ψj + Htor,j

Ha,j cos 2ψj − Hten
, (12)

Heff,j =
Ha,j cos 2ψj − Hten

cos 2αj
. (13)

Let us discuss the changes in the effective anisotropy fields and angles in the presence
of external stresses. The application of the tensile stress σt (at τ = 0) increases the axial
effective anisotropy field Heff,1 in the core region. It follows from Equations (12) and (13)
that for the shell region, the growth of σt leads to a deviation of the effective anisotropy
angle α2 from the azimuthal direction and a decrease of the effective anisotropy field Heff,2.
Note that these dependencies are opposite to the behavior of the effective anisotropy in Co-
rich amorphous microwires with slightly negative magnetostriction. It is well-known that
in Co-rich microwires, the effective anisotropy axis rotates toward the azimuthal direction
with a growth of the tensile stress, and the effective anisotropy field increases [1,30–32].

When the torsional stress is applied to the microwire (at σt = 0), the angle α1 in the
core region changes within the range from 3π/4 at the high negative direction of the
stress (counter-clockwise rotation) to π/4 at high positive stress (clockwise rotation). The
effective anisotropy field Heff,1 increases monotonically with the stress. Figure 2 illustrates
the influence of the torsional stress on the effective anisotropy angle α2 and the effective
anisotropy field Heff,2 in the shell region. The angle α2 increases from −π/4 to π/4 with
the field Htor,2. The effective anisotropy in the shell becomes circular (α2 = 0), when
Htor,2 = −Ha,2sin2ψ2. The dependence of the effective anisotropy field Heff,2 on the field
Htor,2 has a minimum (see Figure 2b). The minimum attains at α2 = 0, and the minimal
value of the effective anisotropy field is equal to Ha,2cos2ψ2.
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Figure 2. (a) The effective anisotropy angle α2 and (b) the effective anisotropy field Heff,2 in the shell
region as a function of the field Htor,2 at different values of the intrinsic anisotropy axis angle ψ2.

2.2. Impedance Tensor

The GMI effect can be described in terms of the surface impedance tensor [35]. The lon-
gitudinal Zzz and off-diagonal Zϕz impedance components can be presented as follows [36]:

Zzz = (2l/cR)(ζm sin2 θ2 + ζ0 cos2 θ2), (14)
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Zφz = (4πN/c)(ζm − ζ0) sin θ2 cos θ2. (15)

Here l is the microwire length, N is the number of turns in the pick-up coil, ζm and ζ0
are the magnetic and non-magnetic components of the surface impedance tensor and the
equilibrium magnetization angle θ2 in the shell is given by Equation (11).

The surface impedance tensor components ζm and ζ0 depend on the magnetic structure
of the microwire. The expressions for ζm and ζ0 for the microwire with the core–shell
magnetic structure were obtained in [19] assuming that the magnetization in the core
region is directed along the microwire axis (θ1 = ±π/2). However, in the presence of the
bias current or the torsional stress, the equilibrium magnetization angle θ1 deviates from
the longitudinal direction (see Equation (5)). Taking into account the deviation of θ1, the
surface impedance component ζm can be expressed as

ζm =
ck2

4πσ
× J0(k2R) + PmY0(k2R)

J1(k2R) + PmY1(k2R)
. (16)

Here Jn and Yn (n = 0, 1) are the Bessel functions of the first and the second kind,
respectively; k2

2 = k0
2µ2, k0

2 = 2i/δ2, δ = c/(2πσω)1/2, σ is the microwire conductivity, µ2
is the transverse permeability in the shell region and the parameter Pm is given by

Pm =
(k2/k1)J0(k2r)−QJ1(k2r)
QY1(k2r)− (k2/k1)Y0(k2r)

, (17)

where k1
2 = k0

2µ1, µ1 is the transverse permeability in the core region and

Q =
J0(k1r)
J1(k1r)

sin2 θ1 +
J0(k0r)
J1(k0r)

cos2 θ1. (18)

Note that at θ1 = ±π/2 from Equation (18) we have Q = J0(k1r)/J1(k1r), and
Equations (16)–(18) transform to expressions obtained in [19]. The non-magnetic com-
ponent ζ0 can be obtained from Equations (16) and (17) assuming that µ2 = 1 [36]. Thus, for
ζ0 we have

ζ0 =
ck0

4πσ
× J0(k0R) + P0Y0(k0R)

J1(k0R) + P0Y1(k0R)
, (19)

