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Abstract: Ti‑doped maghemite nanoparticles of average crystallite size 12.9 nm were synthesized
using the sol–gel method. The XRD profile mainly showed the presence of maghemite phase with
very small phases of TiO2 (rutile and anatase). Magnetization hysteresis loops of the nanoparticles
were obtained between−4 T to +4 T at temperatures of 2, 10, 30, 50, 70, 100, 150, 200, and 300 K under
field cooling (FC) of 1, 2, 3, and 4 T and zero‑field cooling conditions (ZFC). The coercivity displayed
nonmonotonic field dependence while it decreased sharply with temperature and vanished at 150 K
at all fields. Horizontal hysteresis loop shifts were observed in the 2–150 K temperature range in
both the ZFC and FC conditions. The exchange bias effect became negligible in both ZFC and FC
states above 50 K. Magnetization vs. applied field measurements were conducted in both ZFC and
FC cooled conditions at several temperatures in the range of 2–400 K, with spin freezing being ob‑
served below 50 K. The exchange bias effect obtained below 50 K is suggested to be attributed to the
competing roles of the long‑range dipolar and short‑range exchange coupled interactions.

Keywords: exchange bias; coercivity; magnetization; maghemite; nanoparticles; spin glass

1. Introduction
Iron oxide‑basedhematite, maghemite, andmagnetitemagnetic nanoparticles (MNPs)

are intensively studied due to their widespread applications in fields likemagnetic storage,
biomedicine, microwave devices, and catalysis [1–4]. The hematite in the antiferromag‑
netic phase has negligible magnetization at room temperature whereas maghemite and
magnetite are ferrimagnetic in nature at room temperature [5]. The maghemite phase is
the more stable phase at room temperature compared to magnetite, with slow weathering
and low temperature oxidation of the magnetite leading to the formation of maghemite
phase [6]. The maghemite exhibits a spinel crystal structure in which iron is present as
trivalent cations as well as predominant cation vacancies with defective spinel lattice com‑
pared to the magnetite spinel lattice in which iron is occupied by Fe2+ and Fe3+ cations in
tetrahedral and octahedral sites. Although the maghemite lattice has a defective lattice, it
still shows excellent saturationmagnetizationwhich is essential for certain applications [7].
Themaghemite phase when heated in the temperature range of 250–750 ◦C is unstable and
transforms into rhombohedral hematite (α‑Fe2O3) [8].
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Tuning the magnetic properties of maghemite nanoparticles such as coercivity, rema‑
nent magnetization, saturation magnetization, and exchange bias is an important require‑
ment to improve the efficiency of the magnetic nanoparticle in various applications [9–11].
These nanoscale magnetic properties are optimized by changing the particle size, surface
dead layer, magnetic interface, and geometry of MNPs [12–14]. Using chemical methods,
these properties are easily tuned by changing the synthetic conditions [15]. Fantechi et al.
has reported the synthesis Co2+‑doped maghemite nanoparticles with sizes 5–6 nm using
the organometallic decomposition method [16]. They have shown that the doping of Co2+
to the maghemite nanoparticles can cause a nontrivial evolution of magnetic characteris‑
tics such saturation magnetization, blocking temperature, and coercive field. Saturation
magnetization has strong dependence on the tetrahedral and octahedral occupation by
Co2+ which significantly enhances the anisotropy constant. This in turn enhances the ap‑
plication of maghemite nanoparticles in magnetic hyperthermia and MRI contrast agents.
Can et al. reported on the tuning of magnetic hyperthermia efficiency of Ti‑doped mag‑
netite nanoparticles, suggesting that the Ti concentration in the spinel lattice plays a role in
enhancing the heating ability. SiO2‑coated Ti‑dopedmagnetite ((Fe1−xTix)3O4 x = 0.02, 0.03
and 0.05) synthesized using sol–gel method showed high heating ability with a Ti concen‑
tration of x = 0.03 [17]. Studying the exchange bias properties of the Ti‑doped maghemite
nanoparticles will help in understanding the enhanced heating ability in the doped mag‑
netic nanoparticles.

