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Abstract: Two mononuclear ReIV complexes of general formula (PPh4)2[ReX6] [PPh4
+ =

tetraphenylphosphonium cation, X = Br (1) and I (2)] have been prepared and structurally and
magnetically characterised. Both compounds crystallise in the triclinic system with space group Pı̄.
Their structures are made up of hexahalorhenate(IV), [ReX6]2−, anions, and bulky PPh4

+ cations.
Each ReIV ion in 1 and 2 is six-coordinate and bonded to six halide ions in a quasi regular octahedral
geometry. In their crystal packing, the [ReX6]2− anions are well separated from each other through the
organic cations, generating alternated anionic and cationic layers, and no intermolecular Re−X···X−Re
interactions are present. Variable-temperature dc magnetic susceptibility measurements performed
on microcrystalline samples of 1 and 2 show a very similar magnetic behaviour, which is typical of
noninteracting mononuclear ReIV complexes with S = 3/2. Ac magnetic susceptibility measurements
reveal the slow relaxation of the magnetisation in the presence of external dc fields for 1 and 2,
hence indicating the occurrence of the field-induced single-ion magnet (SIM) phenomenon in these
hexabromo- and hexaiodorhenate(IV) complexes.
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1. Introduction

The last decade has witnessed a rapid advance in the development of mononuclear Single-Molecule
Magnets (SMMs), the so-called Single-Ion Magnets (SIMs), which are mainly discrete molecules that are
based on one paramagnetic and highly anisotropic ion belonging mainly to the d-block or f-block metals
and displaying slow relaxation of the magnetisation [1–14]. These nanosized magnetic systems are
often considered to be promising candidates for future technological applications, such as high-density
information storage or quantum computing at the molecular level, among others [15,16].

In comparison, SIMs containing 4d/5d metal ions have been far less investigated than their 3d-based
analogues [17–19]. Indeed, the first SIMs based on a 5d metal ion, namely, the (NBu4)2[ReX4(ox)]
systems (X = Cl and Br; ox = oxalate anion), were published by some of us in 2013 [20]. Just one year
later, Pedersen et al. reported the research work that deals with the study of the (PPh4)2[ReF6]·2H2O
compound [21]. Afterwards, the photoluminescent (Th2imH)2[ReCl6] complex (Th2imH = protonated
bisthienylethene) and the (NBu4)2[ReCl4(CN)2]·2DMA (DMA = N,N-dimethylacetamide) compound,
that as the previously reported 5d-SIMs display field-induced slow magnetic relaxation, were also
studied and published [22,23]. These last systems complete the short list of SIMs that are based on the
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highly anisotropic ReIV metal ion. Recently, additional 5d-SIMs containing the OsV and IrIV metal ions
have also been reported [24–26].

We have studied further hexahalorhenate(IV) salts of the PPh4
+ cation to develop our investigation

in 5d-SIMs. Thus, by means of this bulky cation, the well-known intermolecular Re-X···X-Re
(X = halide ion) interactions, with pathways that can mediate significant magnetic exchanges between
neighbouring [ReX6]2− complexes in the crystal lattice, hence annulling the SIM behaviour of such
systems, are avoided [18,27–42].

Herein, we report the preparation, crystal structures, and magnetic properties of two mononuclear
ReIV complexes of general formula (PPh4)2[ReX6] [PPh4

+ = tetraphenylphosphonium cation, X = Br (1)
and I (2)], moreover studying the effect of the halide ligand and the crystal packing on the magnetisation
relaxation dynamics.

2. Results and Discussion

2.1. Description of the Crystal Structures

The two compounds (1 and 2) crystallise in the triclinic system with space group Pı̄ (Table 1).
Their structures are made up of hexahalorhenate(IV) [ReX6]2− [X = Br (1) and I (2)] anions and bulky
PPh4

+ cations, which are mainly held by electrostatic forces along with weak intermolecular X···H-C
and X···π interactions. In their asymmetric unit, fragments of [ReX6]2− anions and entire PPh4

+ cations
are present (Figure 1).

Table 1. Summary of the crystal data and structure refinement parameters for 1 and 2.