P0 =
(k0/k1)J0(k0r)−QJ1(k0r)
QY1(k0r)− (k0/k1)Y0(k0r)

. (20)

As follows from Equations (16)–(20) the longitudinal Zzz and off-diagonal Zϕz
impedance components are governed by the values of the transverse permeability µj
in the core and shell regions. The transverse permeability can be found from a solution of
the linearized Landau–Lifshitz–Gilbert equation. Taking into account the effects of the bias
current and external stresses, we can present the values of µj in the following form [1,21]:

µj =
ω2

m
(ωm + ω∗j )ω

∗∗
j −ω2 − iκωmω

. (21)

Here ωm = γ4πM, γ is the gyromagnetic constant, κ is the Gilbert damping parameter and

ω∗j = γ[Heff,j cos2(θj − αj) + He sin θj + Hb,j cos θj] ,
ω∗∗j = γ[Heff,j cos 2(θj − αj) + He sin θj + Hb,j cos θj] .

(22)

The procedure of the calculation of the GMI response in the microwire with the core–
shell magnetic structure can be summarized as follows. The equilibrium magnetization
angles θj in the core and shell regions can be found from a solution of Equation (11) taking
into account expressions (12) and (13). The values of the transverse permeability µj in the
core and shell regions are given by Equations (21) and (22). After that, the corresponding
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values of k1 and k2 can be calculated, and the impedance components Zzz and Zϕz are
obtained by means of Equations (14)–(20).

In conclusion of this section, it should be noted that both the magnetization rotation
and domain-walls motion contribute to the permeability and magnetoimpedance response.
In this work, we analyze the ODMI at sufficiently high frequencies, when the domain-walls
motion is strongly damped [1], and the values of the transverse permeability in the core
and shell regions are governed by the magnetization rotation only. It has been found that
in soft magnetic amorphous materials exhibiting the GMI effect, the domain-walls motion
is negligible in the frequency range from several hundred kHz to a few MHz [37–39]. At
low frequencies, the contribution of motion of the domain wall between the core and shell
to the ODMI response should be taken into account.

3. Results
3.1. Asymmetric Off-Diagonal Magnetoimpedance

At first, we consider the influence of the bias current on the ODMI in annealed Fe-rich
amorphous microwire without external stresses. Note that the field dependence of the
ODMI response Zϕz = Rϕz − iXϕz (here Rϕz and Xϕz are the real and imaginary parts of the
ODMI) was described previously for a microwire with the core–shell structure assuming
that the magnetization in the core region has the longitudinal direction [19]. To obtain the
ODMI effect with high field sensitivity, the domain structure in the shell region should
be removed. The threshold field Hth of the bias current to eliminate the surface domain
structure can be expressed as follows [21,40]: Hth = Ha,2|sinψ2|. Taking into account
Equation (7), we find for the threshold bias current Ith:

Ith = (cRHa,2/2)|sin ψ2|. (23)

Assuming for estimations that 2R = 15 µm, ψ2 = −0.05π and Ha,2 = 30 Oe, we find for
the value of the threshold bias current Ith

∼= 17.5 mA.
Shown in Figure 3 are the field dependences of the real Rϕz and imaginary parts Xϕz

of the ODMI calculated for different values of Ib > Ith. For convenience, the values of Rϕz
and Xϕz are reduced to the characteristic off-diagonal impedance Z0:

Z0 = 2πNRZDC/l = 2N/σR, (24)

where ZDC = l/πσR2 is the resistance in the direct current mode. Assuming that N = 50,
2R = 15 µm and σ = 5 × 1015 s−1, we obtain Z0 ∼= 24 Ohm.

At Ib > Ith, the asymmetry in the field dependence of the ODMI appears The asymmetry
arises due to the interaction of the helical anisotropy with the circular magnetic field
induced by the bias current [1,21,40]. The real and imaginary parts of the ODMI increase
sharply at Ib

∼= Ith. With a further increase of the bias current, the field sensitivities of Rϕz
and Xϕz decrease due to a drop in the transverse permeability in the shell region, however,
they remain sufficiently high within a wide range of the bias current.