The hysteresis loops have been observed tomove away from the center of the loopwhen
two different magnetic phases are brought into contact with one another. The exchange con‑
tact (coupling) between the various magnetic phases was thought to be the cause of the loop
shifts. The magnitude of the shift of the hysteresis loops can be used to determine the ex‑
change bias field, or EB, which is used to describe the exchange coupling. At the core–shell
interface of MNPs, where the materials for the core and shell have various magnetic phases,
exchange coupling occurs [18]. Even a minor exchange bias effect between a similar mag‑
netic phase core and shell has been documented [19]. The exchange bias effect may also be
caused by the exchange coupling between the uncompensated surface spins and the core mo‑
ments [20]. The exchange anisotropy of core–shellMNPs is poorly revealed at themicroscopic
level. Numerous technologies, including spintronic devices, spin valves, and magneto resis‑
tive random‑access memory circuits, make use of the exchange bias effect, which is a signifi‑
cant factor in deciding the efficiency of the nanoparticles.

2. Experimental Methods
2.1. Synthesis of Ti‑Doped Maghemite Nanoparticles

Ti(IV)‑doped maghemite was prepared by sol–gel method using Ti(nOBu)4 (TB) and
Fe(NO3)3.9H2O (FeNt) in 2‑propanol (PrOH) as the solvent and propylene oxide (PO)
(Sigma Aldrich, Germany) as a gelation promoter. Solutions containing the appropriate
amounts of both precursors were separately prepared and then mixed. In a typical experi‑
ment, 10.7 g (26.4 mmol) FeNt was dissolved in 50 mL 2‑propanol, and 1.0 mL (2.94 mmol)
TB was dissolved in 10 mL of the same solvent. The FeNt solution was added to the TB so‑
lution, and 20.4 mL (0.293 mol) POwas immediately added to the mixture. After a stirring
of the mixture for three hours, it was aged for 24 h to produce a gel. Through evaporation
of the solvent from the gel in a water bath at 80 ◦C, the gel solvent was removed. The prod‑
uct was then dried in an oven for one hour at 120 ◦C before being calcined for four hours
at 350 ◦C.

2.2. Structure Analysis
The crystalline structure and phases of the nanoparticles were characterized from the

X‑ray diffraction (XRD) using a Shimadzu‑6100 powder XRD diffractometer (Shimadzu,
Japan) with Cu–Ka radiation source (λ = 1.542 Å). The diffraction profile of the maghemite
nanoparticles was obtained in the range of 20–80 degrees at a rate of 1 degree/min. The av‑
erage sizes of the nanoparticleswere determinedusing the fullwidth halfmaxima (FWHM)‑
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obtained by Gaussian fitting of the highest intensity peak (311). The average crystallite
sizes were calculated using the Scherrer equation: DP = 0.94λ

β cosθ where DP is the average
crystallite size, β is the FWHM of the highest intensity peak, λ is the X‑ray wavelength,
and θ is the Brags angle.

2.3. Magnetic Measurements
The Physical Properties Measurement System (PPMS, Quantum Design, San Diego,

CA, USA) fromQuantumDesignwas used to obtain theDCmagneticmeasurements of the
nanoparticles using vibrating sample magnetometer (VSM). Field‑dependence magnetiza‑
tion (M–H) measurements were made using the zero field cooled (ZFC) and field cooled
(FC) conditions at different temperatures (2, 10, 30, 50, 70, 100, 150, 200, and 300 K) in the
field range of −4 T to +4 T. The ZFC MH loops were obtained by cooling the particles in
the absence of external magnetic field to the required temperature, and the fieldwas cycled
from −4 T to +4 T. Similarly, the FC cooled curves were obtained by cooling the nanopar‑
ticles under an external magnetic field of 1, 2, 3, and 4 T to the required temperature.

