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Abstract: Recent developments in machine learning engendered many algorithms designed to solve
diverse problems. More complicated tasks can be solved since numerous features included in much
larger datasets are extracted by deep learning architectures. The prevailing transfer learning method
in recent years enables researchers and engineers to conduct experiments within limited computing
and time constraints. In this paper, we evaluated traditional machine learning, deep learning and
transfer learning methodologies to compare their characteristics by training and testing on a butterfly
dataset, and determined the optimal model to deploy in an Android application. The application can
detect the category of a butterfly by either capturing a real-time picture of a butterfly or choosing one
picture from the mobile gallery.
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1. Introduction

Butterflies are insects in the macrolepidopteran clade Rhopalocera from the order Lepidoptera,
in which moths are also included. Adult butterflies have large, often brightly coloured wings,
and conspicuous, fluttering flight. Their colors and markings not only can protect them from predators
but also are essential features for researchers and people who are interested in butterflies to recognize
their categories. However, it is arduous to classify butterflies based on their patterns, because some
features, such as shapes, wing colors, and venations, are complicated to distinguish [1]. Traditional
butterfly identification techniques, such as the use of taxonomic keys [2], depend on manually
identifying and classifying by highly trained individuals, which follow the same methodology
with various more modern methods such as DNA sequencing [3]. Currently, researchers from
around the world rely mostly on rather time-consuming processes that are inefficient in dealing
with the distribution and diversity of butterflies. Besides, taxonomic approaches are made difficult in
practice due to the lack of adequate reference collection and professional knowledge [4–8]. Therefore,
to tackle the so-called “taxonomy crisis” [9], the academic community calls for modern and automated
technologies in dealing with species identification.

In the image classification field, traditional machine learning algorithms, such as K-Nearest
Neighbor (KNN) and Support Vector Machine (SVM), are widely adopted to solve classification
problems and especially perform well on small datasets. However, when addressing a large dataset
with more complicated features and classes, deep learning outweighs traditional machine learning.
Recently, transfer learning is more prevalent than ever before, because it can save a large amount of
computing and time resources to develop deep networks from the very beginning. Pre-trained deep
learning models can be the starting point for dealing with related problems. Because classification
targets, such as butterflies, have too many categories and some of their features are similar so that
machine learning and deep learning will be handy to assist researchers to classify the confusing targets.
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Because of the prevailing of smartphones, today both mobile phone users and the artificial
intelligence industry expect to have systems implemented in mobile applications to achieve
convenience. The previous widely used method to classify images through mobile devices (still
being used under certain circumstances) was to save the model on a server. The targets and results
are transferred between the server and mobile devices. and this causes latency due to bilateral
communication between the server and mobile devices and insecurity of privacy. Now TensorFlow
Mobile and its updated version TensorFlow Lite can solve these problems. They can transform deep
learning models to a specifically optimized format and transplant them into mobile applications so that
considerable computational power of the mobile hardware can be saved when tasks are running. As a
result, researchers can use smartphones to classify targets such as butterflies both indoor or outdoor,
especially when they are doing field study without any connection to the network but hope to know
the categories immediately.

This paper aimed to build four models and develop an Android application as a butterfly detector.
After model selection, the most effective one was implemented in an Android application to build a
system to detect butterfly categories.

2. Related Works

In the traditional machine learning area, SVM [10] is one of the most effective methods to address
various kinds of problems such as classification and regression. Recently, the Principal Component
Analysis (PCA) [11] algorithm combined with SVM is also prevailing since this method can enhance
the efficiency of training the model to a large extent. Reference [12] adopted PCA and SVM on two
face datasets called AT&T face database and Indian face database (IFD), and reached an accuracy of
90.24% and 66.8% on each dataset. Reference [13] used this method to detect the event that people
fall on the floor and had an accuracy of 82.7%. In 2016, Reference [14] applied PCA and multi-kernel
SVM to compare healthy controls and Alzheimer’s Disease patients with their brain region of interest,
and finally achieved an accuracy of 84%.