Although the shell region with a helical anisotropy makes the main contribution to
the ODMI of the microwire, the ODMI is very sensitive to the volume part of the core
region. Figure 4 illustrates the effect of the core region diameter 2r on the ODMI. The
dependences of Rϕz and Xϕz on the external field have similar behavior for all values
of 2r, and the decrease of the core diameter results in a growth of the ODMI response.
Note that the volume parts of the core and shell can be tuned by stress-annealing. In
particular, an increase in the annealing temperature and time [12] and tensile stress during
the annealing [14,41,42] leads to a decrease in the core region volume.
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Figure 3. (a) The real part Rϕz and (b) the imaginary part Xϕz of the ODMI as a function of the
external field He at f = ω/2π = 100 MHz for different values of the bias current Ib. Parameters
used for calculations are 2R = 15 µm, 2r = 8 µm, M = 900 G, σ = 5 × 1015 s−1, κ = 0.15, Ha,1 = 5 Oe,
Ha,2 = 30 Oe and ψ2 = −0.05π.
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Figure 4. (a) The real part Rϕz and (b) the imaginary part Xϕz of the ODMI as a function of the
external field He at f = 100 MHz and Ib = 30 mA for different values of the core region diameter 2r.
Other parameters used for calculations are the same as in Figure 3.

It follows from Figures 3 and 4 that the field dependences of the real and imaginary
parts of the ODMI response show nearly linear behavior at He ∼= −Ha,2sin2ψ2, where
the ODMI turns to zero. To analyze the frequency dependences of Rϕz and Xϕz, let us
introduce the field sensitivities of the real SR and imaginary SX parts of the ODMI defined
as follows [43]:

SR = Rp/∆H, (25)

SX =
∣∣Xp

∣∣/∆H. (26)

Here Rp and |Xp|are the maximum values of Rϕz and |Xϕz| at positive external
fields, ∆H = Hp + Ha,2sin2ψ2 and Hp is the external field at the peak.
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The frequency dependences of the field sensitivities SR and SX calculated for different
values of the bias current are presented in Figure 5. The values of SR and SX have different
frequency behavior. The field sensitivity SR of the real part of the ODMI increases mono-
tonically with the frequency, whereas SX has a maximum at a certain frequency. At low
frequencies, the field sensitivity SX is higher than SR. It also follows from Figure 5 that field
sensitivities decrease with a growth of the bias current Ib. However, the magnitudes of SR
and SX are relatively high within a wide range of the bias current.
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Figure 5. The field sensitivity of the real part SR (a) and imaginary part SX (b) of the ODMI as a
function of the frequency f for different values of the bias current Ib. Other parameters used for
calculations are the same as in Figure 3. The values of SR and SX are reduced to the characteristic
field sensitivity S0 = Z0/Ha,2.

Note that the obtained field dependences of the ODMI in the presence of the bias
current describe qualitative results of the experimental studies of the OMDI effect in
stress-annealed Fe-rich microwires [11–13]. The origin of the strong ODMI is related to a
helical anisotropy in the shell region of the microwire, which appears after the annealing.
Although the main contribution to the ODMI comes from the shell, the core region affects
the ODMI through its volume and a deviation of the magnetization from the longitudinal
direction in the inner part of the microwire.

3.2. Effect of Tensile Stress on Off-Diagonal Magnetoimpedance

The application of the tensile stress to the microwire results in changes in the equilib-
rium magnetization distribution and consequently affects the ODMI response. Figure 6
shows the field dependences of Rϕz and Xϕz calculated for different values of the tensile
stress σt. Both the real and imaginary parts of the ODMI exhibit similar behavior with an
increase in stress. The peaks in Rϕz and Xϕz become more pronounced, and the peak fields
shift towards zero fields. It follows from Figure 6 also that the field sensitivity of the ODMI
increases with the tensile stress.

The evolution of the ODMI response in the presence of tensile stress is related to the
changes in the effective anisotropy in the microwire shell region. With an increase of the
tensile stress, the effective anisotropy angle α2 in the shell deviates from the azimuthal
direction, and the effective anisotropy field Heff,2 decreases (see Equations (12) and (13)).
Taking into account the changes in α2 and Heff,2 under the effect of the tensile stress, we
can present the expression for threshold field Hth of the bias current to eliminate domain
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structure in the shell region in the following form: Hth = Heff,2|sinα2|. Correspondingly,
the expression for the threshold bias current Ith can be rewritten as

Ith = (cRHeff,2/2)|sin α2|. (27)
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Figure 6. (a) The real part Rϕz and (b) the imaginary part Xϕz of the ODMI as a function of the external
field He at f = 100 MHz and Ib = 30 mA for different values of the tensile stress σt. Magnetostriction
coefficient λs = 40 × 10−6, other parameters used for calculations are the same as in Figure 3.