3. Results and Discussion
The XRD pattern of the nanoparticles synthesized is shown in Figure 1. The profile

consists of the peaks corresponding to the maghemite phase (γ‑Fe2O3) and a small frac‑
tion of the TiO2 phases (rutile and anatase). The maghemite peaks are indexed in the XRD
profile and the small fraction of TiO2 phases are indicated by the * in Figure 1 [21]. The
unit cell parameters of the nanoparticles were determined using Rietveld refinement. The
diffractogram the Ti‑doped maghemite nanoparticles matches with the cubic symmetry
(space group P4132); Rietveld refinement was performed using FullProf open‑source ver‑
sion 7.50. Table 1 summarizes the refined parameters, and the lattice parameter obtained
was 8.3344 Å which is on lower side compared to the undoped maghemite nanoparti‑
cles. The calculated parameter was compared to the undoped (8.35673 Å) and (divalent
and trivalent) doped maghemite nanoparticles reported [16,22]. The lattice parameter de‑
creased to a great extent due to the smaller ionic radius of Ti4+ compared to the ionic ra‑
dius of Fe3+. The average size of the maghemite nanoparticles determined using FWHM
of the highest intensity peak (311) and Scherrer method was 12.9 nm. TheWD‑XRF (wave‑
length dispersive X‑ray fluorescence) spectrum of the Ti‑doped maghemite nanoparticles
was obtained using a Rigaku ZSX Primus IV spectrometer (Rigaku Corporation, Japan) to
perform the elemental analysis. The Ti mole fraction obtained from the intensity of the
iron and titanium was 0.11.

Hysteresis loops of the magnetization vs. applied magnetic field obtained in the tem‑
perature range of 2–300 K under field cooling of 0, 1, 2, 3, and 4 T are shown in Figure 2a–e.
The MH loops were measured in the applied dc magnetic field range from +4 T to −4T.
During the FCmeasurements, the particles were cooled to the required temperature in the
range of 2–300 K under the influence of the magnetic field HFC, and the magnetization was
measured as a function of the applied magnetic field. From the hysteresis plots, it is clear
that the nanoparticles showed considerable hysteresis loop openings at temperatures be‑
low 100 K.However, the remanentmagnetization and coercive field valueswere negligible
at room temperature, indicating the superparamagnetic nature of the nanoparticles. The
temperature‑dependent saturation magnetization of the particles measured under all field
cooling is shown in Figure 2f. The saturation magnetization of the nanoparticles showed
high dependency on the temperature with the highest magnetization of 53.2 emu/g at 2 K,
which decreased to 47.14 K at room temperature. The magnetization decreased gradu‑
ally with the increase in the temperature from 2 to 100 K and fell sharply with the further
increase in temperature to 300 K. The field cooling had little effect on the saturation mag‑
netization values. The absolute values of Ms were slightly higher for the field cooled (1,2,3,
and 4 T) conditions compared to the ZFC measurement.
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Table 1. Refined structural parameters of Ti doped maghemite nanoparticles.

Refinement Parameters

Lattice Constant (a = b = c) (Å) 8.3344

α = β= γ (º) 90.000

Density (g/cm3) 4.774

V (Å3) 578.917

Bragg R‑factor 18.6

Rf‑factor 28.0

Chi2 1.39
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(f) Temperature‑dependent saturation magnetization of maghemite nanoparticles under FC (0–4 T).

