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Abstract: A Support Vector Machine (SVM) for regression is a popular machine learning model
that aims to solve nonlinear function approximation problems wherein explicit model equations are
difficult to formulate. The performance of an SVM depends largely on the selection of its parameters.
Choosing between an SVM that solves an optimization problem with inequality constrains and
one that solves the least square of errors (LS-SVM) adds to the complexity. Various methods have
been proposed for tuning parameters, but no article puts the SVM and LS-SVM side by side to
discuss the issue using a large dataset from the real world, which could be problematic for existing
parameter tuning methods. We investigated both the SVM and LS-SVM with an artificial dataset
and a dataset of more than 200,000 points used for the reconstruction of the global surface ocean
CO2 concentration. The results reveal that: (1) the two models are most sensitive to the parameter
of the kernel function, which lies in a narrow range for scaled input data; (2) the optimal values of
other parameters do not change much for different datasets; and (3) the LS-SVM performs better than
the SVM in general. The LS-SVM is recommended, as it has less parameters to be tuned and yields
a smaller bias. Nevertheless, the SVM has advantages of consuming less computer resources and
taking less time to train. The results suggest initial parameter guesses for using the models.

Keywords: support vector machine for regression; SVM; LS-SVM; machine learning; parameter
optimization; global ocean CO2

1. Introduction

Machine intelligence has emerged as an important player in transforming everything from daily
life to scientific research [1]. In the broad spectrum of machine learning models, Support Vector
Machine (SVM) is one of the most widely used models. In geosciences, SVMs have been used to
interpolate scarce measurements to regional [2–4], continental [5,6] and global scales [7,8]. SVM was
introduced in the early 1990s [9] for classification and later extended to function regression [10]. As the
SVM for regression includes inequality constrains, its results could be biased in comparison with the
target. The Least Square Support Vector Machine (LS-SVM) for regression [11] is a reformulated SVM
that minimizes the square error between the model and the target. The equality constrains significantly
reduce the possibility of making a biased prediction.

It is well known that the performance of an SVM depends strongly on the selection of its parameters.
Exhaustive grid search and a cross-validation method [5,6,12] were traditionally employed to obtain
optimal parameter values. With a large dataset, parameter tuning could become too expensive to be
practical for an office PC due to long computing time and lack of prior knowledge of the parameters.
Several alternative methods have been proposed to speed up the search [13–20]. However, they were
tested either with only toy examples or with real world data of a few hundreds to a few thousands of
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samples. Unless a software includes parameter tuning tools, implementing methods is not a simple
task for many users. Meanwhile, an automatic tuning tool, for example the MATLAB toolbox of [11,21],
may not work with a large dataset or may take a very long time to compute.

We investigated both the SVM and LS-SVM with an artificial dataset and a dataset used for the
global surface ocean CO2 mapping, which included more than 200,000 data points. The results would
give users general hints for picking up initial parameter guesses and tuning parameters effectively. The
side-by-side comparison would also help users to understand the differences between the two models.

2. Materials and Methods

2.1. Models

Given a training dataset {xi, yi} with xi ∈ <
p being an input, yi ∈ <

1 being the target output, and
i∈(1,n), the goal of the SVM for regression is to find a function that has at most ε deviation from yi for
all the training data and at the same time is as flat as possible [10], i.e.,

f (xi) = wTϕ(xi) + b. (1)

where w,ϕ(xi) ∈ <n and b is a constant. The functionϕ(xi) maps the p-dimensional space of xi to a
much higher dimensional space, resulting in a generalized model that can be used to solve various
nonlinear problems without having to know the explicit relation between the target and the inputs.

