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Abstract: The hexacoordinate Co(II) complex [Co(neo)2(cin)][BPh4]·1/2 Me2CO (1·1/2Me2CO) con-
taining trans-cinnamic acid (Hcin) and neocuproine (neo) was prepared. The compound 1·1/2Me2CO
was characterized via single-crystal X-ray analysis, FT-IR spectroscopy, and magnetic measurements.
The coordination polyhedron of the complex cation adopts a deformed octahedron shape, and cinna-
mate exhibits a bidentate mode of coordination, which is unusual for mononuclear Co(II) cinnamate
complexes. The analysis of DC magnetic measurements with zero-field splitting (ZFS) spin Hamilto-
nian revealed large magnetic anisotropy defined by the axial ZFS parameter D = +53.2 cm−1. AC
susceptibility measurements revealed the slow relaxation of magnetization under the applied field;
thus, 1·1/2Me2CO behaves as a field-induced single-molecule magnet. The analysis of magnetic
properties was also supported by CASSCF/NEVPT2 calculations.

Keywords: cobalt(II); complex; single-molecule magnet; cinnamic acid

1. Introduction

Single-ion magnets (SIMs), a subgroup of single-molecule magnets (SMMs) where
only one metallic center is responsible for the slow relaxation of magnetization, have
become increasingly attractive as more and more newly discovered SIMs have exhib-
ited higher relaxation barriers and blocking temperatures, culminating in a series of
dysprosocenium complexes [1,2] with the highest blocking temperature yet achieved
of TB = 80 K and Ueff = 1541 cm−1 for the [(CpiPr5)Dy(Cp*)][B(C6F5)4] complex (CpiPr5 =
penta(isopropyl)cyclopentadienyl, Cp* = pentamethylcyclopentadienyl) [3].

However, as these compounds are usually highly sensitive to air and moisture, more
stable alternatives, albeit generally exhibiting lower barriers, are still of much interest,
such as the [Dy(bbpen)X] derivatives (bbpen = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(2-
pyridylmethyl)ethylenediamine) [4,5] for Ln(III) systems or the (HNEt3)2[Co(bmsab)2]
complex (bmsab = N,N′-1,2-phenylenebis(methanesulfonamide)) [6] for 3d metal systems.
Out of the 3d metals, Co(II) systems are by far the most promising due to their large
spin-orbit coupling and good predisposition for significant magnetic anisotropy; thus, a
plethora of cobalt-based SIMs already exist [7–9]. Co(II) systems do not exhibit such high
barriers but are generally easier to design compared to their Ln(III) counterparts as their
coordination sphere is usually limited to 4–6 donor atoms, whereas Ln(III) may contain
a much larger number of donor atoms, commonly between 8 and 12. This often leads to
the unwanted coordination of either a solvent molecule or a bridging ligand, which might
worsen the magnetic properties [10].

The magnetic bistability of SIMs offers a range of applications such as spintronics,
quantum computing or high-density data storage [11]. Most often, switching between the
spin states is performed with the external magnetic field; however, there has been much
interest in the design of systems with alternative ways of effecting the form of switching
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that may, for example, introduce on/off states of the slow relaxation of magnetization,
provide ultrafast changes in magnetization or eliminate the impracticalities associated
with external magnetic field switching focused to a scale of single molecules [12,13]. One
method of design is based on the introduction of photoswitchable molecules into the metal
complex structure, which would induce a change in the magnetic properties [14] upon
irradiation, analogously to what has already been observed for ligand-driven light-induced
spin change complexes [15,16].

Photoswitchable complexes containing azo (N=N) [17,18] or olefin (C=C) [19,20]
moieties have been well known for their cis/trans-photoisomerization property [21] for
some time, although not many have been studied for their photomagnetic properties. Their
photoisomerization is generally only observed in solution as crystal packing often sterically
hinders the switching action in the solid phase; however, some research groups have shown
that this can be overcome, for example, by dissolving and setting the sample in a polymer
matrix [22] or by utilizing layered polyoxometalate films [23].