The nanoparticles were cooled to 2 K in a zero magnetic field before being exposed
to a tiny field of 70, 100, or 200 Oe to record the ZFC‑FC magnetization measurements. To
obtain the ZFC magnetization curves, the sample was heated from 2 to 400 K while the
magnetization was being measured. A magnetic field of 70, 100, or 200 Oe was applied
while the particles were cooled from 400 to 2 K, and the magnetization was measured as
a function of temperature to produce the FC magnetization curves. Figure 3 displays the
FC and ZFC plots that were produced for the maghemite nanoparticles. The blocking tem‑
perature of the maghemite nanoparticles is indicated by the arrow in each ZFC plot. The
blocking temperature measured shows a dependency on the applied magnetic field used
for obtaining the MT measurements as evident from the plots at 200 Oe; the blocking tem‑
perature is 187.5 K, whereas at 70 and 100 Oe, it is around 217.5 K. The broadening of the
peak region in the ZFC plots indicates that the nanoparticles possess significant size dis‑
tribution. The shift in the blocking temperature with respect to the magnetic field applied
can be attributed to the dipolar interaction of the nanoparticles [23]. The magnetization in
the FC plot increases monotonically with the decrease in the temperature down to 50 K,
below which it flattens. This flattening nature of the FC curve below 50 K after bifurcation
hints at the existence of surface spin freezing at low temperatures [24].
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The horizontal shift in the M–H hysteresis loop away from the origin was measured
to ascertain the exchange bias. Figure 4 displays the expanded M–H graphs at the hys‑
teresis loop origin for temperatures of 2, 10, 100, and 300 K, Figure 4a–d. The shifts in the
hysteresis loops depended on both the temperature and the field‑cooling values, as shown
in Figure 4. Figure 4e,f clearly depict the variations in the hysteresis loop at 2 K for various
degrees of field cooling. The coercivity and exchange bias fields were determined from
the M–H hysteresis loops. The magnetic field value at which the magnetization drops to
zero during M–H measurements is known as the coercivity (or coercivity field, HC). The
coercivity and exchange bias values were calculated from the hysteresis loops shown in
Figure 4. The following Equation (1) was used to calculate the coercivity HC [25]:

HC =
|HC1 −HC2|

2
(1)
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The exchange bias field, termedHEB, was used to determine the horizontal shift in the
hysteresis loops:

HEB =
HC1 +HC2

2
(2)

Here, the coercive field at the hysteresis loop descending branch is designated as HC1,
and the coercive field at the ascending branch as HC2.