The flatness condition can be formulated to the convex optimization problem:

minimize 1
2 wTw

subject to
{

wTϕ(xi) + b− yi ≤ ε
yi −wTϕ(xi) − b ≤ ε

.
(2)

The inequity constrains indicate that data points having errors smaller than ε are ignored or not counted
as support vectors. As there may not be a function that approximates all (xi, yi) pairs with ε precision,
a pair of slack variables were introduced to cope with the infeasible constraints. The optimization
problem becomes:

minimize 1
2 wTw + C

n∑
i=1

(
ξi + ξ∗i

)
, C > 0,

subject to
{

wTϕ(xi) + b− yi ≤ ε+ ξ∗i
yi −wTϕ(xi) − b ≤ ε+ ξi

and ξi, ξ∗i ≥ 0.
(3)

The parameter C determines the trade-off between the flatness of the function and the amount up to
which deviations larger than ε are tolerated. Applying Lagrange multipliers to the problem above
yields a dual optimization problem:

minimize


1
2 (α−α

∗)T
Ω(α− α∗)

ε
n∑

i=1

(
αi − α

∗

i

)
−

n∑
i=1

yi
(
αi − α

∗

i

)
subject to

n∑
i=1

(
αi − α

∗

i

)
= 0 and 0 ≤ αi, α∗i ≤ C,

(4)

where αi are coefficients to be solved and Ω is a n by n matrix with

Ωi j = K
(
xi, x j

)
= ϕ(xi)

Tϕ
(
x j

)
. (5)

The kernel function K(xi,xj) may take several forms. Our investigation focused on the most used radical
basis function:
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K
(
xi, x j

)
= exp

−‖xi − x j‖
2

2σ2

, (6)

where σ is a parameter affecting the shape of the hyperplane of the SVM. After solving Equation (4),
the approximate function (1) becomes:

f (xi) =
n∑

j=1

(
αi − α

∗

i

)
K
(
xi, x j

)
+ b. (7)

Instead of the inequality constrains, the LS-SVM algorithm [11] reformulates Equation (2) with a
least square error function, i.e.,

minimize 1
2

(
wTw + γeTe

)
,

subject to ei = yi −wTϕ(xi) − b.
(8)

where γ > 0 is the tradeoff parameter for function approximation error. Solving the problem by the
Lagrange multipliers eventually yields:[

0 uT

u Ω + γ−1I

][
b
α

]
=

[
0
y

]
, (9)

where u is a n × 1 vector with all entries being 1. After solving Equation (9), the approximate
function (1) becomes:

f (xi) =
n∑

j=1

αiK
(
xi, x j

)
+ b. (10)

In summary, the parameters to be optimized include the ε and C in Equation (4) for the SVM, the
γ in Equation (9) for the LS-SVM, and the σ in Equation (6) for both the SVM and LS-SVM. It is not
difficult to see that the larger the σ, the flatter the hyperplane and therefore the less capable the kernel
is to fit a nonlinear function. Because of the different constrains, a distinguished difference between
the SVM and LS-SVM is that all the training data points are included as the support vectors of the
LS-SVM, whereas the SVM excludes those points whose distance from the hyperplane is less than
ε. The C parameters also affects the number of support vectors of the SVM through the soft margin.
Regarding the LS-SVM, the inverse of the γ is equivalent to the regularization factor for solving the
ill-conditioned linear system equations. A smaller γ indicates more precise fitting of a function.

2.2. Software

We used the standalone freeware LibSVM [22] for the SVM model. Although there are other
freeware like SVMLight [23] and SVMTorch [24], they had problems with large datasets in our test.
For the LS-SVM, there was no standalone freeware to our knowledge. Available MATLAB toolboxes,
such as LS-SVMlab [11] and StatLSSVM [21], had problems with our large CO2 dataset. We have
written a standalone freeware available at http://united-csfe.com/fcew/ann.zip. It implements a
conjugate-gradient method to solve a large linear equation efficiently and includes the option to
normalize data internally to release users from the normalization procedure.