The naturally occurring and thermodynamically more stable trans-isomer of cinnamic
acid, well known for its honey-like odor, ref. [24], has been historically one of the first
widely studied olefin photoisomerisable systems. Dating back to the early 1900s, the
first irradiation studies [25,26] showed the possibility of the isolation of the separate
geometric isomers, and B. K. Vaidya later reported [27] on a more robust procedure for the
isolation of the cis-isomer by simply irradiating a methanolic solution of a trans-cinnamic
acid derivative with UV light and subsequently separating the isomers via fractional
crystallization or, alternatively, vacuum distillation [28]. A new easier methodology for the
preparation of cis-isomers of various cinnamic acid derivatives was introduced by M. L.
Salum and co-workers, which involves the irradiation of their ionic liquids in acetonitrile,
during which less soluble cis-isomer precipitates out of the solution [29]. Compared to most
of its azobenzene counterparts, cis-cinnamic acid shows much better thermal stability and
only readily reisomerises to the trans-isomer when heated. Interestingly, only a handful of
mononuclear Co(II) complexes containing cinnamic acid as a ligand have been prepared,
and in all cases, cinnamic acid coordinates monodentately with the single carboxylate
oxygen to the metal center [30–33].

Based on the aforementioned insights, we decided to utilize trans-cinnamic acid (Hcin)
as a co-ligand for the preparation of a new single-ion magnet with a photoswitchable
moiety. The cobalt(II) bis(neocuproine) complex seemed to be an excellent initial build-
ing block, as a more recent paper by J. Vallejo and co-workers utilized this exact system
with the benzoic acid co-ligand to yield a complex exhibiting a slow relaxation of mag-
netization [34]. Moreover, the neocuproine ligand was beneficial for the preparation of
other Co(II) SMMs in the past [35–37]. We were successful in the preparation of the title
compound [Co(neo)2(cin)][BPh4]·1/2Me2CO (1·1/2Me2CO) (Scheme 1), a novel single-ion
magnet with a light-switchable moiety, and herein report on its synthesis, crystal structure,
and magnetic data measurements.
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2. Materials and Methods
2.1. General Considerations and Instrumentation

All chemicals and solvents were purchased from available commercial sources and
were used without further purification.

C/H/N elemental analysis was performed on a Thermo Scientific Flash 2000 analyzer.
Infrared spectra were obtained on Jasco FT/IR-4700 via the ATR technique. Thermal
stability was studied using a Discovery SDT 650 thermal analyzer (TA Instruments) for
simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) with a
5 ◦C/min gradient of temperature and a dynamic air atmosphere (50 mL/min).

The shape of the coordination polyhedron was analyzed with Shape 2.1 software [38,39].
The crystal data and computational data were analyzed and visualized with the help of
Mercury [40], Diamond [41], and Vesta 3 [42] software.

2.2. Synthesis of Compound 1·1/2Me2CO

To a stirred solution of 45.8 mg (125 µmol) of Co(ClO4)2·6H2O in 5 mL of acetone, 54.3 mg
(250 µmol) of neocuproine (neo) hemihydrate was added. Subsequently, 18.5 mg (125 µmol)
of trans-cinnamic acid (Hcin) was added, and after its dissolution, 17.3 µL (125 µmol) of
triethylamine was added. To this mixture, a filtered solution of 85.5 mg (250 µmol) of
sodium tetraphenylborate in 3 mL of acetone was poured in, and the reaction mixture was
put into a fridge overnight to yield pink–red crystals of the [Co(neo)2(cin)][BPh4]·1/2Me2CO
product, which were filtered off, washed with acetone and dried in a vacuum desiccator.
The yield was 70.2 mg (60%). Large crystals were obtained by letting the reaction mix-
ture stand undisturbed at room temperature for several days. Anal. Calc. values for
C62.5H54BCoN4O2.5 are as follows: C, 77.32; H, 5.61; N, 5.77. The findings were as follows:
C, 77.20; H, 5.65; N, 5.74. FT-IR (ATR, cm−1): 486 w, 549 w, 591 w, 607 w, 654 w, 683 w, 702
s, 729 m, 742 w, 774 w, 813 w, 851 m, 980 w, 1030 w, 1067 w, 1100 w, 1152 w, 1213 w, 1249
w, 1293 w, 1357 m, 1417 s, 1454 w, 1479 w, 1498 m, 1537 w, 1563 w, 1579 w, 1592 w, 1622 w,
1641 m, 1715 w, and 3055 m.