Compound 1 2

CCDC 1956543 1956544
Formula C48H40P2Br6Re C48H40P2I6Re

Mr/g mol−1 1344.40 6505.35
Crystal system Triclinic Triclinic

Space group Pı̄ Pı̄
a/Å 10.319(1) 17.370(1)
b/Å 10.434(1) 18.058(1)
c/Å 12.082(1) 18.475(1)
α/◦ 92.66(1) 108.52(1)
β/◦ 99.89(1) 105.58(1)
γ/◦ 117.12(1) 100.23(1)

V/Å3 1129.1(1) 5069.5(6)
Z 1 1

Dc/g cm−3 1.977 2.131
µ(Mo-Kα)/mm−1 8.104 6.145

F(000) 643 3004
Goodness-of-fit on F2 1.031 1.201

R1 [I > 2σ(I)] 0.0351 0.0466
wR2 [I > 2σ(I)] 0.0651 0.1422

In 1 and 2, each ReIV ion is six-coordinate and bonded to six halide ions in a quasi regular octahedral
geometry. The Re-X bond lengths vary in the ranges of 2.498(1)–2.526(1) Å and 2.710(1)–2.746(1) Å
for 1 and 2, respectively. The values of the X(1)-Re-X(2) and X(2)-Re-X(3) angles cover the ranges of
90.1(1)–91.6(1)◦ (1) and 88.3(1)–91.7(1)◦ (2). These structural data are in agreement with those that were
previously reported for salts containing the anionic [ReX6]2− units [27–39]. The PPh4

+ cations in 1 and
2 counterbalance the negative charges and show values of C-C and C-P bond lengths typical of the
phenyl groups linked to the central phosphorous atom.

In the crystal packing of 1 and 2, the [ReX6]2− anions are well separated from each other
through the bulky PPh4

+ cations, which generate alternated anionic and cationic layers, respectively
(Figure 2a,b). The shortest Re···Re separation is ca. 10.43 (1) and 10.85 Å (2). The shortest X···X distance
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is approximately 6.52 and 5.93 Å for 1 and 2, respectively. It is worth pointing out that the [ReBr6]2−

anions are arranged in a very similar way in 1, that is, with all of the anionic units orientated in the
same direction, whereas the [ReI6]2− anions display different orientations in the crystal of 2 (Figure 2).
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Figure 1. Perspective view of the [ReBr6]2− and [ReI6]2− anions of the compounds 1 (a) and 2 (b).
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+ cations have been omitted for clarity. The thermal ellipsoids are depicted at the 50%
probability level.
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Figure 2. View along the crystallographic a axis of a fragment of the crystal packing of 1 (a) and
2 (b) showing the arrangement of the [ReX6]2− anions (ball and stick model) and PPh4

+ cations
(wireframe model).

The PPh4
+ cations in both of the compounds show several intermolecular phenyl–phenyl

interactions that provide noticeable supramolecular conformations. Indeed, the sextuple phenyl
embrace (SPE) supramolecular conformation is present in both 1 and 2 (Figure S1) [43–45]. The shortest
P···P distance between PPh4

+ cations displaying the SPE conformation is ca. 6.07 and 6.13 Å for 1 and
2, respectively. Additionally, weak intermolecular X···H-C (the shortest X···C distance being 3.66 (1)
and 3.85 Å (2)) and X···π (halide-centroid distance of 3.66 (1) and 4.4 Å (2)) interactions between anions
and cations contribute to stabilizing the crystal structure of the two compounds.

2.2. Magnetic Properties

2.2.1. Dc Magnetic Susceptibility

The magnetic properties of the reported compounds were studied through direct current (dc)
magnetic susceptibility measurements, which were performed on the microcrystalline samples of 1
and 2 in the 2–300 K temperature range and under an external magnetic dc field of 0.5 T. Powder
XRD previously confirmed the purity and homogeneity of these bulk samples (Figure S2). Both of
the compounds exhibit a very similar behaviour that is represented in the form of χMT versus T plots
(χM being the molar magnetic susceptibility per ReIV ion) for 1 and 2 in Figure 3. At room temperature,
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the χMT values are approximately 1.58 (1) and 1.54 cm3mol−1K (2), which fall into the range that
was reported for systems containing a magnetically isolated ReIV (S = 3/2 with g = 1.80–1.90) metal
ion [18,27–42]. Upon cooling, the χMT values for these compounds decrease first slowly and, around
70–80 K, they decrease faster, reaching minimum values of approximately 0.95 (1) and 0.96 cm3mol−1K
(2) at 2.0 K. These minimum values obtained at very low temperature are close to that expected for
a magnetically isolated ReIV ion (ca. 1.0 cm3mol−1K), as previously reported [18]. The decrease of the
χMT values observed for complexes 1 and 2 is mainly due to zero-field splitting (ZFS) effects, which
are very significant in ReIV-based systems [18,27–42].
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Figure 3. Thermal variation of the χMT product for 1 (a) and 2 (b). The solid red line represents the
theoretical fit of the experimental data and the inset shows the M versus H plot at 2.0 K obtained for 1
and 2, the dashed line being a guide to the eye.