It follows from Equations (12), (13), and (27) that the threshold current increases with
the tensile stress. Hence, the threshold current Ith tends to the bias current Ib under the
application of the tensile stress. As discussed above, the ODMI increases when the bias
current is close to Ith (see Figure 3). Thus, an increase of the tensile stress σt results in a
growth of the ODMI response (see Figure 6).

The frequency dependences of the field sensitivities SR and SX for different values
of the tensile stress σt are shown in Figure 7. The values of SR and SX are calculated by
means of Equations (25) and (26) taking into account that ∆H = Hp + Heff,2sin2α2. The field
sensitivities increase monotonically with the value of the applied stress (see Figure 7).

To describe the ODMI sensitivity to the tensile stress σt we introduce the ratios

(∆ R/Rϕz)σ
= [Rϕz(σt)− Rϕz(0)]/Rϕz(0), (28)

(∆ X/Rϕz)σ
= [Xϕz(σt)− Xϕz(0)]/Xϕz(0), (29)

where Rϕz(0) and Xϕz(0) are the real and imaginary parts of the ODMI without
tensile stress.

The frequency dependences of (∆R/Rϕz)σ and (∆X/Xϕz)σ calculated for a fixed ex-
ternal field He < Hp at f = 100 MHz for different values of the bias current are shown in
Figure 8. Both the ratios of (∆R/Rϕz)σ and (∆X/Xϕz)σ have high sensitivity to the applied
tension stress. As follows from Figure 8, the ratios of (∆R/Rϕz)σ and (∆X/Xϕz)σ exhibit
nearly linear dependence on the tensile stress at low values of σt. This fact is attractive for
the development of stress sensors.
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Figure 7. The field sensitivity of the real part SR (a) and imaginary part SX (b) of the ODMI as a
function of the frequency f at Ib = 30 mA for different values of the tensile stress σt. Magnetostriction
coefficient λs = 40 × 10−6, other parameters used for calculations are the same as in Figure 3.
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Figure 8. The ratio of (∆R/Rϕz)σ (a) and (∆X/Xϕz)σ (b) as a function of the tensile stress σt at
He = 10 Oe and f = 100 MHz for different values of the bias current Ib. Magnetostriction coefficient
λs = 40 × 10−6, other parameters used for calculations are the same as in Figure 3.

3.3. Effect of Torsional Stress on Off-Diagonal Magnetoimpedance

The influence of the torsional stress on the ODMI response is more complicated.
The application of the torsional stress to the microwire induces a helical anisotropy in
the whole sample. Depending on the direction of the torsional stress, the anisotropy
axis angle in the shell region can enhance or tend to zero (see Figure 2a). In addition, the
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torsional stress deviates slightly from the easy magnetization axis in the core region from the
longitudinal direction.

The dependences of the real Rϕz and imaginary parts Xϕz of the ODMI on the external
field are shown in Figure 9 at fixed Ib and different values of the angular displacement per
unit length τ > 0. For low τ, the asymmetry between the absolute values of the peaks in
Rϕz and Xϕz at positive and negative fields decreases. At some critical value of τ = τcr,
the absolute values of the peaks become equal. At τ > τcr, the modulus of the peak in
the real and imaginary parts of the ODMI at a negative external field becomes higher (see
Figure 9). The critical value τcr of the angular displacement per unit length corresponds to
the appearance of the effective circular anisotropy in the shell region (α2 = 0). It follows
from Equation (12) that this condition satisfies when Htor,2 = –Ha,2sin2ψ2. Taking into
account Equation (10), we obtain for τcr [44]:

τcr = −MHa,2 sin 2ψ2/3λsGR. (30)
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Figure 9. (a) The real part Rϕz and (b) the imaginary part Xϕz of the ODMI as a function of the
external field He at f = 100 MHz and Ib = 30 mA for different values of the angular displacement
per unit length τ. Magnetostriction coefficient λs = 40 × 10−6, shear modulus G = 50 GPa, other
parameters used for calculations are the same as in Figure 3.

For negative torsional stresses (τ < 0), the increase of the absolute value of τ leads to a
growth of the effective anisotropy field Heff,2 and effective anisotropy angle modulus in
the shell. As a result, the threshold bias current Ith increases (see Equation (27)). Corre-
spondingly, the peaks in Rϕz and Xϕz at negative external field growth. The maximal field
sensitivity of the ODMI is achieved when the bias current Ib tends to the threshold one Ith.
With a further increase of the stress absolute value, the bias current becomes less than Ith,
and the field dependences of Rϕz and Xϕz exhibit hysteretic behavior [44].