2.3. X-ray Diffraction Analysis

A suitable single crystal of compound 1 was used for the X-ray diffraction experi-
ment using a Rigaku XtaLAB Synergy-I diffractometer with a microfocused RTG-source
PhotonJet-i (Cu) and a HyPix Bantam detector. The structure was solved using the
SHELXT [43] program and refined via the full matrix least-squares procedure with
Olex2.refine [44] in OLEX2 (version 1.5) [45]. The multi-scan absorption corrections were
applied using the program CrysAlisPro 1.171.40.82a [46]. The crystal structure of com-
pound 1 was determined at two different temperatures. Initially, the measurement was
conducted at room temperature (1@293K). The quality of structure refinement was suffi-
cient; however, despite observing a small residual density, we were not able to confirm the
presence of the co-crystallized acetone molecule. Upon measuring the crystal structure at
100K, we confirmed the presence of half of an acetone molecule per asymmetric unit in the
crystal structure of 1@100K. The quality of refinement for 1@100K was significantly better
than that of 1@293K; therefore, the structure of 1@100K was used for the discussion of the
crystal structure.

The non-routine aspects of refinement were as follows. In each cavity within the crystal
structure of the studied compound, there resides one acetone molecule. This molecule
exhibits disorder due to a combination of positional and disorder involving a special
position. Attempts to model this disorder did not yield a satisfactory model with physically
meaningful bond lengths and angles for the acetone molecule. Consequently, solvent
density was removed using a solvent masking procedure [47] incorporated in OLEX2. As
a result, 66 electrons were found within the 358 Å3 of a void volume per unit cell. This
is consistent with the presence of 0.5 acetone per asymmetric unit cell (equivalent to 16
electrons per asymmetric unit, and 64 electrons per unit cell).

X-ray powder diffraction was measured using Rigaku MiniFlex600.
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2.4. Magnetic Measurements

Both static and dynamic magnetic field measurements were performed on a Quantum
Design MPMS®3 SQUID magnetometer. The temperature-dependent DC magnetic data
were acquired at B = 0.2 T, and field-dependent isothermal data were measured in the range
B = 0–7 T for T = 2 and 5 K. The magnetic data were corrected for diamagnetic susceptibility
and the signal of the eicosane and sample holder. Diamagnetic susceptibility was estimated
using Pascal’s constants [48]. The AC susceptibility data were acquired for frequencies
1–1000 Hz for a temperature range up to 6 K, and for a magnetic field of up to 0.5 T.

2.5. Theoretical Calculations

Theoretical calculations were performed with the ORCA 5.0.4 software package [49,50].
First, hydrogen atomic positions were optimized using density functional theory (DFT) on
a complex cation fragment extracted from the crystal structure using a BP86 functional [51].
The resolution of identity (RI) approximation [52] with the def2/J auxiliary basis set [53] for
Coulomb fitting was employed, and the def2-TZVP basis set for all atoms except for H and
C, where less expensive def2-SVP was chosen, was employed [54]. Next, the state-average
complete active space self-consistent field (CASSCF) calculations [55] supplemented with
N-electron valence second-order perturbation theory (NEVPT2) [56,57] were performed
with the active space defined by 7 electrons in 5 d-orbitals, CAS(7e,5o). The same basis sets
were used, and additionally, a def2-TZVP/C auxiliary basis set, for correlation fitting [58],
and chain-of-sphere approximation (RIJCOSX) [59] were utilized.