A field dependence of the molar magnetisation (M) plot for 1 and 2 at 2.0 K is given in the respective
insets of Figure 3a(1),b(2). In all the cases, the M values display a continuous increase with the applied
magnetic field, the higher M values being 1.57 (1) and 1.53 µB (2) at 5.0 T, which are in agreement with
those of similar mononuclear ReIV complexes that were reported in the literature [18,27–41]. Given that
no significant intermolecular interactions are observed in the crystal structures of 1 and 2, as indicated
in the structure description, the shortest intermolecular Re-X···X-Re distances are covering the range
of 5.93–6.52 Å, we have performed the treatment of the experimental data of the χMT versus T plots
through the anisotropic Hamiltonian of Equation (1) (where Ŝz is the easy-axis spin operator, H is the
applied field, β is the Bohr magneton, g is the Landé factor, and D is the ZFS for the ReIV ion).

Ĥ = D[(ŜZ)
2
− S(S + 1)/3] + g//βHZŜZ + g⊥β(HXŜX + HYŜY) (1)

By assuming that g‖ = g⊥ = g for the two complexes, we have fitted the experimental magnetic
susceptibility data of the compounds 1 and 2, affording the following parameters: |D| = 22.0(2) cm−1,
g = 1.84(2) with R = 5.6 × 10−5 for 1 and |D| = 24.0(2) cm−1, g = 1.82(2) with R = 2.4 × 10−5 for 2 (R being
the agreement factor defined as Σi[(χMT)i

obs
− (χMT)i

calc]2/[(χMT)i
obs]2). The solid red line, indicating

the fit in Figure 3a(1),b(2), matches quite well the experimental curves in both cases. The g and D
values that are computed for 1 and 2 are in agreement with those calculated for previously reported
mononuclear ReIV complexes [18,27–41]. The |D| value that is obtained for 2 is somewhat greater than
that of the complex 1.
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2.2.2. Ac Magnetic Susceptibility

Alternating current (ac) magnetic susceptibility measurements were performed on microcrystalline
samples of 1 and 2 in the temperature range of 2–7 K and in a 3.5 G ac field oscillating at different
frequencies. In both cases, no out-of-phase ac signals (χ”M) are observed at Hdc = 0 G. However,
out-of-phase ac signals, with observable χ”M maxima, take place at low temperatures in 1 and 2 when
an external dc magnetic field (Hdc = 1000 and 5000 G) is applied (Figures 4 and 5). This magnetic
behaviour would indicate that the two studied systems (1 and 2) exhibit slow relaxation of the
magnetisation and, therefore, single-ion magnet (SIM) phenomenon [1–21]. Nevertheless, the relaxation
dynamics that the two compounds exhibit is not equally affected by the external dc magnetic fields.
While the Hdc = 5000 G seems to be optimal for compound 1 (with the presence of more χ”M maxima
that shift towards higher frequencies), this magnetic field results in being less useful for studying the
magnetic relaxation in 2, where a decrease of the number of χ”M maxima in the χ”M versus ν plot
occurs (Figures 4 and 5). In both 1 and 2, the intensity of the χ”M peaks increases with increasing the
external dc magnetic field.

The insets in Figures 4 and 5 show the ln(τ) versus 1/T plot for complexes 1 and 2, respectively. In
the high-temperature region, the experimental data that were obtained from the frequency-dependent
χ”M peaks draw a straight line pretty much in both cases along the ranges of ca. 0.25–0.35 K−1 for 1
ca. 0.35–0.50 K−1 for 2. Consequently, these experimental data were fitted to the Arrhenius equation
(τ = τoexp(Ueff/kBT), where τo is the preexponential factor, τ is the relaxation time, Ueff is the anisotropy
(effective) energy barrier to the magnetisation reorientation, and kB is the Boltzmann constant) by
considering that the magnetisation relaxation only involves an Orbach process [12]. In this way, we can
evaluate the Ueff and τo parameters in this region for 1 and 2 and compare their values with those
previously reported. These fits are indicated as dashed lines in the insets of Figures 4 and 5, and Table 2
provides the Ueff and τo values thus obtained for 1 and 2.
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Table 2. Ueff and τo values obtained through the dc applied magnetic fields of 1000 and 5000 G and the
Arrhenius law for 1 and 2.