2.3. Data

The first dataset includes 1000 generated random data in (−1,1) for five input variables. The target
was calculated by:

y = x1 cos(x2) +
x3 exp(x4)

1 + 0.9x5
. (11)

http://united-csfe.com/fcew/ann.zip


Mach. Learn. Knowl. Extr. 2019, 1 748

The dataset was used mainly to demonstrate the behavior of the SVM and LS-SVM in two extreme
settings. The first setting simulates a perfect nonlinear dependence of y on five independent variables,
i.e., the target includes no noise; the second setting uses one of the five x variables as the target and
other four as inputs to simulate the extreme case that the target are all noises. The data were split into
two equal parts, one for training and the other for validation.

The second dataset is an update of the one used for the reconstruction of the global surface
ocean CO2 concentration [25], which was assumed to be the function of latitude (LAT), sea surface
temperature (SST), sea surface salinity (SSS), surface chlorophyll concentration (CHL), mixed layer
depth (MLD), and month (MON), i.e.,

CO2 = f (LAT, SST, SSS, CHL, MLD, CMON, SMON), (12)

where CMON and SMON are the cosine and sine transform of MON, respectively.
The CO2 data came from the SOCAT version 6.0 product [26]. A total of 207,393 data points was

extracted for the 1990-2017 period using the criteria set by [8]. The linear trend of CO2 was estimated
by the method of [8] and the CO2 data were adjusted to the reference year of 2005. The monthly means
of SST were extracted from the Optimum Interpolation V2 product [27], SSS from the World Ocean
Atlas 2013 product [28], CHL from the SNPP VIIRS climatology of NASA [29], and MLD from the
Monthly Isopycnal and Mixed-layer Ocean Climatology [30]. Z-normalization was applied to the input
variables, i.e.,

x′i =
xi − xi
σi

. (13)

Many studies on parameter optimization used raw data. In extreme cases, the outcome of the kernel
function could be dominated by certain variables that vary in a large range; therefore, scaling data of
independent variables to remove units is important to generalize the results of parameter optimization.

We did not scale the target variable for the convenience of checking the output directly. One must
be aware that the optimal ε of the SVM is expected to be on a similar scale as the standard deviation of
the target in most cases.

Ten CO2 datasets were derived from the primary dataset for Monte Carlo cross-validation [31].
Each derived dataset comprises of 10% of randomly sampled data from the primary data for training
and the remaining 90% for validation. A different random seed was used for each random sampling.
There are two reasons for choosing the sample ratio of training and validation. First, the matrix size for
solving Equation (9) is the square of the sample size. If a large proportion of the primary data was
used for training, the matrix alone would exhaust the memory of a PC or training would take too long
to be practical. Second, with all CO2 measurements in all years combined in a 1x1 degree grid mesh,
less than 10% of the global oceans was sampled in any single month [32], which indicates that an ideal
model should perform well with a smaller training dataset and a larger validation dataset.

3. Results

The work of [19] shows that the root mean square error of the SVM varies more sharply with the σ
parameter than with the C parameter. Our previous study [8] also shows that the σ parameter is much
more sensitive than the γ parameter of the LS-SVM. Based on this prior knowledge, we conducted grid
search experiments with these settings: (1) the starting values of the C, γ, and σ parameters were set to
0.1, 0.1, and 0.01, respectively; (2) the steps to advance C and γ were 10 times their previous values
and the step to advance σ was 1.1 times its previous value; and (3) the optimal σ of the LS-SVM was
used as the initial guess of the SVM to estimate the optimal ε and then the optimal σ of the SVM was
searched again. The last setting indicates the assumption that the optimal σ of the two models would
be the same.