3. Results and Discussion
3.1. Synthesis and General Characterization

The synthesis of the title compound was performed in a one-step fashion and did
not require an inert atmosphere or anhydrous conditions (Scheme 1). First, the solution
of the bis(neocuproine) cobalt(II) precursor complex was prepared by dissolving cobalt
perchlorate in acetone, into which two equivalents of neocuproine hemihydrate were
added. To this solution, one equivalent of trans-cinnamic acid was added and subsequently
neutralized with one equivalent of triethylamine. The perchlorate anion was then replaced
with tetraphenylborate by adding a solution of two equivalents of sodium tetraphenylbo-
rate in acetone. The bulk crystalline product then crystallized in a fridge overnight. Big
monocrystals could be obtained via slow and undisturbed isothermal crystallization at
room temperature.

The purity of the bulk sample was confirmed via elemental analysis and X-ray powder
diffraction (Figure S1), and was in agreement with the crystal structure determined from a
single crystal. As is typical for coordination compounds, the FT-IR spectrum (Figure S2)
shows weak and downfield-shifted stretching vibrations of the coordinated cinnamate
carboxylate group at 1641 cm−1. Intense C=C/C=N stretching vibrations of the aromatic
rings are observed around 1417 cm−1 owing to the high abundance of aromatic rings in
the structure. Bending out-of-plane vibrations of C-H groups and aromatic rings can then
be observed at 851, 729 and 702 cm−1. C-H stretching vibrations of the methyl groups
of neocuproine are present at 3055 cm−1. Additionally, the weak vibration at 1715 cm−1

suggests a presence of acetone in the crystal structure, which is supported by elemental
analysis and thermogravimetric measurements (Figure S6), where the gradual loss of
acetone can be observed up to 215 ◦C followed by the decomposition of the complex.
Single-crystal X-ray diffraction analysis confirmed that the title compound, compound 1,
forms an acetone hemisolvate.

Moreover, the photochemical studies were performed in the solid phase on powdered
samples utilizing infrared spectroscopy, as a distinct change in FT-IR spectra is observed for
cis- and trans-isomers of cinnamic acid [60]. The individual FT-IR spectra were measured be-
fore and after 15 min of simultaneous irradiation with two 6 W UV lamps (254 and 365 nm).
Experiments were performed on compound 1·1/2Me2CO and also dried compound 1 (dried
for 30 min at 160 ◦C). No change in spectra was observed after UV irradiation (Figure S7)
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for both 1·1/2Me2CO and 1, and we therefore conclude that no photoisomerization occurs
in the aforementioned conditions. It is most likely that the crystal packing blocks the
switching action even after the removal of the acetone molecule.

3.2. Description of the Crystal Structure

Prepared single crystals of 1·1/2Me2CO (Table 1) belong to the monoclinic system
with the space group P21/n. The asymmetric unit (Figure 1a) contains a complex cation,
[Co(neo)2(cin)]+, and tetraphenylborate anion, [BPh4]−. The cobalt(II) ion is hexacoordinate
with the {N4O2} donor set. The geometry of the coordination polyhedron was analyzed
with Shape 2.1 software, which determined the shape to be closest to the octahedron
(Oh) with a score of 3.150. Inspection of the structure revealed that the deviation from a
perfect octahedron is caused mainly by the steric hindrance of the neocuproine methyl
groups (Figure 1b). The carboxylate group of the cinnamic acid was coordinated with
the metal center with both oxygen atoms almost equidistantly and with bond lengths
d(Co1-O1) = 2.134(1) Å and d(Co1-O2) = 2.193(1) Å, and they form an acute angle of
∠(O1-Co1-O2) = 61.12(4)◦, which additionally contributes to the deformation of the coordi-
nation polyhedron. To our knowledge, this is the first resolved structure of a mononuclear
Co(II) complex where the cinnamate ligand is coordinated bidentately to a single cobalt
center. Bond lengths and angles of the coordination polyhedron are summarized in Table 2.

Table 1. Crystallographic data and details of the structure refinement of compound 1.