Compound Hdc/G Ueff/K τo/s

1
1000 40.6 1.89 × 10−10

5000 33.7 2.28 × 10−9

2
1000 7.2 1.24 × 10−6

5000 7.0 8.38 × 10−7

The Ueff values for 1 are similar between them at both 1000 and 5000 G, and much higher
(approximately five/six times) than that of compound 2 (Table 2). Besides, the energy barrier value of 2
remains practically unaffected with increasing the dc applied magnetic field. The τo parameter for 1
and 2 shows values that are in agreement with those that were reported for similar ReIV complexes
displaying SIM behaviour [20–23].

In the low-temperature region of the ln(τ) versus 1/T plots, curved lines are only observed for 1,
which are better defined when the Hdc = 5000 G is applied (Figures 4 and 5). These features would
account for the occurrence in such conditions of several relaxation processes, especially in compound 1.
In consequence, the whole experimental curve from these ln(τ) versus 1/T plots was fitted through
Equation (2), where four mechanisms for spin-lattice relaxation of magnetisation can be considered,
namely, Orbach (τo

−1exp(-Ueff/kBT)), direct (AT), Raman (CTn), and Quantum Tunnelling (QTM) [12].

τ−1 = τ−1
ORBACH + τ−1

DIRECT + τ−1
RAMAN + τ−1

QTM (2)

All the four mechanisms were considered during the fitting process of the ln(τ) versus 1/T curve
for 1 that was obtained at the optimal magnetic field of 5000 G, whereas in the case of the treatment
of the experimental data acquired with Hdc = 1000 G, the fourth term (QTM) was kept equal to zero
(Table 3). The least-squares fit of the experimental data of 1 through Equation (2) leads to the set of
parameters listed in Table 3. From these results, it is worthy to point out that the Ueff values thus
obtained for compound 1 are somewhat higher than those calculated through the Arrhenius law and
listed in Table 2. Besides, the Ueff parameter for 1 remains higher than that of 2. Indeed, the effective
energy barrier value obtained at the optimal dc field (Hdc = 5000 G) for 1 [43.3 K (30.1 cm−1)] is even
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larger than those previously reported for the hexahalo (PPh4)2[ReF6]·2H2O and (Th2imH)2[ReCl6]
compounds [21,22]. The computed values of τo and τQTM for 1 agree with those that were reported for
other 5d-SIMs [20–23]. On the other hand, the n values for 1 lie between 4.3 and 5.5 and fall into the
range typical of metal ions with relaxation through optical and acoustic Raman-like process (n being
equal to 9 for the Raman relaxation of Kramer ions) [12]. These n values are very close to those that
were obtained for similar 5d-SIMs (Table 3) [24–26].

Table 3. Parameters of the magnetic relaxation obtained through the dc applied magnetic fields of 1000
and 5000 G and the Equation (2) for 1.

Hdc/G Ueff/K τo/s A/s−1K−1 C/s−1K−n n τQTM/s

1000 43.8 6.9 × 10−11 69.9 2.5 5.5 -

5000 43.3 1.7 × 10−10 743.1 19.7 4.3 4.4 × 10−4

The frequency-dependent ac magnetic susceptibility data of compounds 1 and 2 were modelled
to give the Cole-Cole plots that are shown in Figure 6. The obtained values for the α parameter are in
the ranges of 0.09–0.17 (1) and 0.06–0.11 (2), with these values suggesting a narrow distribution of the
relaxation times for these mononuclear ReIV complexes [20–25].
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3. Materials and Methods

3.1. Reagents and Instruments

All of the manipulations were performed under aerobic conditions, using materials as received
(reagent grade). The ReIV precursors, namely, the K2ReBr6 and K2ReI6 salts, were prepared following
the synthetic methods described in the literature [29,30].

Elemental analyses (C, H, N) were performed by the Central Service for the Support to Experimental
Research (SCSIE) at the University of Valencia. Infrared spectra of 1 and 2 were recorded with
a PerkinElmer Spectrum 65 FT-IR spectrometer in the 4000–400 cm−1 region. The powder X-ray
diffraction (PXRD) patterns of 1 and 2 confirmed the homogeneity of their bulk samples (Figure S2).
Variable-temperature, solid-state direct current (dc) magnetic susceptibility data down to 2.0 K were
collected on a Quantum Design MPMS-XL SQUID magnetometer that was equipped with a 5 T dc
magnet. Experimental magnetic data were corrected for the diamagnetic contributions of the involved
atoms by using Pascal’s constants [46].