Figure 10 shows the frequency dependences of the field sensitivities of the real and
imaginary parts of the ODMI calculated for different values of the angular displacement
per unit length τ. At not-too-low frequencies, the field sensitivity SR of the real part of the
ODMI is higher than SX. Both the sensitivities SR and SX decrease monotonically with an
increase of the angular displacement per unit length τ.
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Figure 10. The field sensitivity of the real part SR (a) and imaginary part SX (b) of the ODMI as a
function of the frequency f at Ib = 30 mA for different values of the angular displacement per unit
length τ. Magnetostriction coefficient λs = 40 × 10−6, shear modulus G = 50 GPa, other parameters
used for calculations are the same as in Figure 3.

4. Discussion

Fe-rich glass-coated amorphous microwires with positive magnetostriction are at-
tractive for GMI applications due to higher saturation magnetization and lower price in
comparison with Co-rich microwires. However, as-prepared Fe-rich microwires exhibit
a low GMI effect. It was found that stress-annealing or Joule heating may enhance sig-
nificantly the GMI in amorphous microwires with positive magnetostriction [8,17]. The
improvement of the GMI effect is related to changes in the distribution of the residual
stresses within Fe-rich microwire after annealing resulting in the appearance of circular or
helical magnetic anisotropy at the microwire surface layer. Recently, an electrodynamic
model was proposed to describe the GMI effect in stress-annealed amorphous microwires
with positive magnetostriction [19]. The obtained theoretical dependences allowed one
to explain the main results of experimental studies of the GMI in stress-annealed Fe-rich
amorphous microwires. Using the anisotropy fields in the core Ha,1 and shell Ha,2, the
anisotropy axis angle in the shell ψ2, and the core diameter 2r as fitting parameters, the
calculated results explained the evolution of the field dependence of the GMI response with
a frequency increase (the transition from the single-peak to two-peak behavior). In addition,
the theoretical results described the positions of the peaks in the GMI field dependence and
the magnitude of the GMI ratio.

In this work, we modify the model to analyze the effect of tensile and torsional
stresses on the ODMI in annealed Fe-rich glass-coated amorphous microwires. The stress
application changes the magnetization distribution in the microwire due to the interaction
of the intrinsic magnetic anisotropy and the magnetoelastic anisotropy induced by external
stress. The results of modeling show that the ODMI response in annealed Fe-rich microwire
can be enhanced by tensile or torsional stress. It is demonstrated that the main contribution
to the ODMI in the microwire comes from the surface region with a helical anisotropy.
However, the central region of the microwire can influence the ODMI response through its
volume and a deviation of the magnetization from the longitudinal direction.

It is well-known that the strong ODMI effect in amorphous microwires can be ob-
served when the bias current is applied to the sample to remove a domain structure in
the microwire surface region. However, high values of the bias current results in Joule
heating. It can lead to crystallization and degradation of the soft magnetic properties of
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the microwire [7,12]. Correspondingly, there are some restrictions on the use of the ODMI
effect in technological applications.

In this work, we analyze the ODMI effect in annealed Fe-rich amorphous microwires
with positive magnetostiction. Note that the approach proposed allows one to describe also
the influence of the tension and torsional stresses on the longitudinal GMI in microwires
with the core–shell magnetic structure.

In conclusion of this section, it should be noted that there are no experimental studies
of the ODMI in annealed amorphous microwires with positive magnetostriction in the
presence of external stresses, and further verification of predictions of the proposed model
is required. However, the effect of the external stresses on the ODMI seems to be promising
for applications. The obtained results demonstrate that the field dependence of the ODMI
is very sensitive to external stresses, and it may allow one to improve the sensitivity of the
magnetic-field sensors.

5. Conclusions

The influence of the tensile and torsional stresses on the ODMI in annealed glass-
coated amorphous microwires with positive magnetostrcition is analyzed by means of the
core–shell magnetic structure. It is assumed that the microwire has an axial anisotropy in
the inner core and a helical anisotropy in the external shell region, which occurs after the
annealing. The effect of the applied stresses on the ODMI is related to the interaction of
the microwire internal anisotropy and the magnetoelastic anisotropy induced by external
stresses. The microwire impedance tensor is obtained taking into account the magnetoe-
lastic anisotropy. It is demonstrated that the external stresses affect the ODMI response
and may enhance the ODMI field sensitivity within a wide frequency range. The obtained
results may be useful from the point of view of the development of the magnetic field and
stress sensors.
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