Compound 1@100K 1@293K

Empirical formula C61H51BCoN4O2 C61H51BCoN4O2
Formula weight 941.79 941.79

T/K 100.0(1) 293(2)
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n

Unit cell dimensions
a/Å 19.2108(2) 19.1252(2)
b/Å 11.24860(10) 11.49370(10)
c/Å 23.3407(2) 23.4892(2)
α (◦) 90 90
β (◦) 94.0510(10) 93.9610(10)
γ (◦) 90 90

V/Å3 5031.20(8) 5151.05(8)
Z, Dc/g·cm−3 4, 1.243 4, 1.214

Absorption coefficient (mm−1) 3.042 2.971
F(000) 1972 1972

Reflections collected/unique (Rint) 32,069/9403 (0.0259) 9354/7614 (0.0248)
Data/restraints/parameters 9403/0/626 9354/0/626

Goodness-of-fit on F2 1.045 1.048
Final R indices [I > 2σ(I)] R1 = 0.0359, wR2 = 0.0932 R1 = 0.0608, wR2 = 0.1851

R indices (all data) R1 = 0.0401, wR2 = 0.0956 R1 = 0.0718, wR2 = 0.1959
CCDC 2299689 2306545

Despite the abundant presence of aromatic rings, not many of them form any notable
π–π interactions, except for stacking contact between the two neocuproine rings of adjacent
complex cations of a unit cell (Figure 2a) with a distance between their centroids of 4.030 Å.
The closest distance between the cobalt centers is 10.1549(5) Å, which basically rules out
potential magnetic exchange interactions.

The cavity, calculated using a probe radius of 1.2 Å, is situated adjacent to the cin-
namate fragment and occupies 6.6% of the unit cell volume (Figure 2b). As previously
discussed in Section 3.1, each cavity is occupied by one acetone molecule. The precise mod-
eling of their positions was not carried out due to their involvement in intricate positional
disorder (for detailed information, please consult the experimental section).
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3.3. Magnetic Properties
3.3.1. Static Magnetic Properties

The temperature- and field-dependent DC magnetic data of 1·1/2Me2CO are presented
in Figure 3. The effective magnetic moment at room temperature was determined to be
µeff/µB = 5.12, a value much higher than the calculated spin-only moment of µeff/µB
= g
√

S(S + 1) = 3.87 for Co(II) with S = 3/2 and g = 2.0. The gradual decrease in µeff
was then observed as the sample was cooled down to 1.8 K with µeff/µB = 3.81. This
strongly suggests that complex 1·1/2Me2CO possesses large magnetic anisotropy due to
the zero-field splitting [61]. Isothermal molar magnetization was saturated to the value of
Mmol/(NAµB) = 2.35 at 2 K and 7 T, which also reflects large magnetic anisotropy because
the expected theoretical value is Mmol/(NAµB) = g·S = 3 for g = 2.0. Therefore, the simul-
taneous fit of both temperature- and field-dependent magnetization data was performed
using the following spin Hamiltonian (Equation (1)):

Ĥ = D
(

Ŝ2
z − Ŝ/3

)
+ E

(
Ŝ2

x − Ŝ2
y

)
+ µBBgŜ (1)

where D and E are axial and rhombic zero-field splitting parameters, respectively, and
the last term is the Zeeman term [44]. The analysis was performed for both positive and
negative D-parameters; however, only the positive D-parameter was able to reproduce all
experimental data properly. The best-fit parameters are D = +53.2 cm−1, gxy = 2.59, gz = 2.0
(fixed) and χTIP = 21.3 × 10−9 m3mol−1 (Figure 3), where χTIP represents temperature-
independent paramagnetism [62]. Such a large value of D means that magnetic levels
originating from S = 3/2 are separated by ∆ = 2D = 106 cm−1. It needs to be mentioned
that the fitting procedure was not sensitive to the E parameter.
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Figure 3. Temperature dependence of the effective magnetic moment, the molar magnetization mea-
sured at B = 0.2 T (inset), and the isothermal magnetizations measured at T = 2 and 5 K for 1·1/2Me2CO.
Empty circles—experimental data; full lines—calculated data with parameters in the text.