3.2. Preparation of the Compounds

3.2.1. Synthesis of (PPh4)2[ReBr6] (1)

PPh4Br (41.9 mg, 0.1 mmol) was dissolved in a 1.0 M HBr solution (5.0 mL) and slowly added
to a solution of K2ReBr6 (37.2 mg, 0.05 mmol) dissolved in a 1.0 M HBr solution (25.0 mL). The thus
generated yellow solid was filtered off and then washed with cold isopropanol and diethyl ether.
Orange crystals of 1 were grown in a MeCN:isopropanol (1:2, 20.0 mL, v/v) mixture. Yield: ca. 92.0%.
Anal. Calcd. for C48H40P2Br6Re (1): C, 42.88 and H, 3.00. Found: C, 43.02 and H, 2.96. IR peaks
(KBr pellets, ν/cm−1): 3055(m), 1584(m), 1482(m), 1439(s), 1107(s), 996(m), 722(vs), 690(s), and 529(vs).

3.2.2. Synthesis of (PPh4)2[ReI6] (2)

The synthesis of 2 was very similar to that of 1. PPh4I (46.6 mg, 0.1 mmol) was dissolved in a 1.0 M
HI solution (5.0 mL) and slowly added to a solution of K2ReI6 (0.30 mg, 0.05 mmol) that was dissolved
in a 1.0 M HI solution (25.0 mL). A brown solid was formed, which was filtered off and washed with
cold isopropanol and diethyl ether. Dark-purple crystals of 2 were grown in a CH3CN:CH2Cl2 (1:1,
30.0 mL, v/v) mixture. Yield: ca. 80.0%. Anal. Calcd. for C48H40P2I6Re (2): C, 35.45 and H, 2.48.
Found: C, 35.53 and H, 2.42. IR peaks (KBr pellets, ν/cm−1): 3051(m), 1584(m), 1482(m), 1435(s), 1107(s),
996(m), 722(vs), 689(s), and 526(vs).

3.3. X-ray Data Collection and Structure Refinement

X-ray diffraction data from single crystals of dimensions 0.28 × 0.26 × 0.20 (1) and 0.18 × 0.13 ×
0.08 mm3 (2) were collected on a Bruker D8 Venture diffractometer with graphite-monochromated
Mo-Kα radiation (λ = 0.71073 Å). Crystal parameters and refinement results for 1 and 2 are summarized
in Table 1. The data were processed through SAINT [47] reduction and SADABS [48] multi-scan
absorption software. The structure was solved with the SHELXS structure solution program through
the Patterson method. The model was refined with version 2013/4 of SHELXL against F2 on all data by
full-matrix least squares [49–51]. In the two samples, all non-hydrogen atoms were anisotropically
refined. All of the hydrogen atoms of the PPh4

+ cations were set in calculated positions and refined
isotropically by using the riding model. The graphical manipulations were performed with the
DIAMOND program [52]. The CCDC codes are 1956543 and 1956544 for 1 and 2, respectively.

4. Conclusions

In summary, the X-ray structures and magnetic properties of two mononuclear ReIV complexes,
of general formula (PPh4)2[ReX6] [PPh4

+ = tetraphenylphosphonium cation, X = Br (1) and I (2)],
have been reported. In their crystal lattices, the paramagnetic [ReX6]2− anions are well separated
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from each other by means of the bulky PPh4
+ cations and no significant intermolecular Re−X···X−Re

interactions are present. The study of the relaxation dynamics reveals that 1 and 2 are not equally
affected by the external dc magnetic fields, the bromo-derivative complex 1 exhibiting the higher value
of the energy barrier (Ueff) for the reverse of the magnetisation in this family of hexahalo [ReX6]2−

compounds. Indeed, the Ueff value for 1 is higher than those previously reported for ReIV-based SIMs.
Hence, the information generated by these results could be very useful in designing future magnetic
materials that are based on ReIV SIMs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/6/2/20/s1,
Figure S1: Sextuple phenyl embrace (SPE) supramolecular conformation of the PPh4

+ cations, Figure S2: Plots of
the theoretical and experimental XRD patterns profile.
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