Figure 1 shows the correlation coefficient (R2) between the LS-SVM outputs and the target values
of the artificial dataset. In the experiments of Figure 1A,B, five random variables in (−1,1) were used
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as inputs and the results of Equation (11) as the target. Both the fitting and validation become better
with a larger γ. Equation (9) indicates that a larger γ means more precise fit of the data; and the
kernel function (6) indicates that a smaller σ yields a larger variability. Therefore, a smaller σ and a
larger γ yields a better fitting for the noise-free data. The validation shows that the best fitting did not
generalize well. The optimal σ is 1.17 for γ = 1000 and did not stray far from the optimal value for
other γ. The experiments in Figure 1C,D used four random variables as input and a random variable
in the same range as the target. That the LS-SVM can make a perfect fitting for unrelated variables is
an example of overfitting. Although the correlation detected by the validation is weak, σ = 0.6 and γ
= 1 are clearly the candidates for obtaining a better validation. Small correlations in the validation
resulted from a few random points that incidentally fit Equation (11).
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Figure 1. Grid search for the optimal γ and σ of the LS-SVM. (A,B) used five random variables in (−1,1)
as inputs and the results of Equation (11) as the target. (C,D) used four random variables in (−1,1) as
input and a random variable in the same range as the target.

Using the optimal σ value s of the LS-SVM, we conducted grid search for the optimal C and ε of
the SVM with the same artificial dataset. For the noise-free target, ε = 0.01 in the discrete set (0.01, 0.02,
0.05, 0.10, 0.20, 0.30) and C = 1000.0 in the discrete set (0.1, 1.0, 10.0, 100.0, 1000.0) yielded the best
validation. This is understandable as the target includes no noise, a smaller ε, and a larger C would
include more data points as support vectors to produce a better fitting and validation. When the target
was a random variable, ε = 0.1 and γ = 1.0 became optimal values.

Figure 2 shows that the SVM behaved similar to the LS-SVM. The grid search for the optimal C
and σ was done with the optimal ε values above. When the target is noise free, the R2 of both fitting
and validation increases monotonically with the C parameter (Figure 2A,B) for a given σ. In the fitting,
the R2 tends to decrease monotonically with the σ for a large C. This is because a large C made LibSVM
include most training samples as support vectors and smaller σmakes the hyperplane more elastic.
But with a small C, the optimal σ occurred in a narrow range around 1.0, which differs not much from
the standard deviation of the target (0.58). In the validation, the optimal σ appeared around 1.0 for all
tested C values. Obviously, an over fitting would have occurred with a small σ and a large C, resulting
in excellent fitting but unacceptable validation. One may ask what the results would be for C > 1000.
The outputs of LibSVM show that nearly all training data points have been included as support vectors;
therefore, using larger C would yield similar results as those with C = 1000.
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Figure 2. Grid search for the optimal C and σ of the SVM. (A,B) used five random variables in (−1,1)
as input and the results of Equation (11) as the target. (C,D) used four random variables in (−1,1) as
inputs and a random variable in the same range as the target.

We reassessed the optimal ε value of the SVM for the CO2 dataset as the target has a much larger
variance. Based on the experiments with the random dataset, we set σ = 0.6 to evaluate the ε in the
discrete set (1, 2, 4, 8, 16, 32 µatm). Divided by the CO2 standard deviation of 32.6 µatm, these values
correspond to ε of 0.03, 0.06, 0.12, 0.24, 0.49, and 0.98, respectively, for normalized CO2. Figure 3
shows the variation of the correlation coefficient and bias (model-target) obtained from a validation.
Obviously, one cannot have both a zero bias and the best correlation. Our priority is to have a zero
bias as a large bias may reverse the conclusion of the global oceans as CO2 sink or source. Since the
bias crosses the zero line for all tested C values (Figure 3B), we selected C = 100 from Figure 3A and
estimated ε ≈ 12 µatm from Figure 3B. This value corresponds to ε of 0.37 for normalized CO2. Note
that it is not necessary to calculate the zero-bias ε precisely as the bias would change with a different
training and validation dataset. If one emphasizes having the best correlation, then the best ε would
be about 8 µatm or 0.24 for normalized CO2.
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Figure 3. Grid search for the optimal C and ε of the SVM model with σ = 0.6. The results were from
the validation of a CO2 dataset. Obviously, one cannot have both zero bias and the best correlation.
(A) Variation of correlation coefficient; (B) Variation of bias.