3.3.2. Dynamic Magnetic Properties

The AC susceptibility measurements were performed to investigate the possibility of
the slow relaxation of the magnetization in compound 1·1/2Me2CO. Therefore, first, AC
susceptibility was measured at T = 2 K with a varying static magnetic field as depicted in
Figure 4. Evidently, the application of the static magnetic field resulted in an increase in
out-of-phase AC susceptibility, and it was possible to analyze experimental data within
the range of Bdc = 0.015 to 0.2 T with the one-component Debye model in accordance with
Equation (2),

χ(2π f ) = χS +
χT − χS

1 + (i2π f τ)1−α
(2)
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which led to isothermal (χT) and adiabatic (χS) susceptibilities, relaxation times (τ) and
distribution parameters (α)—see Table S1. The low-frequency relaxation channel started to
appear above 0.2 T and was not analyzed further.
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Figure 4. Field-dependent AC susceptibility data for 1·1/2Me2CO. Top: in-phase χ′ and out-of-phase
χ′′ molar susceptibilities at T = 2 K (full lines are only guides for the eyes). Middle: frequency
dependence of in-phase χ′ and out-of-phase χ′′ molar susceptibilities fitted with one-component
Debye’s model using Equation (2) (full lines). Bottom: the Argand (Cole–Cole) plot with full lines
fitted with Equation (2) and, on the right, the fit of resulting relaxation times, τ, with the combination
of quantum tunneling and Raman relaxation processes (red line) using Equation (3).

Next, the field-dependence of τ vs. B was subsequently fitted with Equation (3),

1
τ
=

b1

1 + b2B2 + d
1 + eB2

1 + f B2 Tn (3)

which comprises quantum tunnelling (parameters b1 and b2) and the Raman process
(parameters d, e, f and n). As the expected value of n for Kramers ions is nine, it was fixed
during fitting [63,64]. The resulting parameters are b1 = 548(67) s−1, b2 = 486(136) T−2,
d = 1.60(15) s−1K−9, e = 39(14) T−2, and f = 4.4(4.4) T−2—see Figure 4.

As the field dependence of τ showed a maximum in the range 0.05–0.1 T, the static
magnetic field was then fixed to BDC = 0.09 T and the AC susceptibility was measured
from 1.8 to 6 K—see Figure 5. Herein, the experimental data were again analyzed with
a one-component Debye model (Equation (2)) in the range 1.8–5.0 K, and the resulting
parameters are listed in Table S2. The temperature dependence of τ was analyzed with
Equation (4),

1
τ
= CTn (4)
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for the Raman process, which resulted in C = 129(2) s−1K−n and n = 3.16(2)—see Figure 5.
The Raman exponent has smaller value than the expected value of 9 for Kramers ions,
but when optical and acoustic phonons are considered, values in the range 1–6 are accept-
able [33,65–68].
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Figure 5. The temperature-dependent AC susceptibility data for 1. Top: in-phase χ’ and out-of-phase
χ′′ molar susceptibilities at BDC = 0.09 T (full lines are only guides for the eyes). Middle: frequency
dependence of in-phase χ’ and out-of-phase χ′′ molar susceptibilities fitted with the one-component
Debye model using Equation (2) (full lines). Bottom: the Argand (Cole–Cole) plot with full lines
fitted with Equation (2) and, on the right, the fit of resulting relaxation times, τ, with the Raman
relaxation processes (red line) using Equation (4).