Figure 5 displays the coercivity as a function of temperature at a zero applied field
(0 T) and several field cooling values (1, 2, 3, 4 T). It can be seen that all curves have similar
trends indicating the absence of any effect for the cooling field on the coercivity. At all
cooled fields, Hc has the highest value of 477 Oe at temperature 2 K with field cooling
1 T, and it decreases sharply with increasing temperature up to 100 K. Above 100 K, the
coercivity of the nanoparticles becomes negligible at all field cooling values. The inset is
the comparison of the coercivity with respect to temperature of the undoped maghemite
nanoparticles reported in our earlier study [26].
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Figure 6 displays the nanoparticles exchange bias field (HEB) values as a function of
temperature at various field cooling settings. The FC state and the ZFC state both had neg‑
ative HEB values at all field cooling values below 50 K, as shown in the Figure 6a. At all
field cooling fields above 50 K, the exchange bias vanished in both the FC and ZFC states.
The improved exchange coupling interaction in the Ti‑doped maghemite nanoparticles in‑
cluded the presence of considerable HC andHEB values at low temperatures. The absolute
exchange bias values of the Ti‑doped nanoparticles were compared with our earlier re‑
port of undoped maghemite nanoparticles with similar size synthesized under the same
conditions [26]. The saturation magnetization of the Ti‑doped maghemite nanoparticles
was 47 emu/g compared with only 40 emu/g for the undoped maghemite. The absolute
exchange bias HEB, values of Ti‑doped maghemite nanoparticles were also slightly higher
compared with those of the undoped maghemite nanoparticles. We believe that the sub‑
stitution of Fe cations by the smaller Ti cations decreased the lattice constant and thus
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increased lattice defects resulting in random (or canted) surface spins at the surfaces of
the nanoparticles. The surface spins can freeze and form a spin glass‑like phase at low
temperatures [27–29]. For a specific orientation of the core magnetization, the canted sur‑
face spins could have multiple configurations leading to a reduction of magnetization [30]
and an enhancement of the effective magnetic anisotropy of nanoparticles [31,32]. The
exchange coupling delivers a further magnetic (exchange) anisotropy to align the surface
spins in certain directions. The exchange coupling decreases with the increase of temper‑
ature and is expected to vanish above the spin freezing temperature, which was 50 K in
our sample. Hence, the observed exchange bias in the Ti‑doped maghemite nanoparticles
could be attributed mainly to the magnetic short‑range exchange coupling between the
core magnetic moment with the frozen surface spins at the surface of the nanoparticle as
we outlined in our previous report on nearly puremaghemite nanoparticles [26]. Referring
to [26] regarding mainly maghemite nanoparticles, we might suggest that at low tempera‑
tures, spin‑glass regions emerged between the maghemite nanoparticles due to the freez‑
ing of their surface spins in random orientations. We argue that the exchange bias effect
is mainly due to the short‑range exchange interaction between the particles core spins and
the surface spins (in the spin‑glass regions). The long‑range dipole–dipole interactions be‑
tween the magnetic moments of the nanoparticles are assumed to be small compared with
the short‑range spin–spin exchange couplings. The exchange bias field values were found
to have monotonic dependence on temperature at all fields except at zero applied field.
However, the exchange bias field had nonmonotonic field dependence at all temperatures
below 50 K. The exchange bias field at zero applied field displayed both positive and neg‑
ative values as shown in the inset of Figure 6b. In this study on maghemite nanoparticles
with 10% Ti doping, interestingly, we obtained very similar coercivity and exchange bias
values with very similar temperatures and field dependencies. One main difference is that
at zero applied field, we observed negative exchange bias field at all temperatures. One
other observed difference was the degree of field nonmonotonicity of the exchange bias
and the decrease in coercivity, as shown in Figure 5. These observations indicate that the
previously reported model of short‑range spin–spin exchange coupling mainly controls
the exchange bias effect. However, the introduction of Ti to the maghemite nanoparti‑
cles produced a small amount of TiO2 nanoparticles which resulted in some separations
of the maghemite nanoparticles. This separation of the maghemite nanoparticles dimin‑
ished the role of the short‑range spin–spin exchange coupling, and thus the long‑range
dipolar interactions between the magnetic moments of the maghemite nanoparticles be‑
gan to become significant. This long‑range dipolar interaction between the magnetic mo‑
ments of the maghemite nanoparticles mediated by the nonmagnetic TiO2 particles led
to frozen moments at low temperatures (below 50 K) producing a super‑spin‑glass phase
which was reflected in the almost temperature‑independent magnetization below 50 K in
the FC measurement (Figure 3). This super‑spin‑glass phase led to the small differences
in exchange bias between the pure maghemite and the Ti‑doped samples. Hence, in the
current sample, both short range direct spin–spin exchange coupling and the long‑range
dipolar moment interactions coexisted and displayed the complex temperature‑ and field‑
dependence exchange bias effect. We expect that with the increase of the Ti percentage,
the long‑range dipolar interactions will play a bigger role in determining the exchange
bias at the expense of the short‑range spin–spin exchange coupling which diminishes as
more maghemite nanoparticles become separated by the Ti particles. This study supports
the possible tailoring of magnetic NPs to suite multifunctional applications.
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4. Conclusions
The sol–gel method was used to synthesize the Ti‑doped maghemite nanoparticles,

which were characterized using XRD (structural) and magnetic measurements in the tem‑
perature range of 2–300 K. The nanoparticles were found to have maghemite phase with
very small additional peaks of TiO2, indicating that most of the Ti atoms are present in
the maghemite crystal lattice. In the ZFC and FC states, magnetic measurements were
made between −4 T and +4 T at different temperatures and field chilled values. Surface
spin freezing was predicted with the temperature FC behavior to occur below 50 K. At low
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temperatures, significant exchange bias and coercivity fields were obtained. The coerciv‑
ity and exchange bias field were observed to decrease with temperature. Above the spin
freezing temperature of 50 K, the exchange bias field disappeared. The competing roles of
the long‑range dipolar contacts and short‑range spin–spin exchange couplings (between
the core spins and the surface spins) are believed to be the cause of the exchange bias
of the Ti‑doped maghemite nanoparticles (between the cores of maghemite nanoparticles
separated by TiO2 particles). These findings suggest that the magnetic characteristics of
maghemite nanoparticles could be tailored for potential uses in magnetic hyperthermia
and data storage.
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