Figure 4 shows the grid search results with ε = 12 using a CO2 dataset. The optimal C of the
SVM is 1000 for fitting and 100 for validation; and the optimal γ of the LS-SVM is 100 for fitting
and 10 for validation. It is no surprise that the optimal σ values of the two model are similar: 0.611
for SVM and 0.690 for LS-SVM. Overall, the two models respond to parameter changes similarly.
Further, the responses of both models with the CO2 dataset are similar to those with noise-free artificial
dataset in (Figure 1A,B and 2A,B). Figure 5 presents a fitting and validation obtained using the optimal
parameters. Beside having a larger R2 and a smaller standard error (SE), the LS-SVM visually shows a
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less dented blank area near CO2 value of 320 µatm. The skewed distribution of data points around
the regression line indicates unbalance sampling of the measurements. The SVM yielded a smaller
validation bias because the dataset was used to choose the ε to have a zero-bias validation.
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Figure 5. Scatter plots of modeled vs observed CO2 concentrations. Uneven distribution of points
indicates unbalance sampling in different ocean domains. The darker the color, the denser the sample
points. The LS-SVM yielded a larger R2 and smaller SE than the SVM did. The SVM yielded a smaller
validation bias because the dataset was used to choose the ε to have a zero-bias validation. (A) SVM
fitting; (B) SVM validation; (C) LS-SVM fitting; (D) LS-SVM validation.

We repeated the grid search for optimal parameters for the 10 CO2 datasets prepared for Monte
Caro cross validation. We obtained the overall optimal C and σ of the SVM as 100 and 0.613, respectively,
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and optimal γ and σ of the LS-SVM as 10 and 0.695, respectively. The biases in Tables 1 and 2 were
obtained using these parameter values. Overall, the LS-SVM performs better than the SVM in terms
of correlation and bias. The LS-SVM yielded a mean bias of 0.00 ± 0.00 µatm and −0.14 ± 0.14 µatm
for fitting and validation, respectively; and a mean R2 of 0.801 ± 0.005 and 0.691 ± 0.002 for fitting
and validation, respectively. Whereas, the SVM yielded a mean bias of −0.05 ± 0.05 µatm and
−0.17 ± 0.29 µatm for fitting and validation, respectively; and a mean R2 of 0.761 ± 0.005 and
0.680 ± 0.001 for fitting and validation, respectively. The SVM yielded a larger variance for both bias
and R2 as there is no ε that can minimize the bias of all datasets and the number of support vectors
changes with different datasets, even using the same C value.

Table 1. Monte Carlo cross validation of the SVM. Each dataset was derived by randomly sampling
10% of the primary data for training (fitting) and the rest 90% for validation. The goodness of fitting
and validation was measured by the squared correlation coefficient between model outputs and
target values.

Sample ID Training R2 Training Bias Validate R2 Validate Bias

1 0.756 −0.01 0.682 −0.06
2 0.763 −0.03 0.679 0.00
3 0.758 −0.11 0.678 −0.81
4 0.757 −0.02 0.680 −0.38
5 0.764 −0.10 0.681 −0.23
6 0.765 −0.02 0.682 0.06
7 0.770 −0.02 0.680 0.29
8 0.751 −0.07 0.680 −0.12
9 0.762 −0.02 0.680 −0.17

10 0.764 −0.11 0.679 −0.27

Mean 0.761 −0.05 0.680 −0.17

STDEV 0.005 0.05 0.001 0.29

Table 2. Monte Carlo cross validation of the LS-SVM. Each dataset was derived by randomly sampling
10% of the primary data for training (fitting) and the rest 90% for validation. The goodness of fitting
and validation was measured by the squared correlation coefficient between model outputs and
target values.