3.4. Theoretical Calculations

With the help of ab initio ligand field theory (AILFT) [69,70], the energies of d-orbitals
were calculated and are depicted in Figure 6. The assignment of the corresponding d-
orbitals is shown in Figure S3. The splitting of d-orbitals is typical of pseudo-octahedral
CoII complexes, in which t2g an eg orbitals within ideal Oh symmetry are split due to the
lower symmetry of the real complex under study. Hence, the ground ligand field term,
T1g, is also split into three terms within the range 0–1500 cm−1 (Figure 6, middle). Finally,
the spin–orbit interactions result in ligand field multiplets, which are shown in Figure 6
(right), where the energy separation of two lowest Kramers doublets is ∆ = 125 cm−1, and
this value is close to that derived from the fitting of the experimental magnetic data. The
further analysis resulted in the zero-field splitting parameters D = 60.7 cm−1, E/D = 0.149,
gx = 2.453, gy = 2.666 and gz = 2.004. The actual D-tensor is depicted in Figure S4. As the E/D
ratio is non-zero, the resulting magnetic anisotropy can be either of an easy-plane or easy-
axis type [71]. Hence, the ground state Kramers doublet was analyzed with the effective
spin 1/2, which resulted in g1 = 2.010, g2 = 3.753, g3 = 6.316 and gave = 4.026. Thus, it can be
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concluded that it holds g1, g2 < gave and gave < g3, which means there is an easy-axis type of
the magnetic anisotropy in compound 1 according to CASSCF/NEVPT2 calculations. This
is in agreement with the calculated 3D magnetization depicted in Figure S5 (T = 2 K and
B = 0.1 T), which shows a shape characteristic of an easy-axis type of anisotropy. Therefore,
further analysis was conducted with the SINGLE_ANISO module [72], in order to compute
the ab initio magnetization blocking barrier displayed in Figure 7. The corresponding
matrix element of the transversal magnetic moment between ground states with opposite
magnetization is equal to 0.96; thus, it is larger than 0.1, which suggests a large predisposi-
tion for the quantum tunneling of magnetization, which is in line with the experimental
AC data.
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4. Conclusions

The crystal structure shows an unusual bidentate mode of coordination of cinnamate
into a single Co(II) center, contributing to the deformation of the coordination polyhedron.
Single-crystal measurement at room temperature most likely led to the formation of voids
due to solvent loss.

Dynamic magnetic measurements revealed that the title compound, compound
1·1/2Me2CO, exhibits a slow relaxation of magnetization in an applied external mag-
netic field with a predominant Raman process as the relaxation mechanism. Static mag-
netic measurements, in combination with theoretical calculations, showed that compound
1·1/2Me2CO possesses large magnetic anisotropy of the axial type due to zero-field splitting
with a positive D value of +53.2 cm−1. Despite the evident discrepancy between fitted and
calculated rhombicity, the experimental data are in good agreement with CASSCF/NEVPT2
results. It is well known that static magnetic measurements usually cannot determine rhom-
bicity with high precision, and more sensitive methods, such as EPR, would have to be
utilized to resolve both E and g-factors more accurately.

To conclude, a Co(II) field-induced single-molecule magnet with a potentially photoi-
somerizable ligand was prepared and, this opens up an avenue for the further investigation
of similar compounds, which would be interesting not only in the field of molecular
magnetism, but also in the field of photomagnetism.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/magnetochemistry9110229/s1. Figure S1. X-ray powder diffrac-
tion of compound 1·1/2Me2CO measured at room temperature and compared to the simulation calcu-
lated from SC-XRD data measured at 293 K. Figure S2. FT-IR spectrum of compound 1·1/2Me2CO.
Figure S3. Assignment of energy levels of d-orbitals of compound 1. Figure S4. D-tensor (NEVPT2)
of compound 1. Axes: x—red; y—green; z—blue. Figure S5. Calculated 3D magnetization of
compound 1 at T = 2 K and B = 0.1 T. Figure S6. The results of simultaneous TG/DSC thermal
analysis of 1·1/2Me2CO (5 ◦C/min, 50 mL/min air atmosphere) depicted as TG (in blue) and DSC
(green) curves; TG = thermogravimetry, and DSC = differential scanning calorimetry. Figure S7.
Top—compound 1·1/2Me2CO before (blue) and after (red) irradiation. Bottom—compound 1 before
(blue) and after (red) irradiation. Table S1. The parameters of the one-component Debye model
used to analyze the field-dependent AC susceptibility data of compound 1·1/2Me2CO; Table S2. The
parameters of the one-component Debye model used to analyze the temperature-dependent AC
susceptibility data of compound 1·1/2Me2CO.
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