Sample ID Training R2 Training Bias Validate R2 Validate Bias

1 0.796 0.00 0.689 −0.17
2 0.802 0.00 0.693 −0.11
3 0.798 0.00 0.691 −0.42
4 0.795 0.00 0.689 −0.21
5 0.804 −0.00 0.693 −0.16
6 0.804 0.00 0.692 0.02
7 0.807 0.00 0.691 0.09
8 0.793 0.00 0.688 −0.09
9 0.803 0.00 0.689 −0.14

10 0.804 0.00 0.691 −0.16

Mean 0.801 0.00 0.691 −0.14

STDEV 0.005 0.00 0.002 0.14

The performance of the two models in term of computing time did not differ much. This was
evaluated using a PC with an Intel Xeon 3.20 GHz CPU and 32 GB memory. The LS-SVM took 43 s
to complete a training of 20,000 samples. The training time of the SVM increased linearly with C
from 7 s for C = 1 to 350 s for C = 1000. While the SVM would take more time to search for support
vectors with a more relaxed constrain in Equation (4) or a larger C, the bottleneck of the LS-SVM is in
solving Equation (9). In our experiments, the conjugate-gradient method of the LS-SVM software took
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about 200 to 300 iterations to obtain a solution with a sufficient precision. The number of operations
on floating number is about O(iteration × n2) for a n × n matrix, which is much smaller than O(n3)
operations of the LU decomposition method, commonly used for solving linear system equations.

The LS-SVM has fewer parameters to be tuned than the SVM. Therefore, it is harder to obtain the
optimal parameters of the SVM. However, the resource-thirsty characteristic of the LS-SVM could limit
its use with a large dataset. We tested the LS-SVM model with 60,000 training samples. It took 920 s to
complete a training, which is not unacceptable. However, it consumed 28.5 GB memory. Increasing
the sample size further halted our computer. Meanwhile, the SVM consumed only 130.5 MB memory
and the training took 600 s for C = 100.

4. Discussion

Both the SVM and LS-SVM are capable of fitting any data perfectly well, even when there is no
relation between the target and the input variables. A good validation setting is critical to obtain
optimal parameters to generalize a train model to make meaningful predictions. Although various
methods have been proposed for parameter optimization, long computing time could become an
obstacle for all the methods with a large dataset. A universally good initial guess for the parameters
can accelerate the search for optimal parameters. But it is impossible to obtain universally good initial
guesses without data scaling. Many articles have pointed out that data scaling is very import to using
the SVM and LS-SVM effectively. Input variables rarely have the same units and changing the units
of a variable may change its variation range significantly. The variable having a significantly larger
variation range would likely dominate the result of the kernel function. With units removed and data
scaled to similar ranges, the optimal parameters become more predictable.

We used two datasets to search for optimal parameters with the intention of generalization.
Therefore, we designed an artificial dataset for cases of noise-free targets and extreme noisy targets
and used a large data from the real world. As the input variables of the first dataset were randomly
generated in the range (−1,1), no scaling was applied. The second dataset included more than
200,000 data points used for the global surface ocean CO2 reconstruction. The input variables were
z-normalized. The results reveal several hints to guide using the models. First, the models are most
sensitive to the σ parameters of the kernel function and its optimal value lies in a narrow range around
one for scaled inputs. Second, the ε parameter of the SVM affects the bias significantly. Its initial
guess should be set to about 10%–20% of the standard deviation of the target. Third, the value of 100
is recommended as the initial guess for the C parameter of the SVM. And lastly, the value of 10 is
recommended as the initial guess for the γ parameter of the LS-SVM.

The parameter optimization of [18] scaled input variables to the range (0,1) and yielded similar
values for the σ and C parameters of the SVM. Based on these results, we conclude that our results
can be generalized to other cases if the input variables are z-normalized. Our results also show that
the LS-SVM performs better than the SVM in general. For applications that expect unbiased results,
the LS-SVM is strongly recommended. The drawback of the LS-SVM is that it consumes much more
computer memory than the SVM.
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