As tasks are getting more complicated than ever before, the volume of datasets has increased to a
size which cannot be solved by traditional machine learning methods. As a result, the role of artificial
neural networks is revealed. Reference [15] developed a neural network structure intending to classify
a dataset including 740 species and 11,198 samples. They had a 91.65% accuracy with fish, 92.87% and
93.25% of plants and butterflies, respectively.

In the specific field of butterfly detection, Reference [16] proposed Content-Based Image Retrieval
(CBIR) to detect butterfly species, but the total accuracy is 32% for the first match and 53% for the
first three matches. Reference [17] applied Extreme Learning Machine (ELM) to classify butterflies
and compared the results with the SVM method. The ELM method has an accuracy of 91.37%,
which is slightly higher than the SVM. Reference [18] built a single neural network to classify
butterflies according to their shapes of wings, and the accuracy is 80.3%. Reference [19] is research
aiming to classify all butterfly species in China, which adopted three methods: Zero Forcing (ZF),
Visual Geometry Group (VGG)_Convolution Neural Network (CNN) and VGG16, to compare the
performance. The results showed that ZF has an accuracy of 59.8%, while VGG_CNN and VGG16 had
64.5% and 72.8%, respectively.

As for transfer learning, Reference [20] used the DeepX toolkit (DXTK), which includes several
pre-trained low-resource deep learning models, to integrate models in mobile devices. Reference [21]
used a multi-task, part-based Deep CNN (DCNN) structure for feature detection, and evaluated its
performance, then deployed the structure on a mobile device. Reference [22] built real-time CNN
networks based on transfer learning to detect the regions where have Post-it R©, and transformed these
models to the format which can be used on smartphones with TensorFlow Lite tools. A Faster Region
CNN (RCNN) ResNet50 architecture achieved the highest mAP (mean Average Precision), which is
99.33% but the inference time is 20018 milliseconds (ms).
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The difference in the accuracy of traditional machine learning, deep learning and transfer learning
methodologies on butterfly detection has not been the focus of any research so far and a mobile
application to detect butterfly has never been developed. Therefore, in this paper, after optimized
certain parameters, not only we improved the accuracy from previous studies with deep learning
models, but we also created a practical Android application that has a relatively short inference time.

3. Methodologies

From each field of traditional machine learning, deep learning and transfer learning, one or two
techniques were adopted to build a model for butterfly classification.

3.1. Traditional Machine Learning

3.1.1. Support Vector Machine (SVM)

SVM is one of the most important classical machine learning algorithms. It was first proposed
by Cortes and Vapnik in 1995 [10]. It has a lot of outstanding superiority in addressing small scale,
nonlinear, and high-dimensional pattern recognition problems. SVM is a two-class classification model
based on the VC (Vapnik–Chervonenkis) dimension theory and structural risk minimization principle
of statistical learning theory. A linear classifier with the largest interval in the feature space is the
definition of the SVM algorithm. Its objective is to determine the maximum interval. Then the problem
is transformed into a convex quadratic programming problem, and the maximum interval is the
solution to this problem. However, our task is to complete a ten-class high-dimensional classification,
which cannot be achieved by linear classifier, we applied nonlinear SVM with Radial Basis Function
(RBF) kernel, which is also known as Gaussian kernel:

k(x(i), x(j)) = exp(−γ‖x(i) − x(j)‖2) (1)

Generally speaking, a kernel can be interpreted as a similar shape function between two samples.
The exponent range in the Gaussian kernel is e ≤ 0, so the Gaussian kernel range ∈ [0, 1]. In particular,
the value is 1 when the two samples are identical, and the value is 0 when the two samples are
completely different.

The target of classifying a given data D = (xi, yi)
p
i=1 ∈ Rn × {−1,+1} is to determine a function

f (x) = y which can classify patterns of the input data accurately, in which xi is a n-dimensional vector
and yi is its label [23]. The hyperplanes can be expressed by 〈 w · x〉+ b = 0 ; w ∈ Rn, b ∈ R and the
data can be separated linearly, if such a hyperplane exists. Hyperplane margins (‖w‖−1) have to be
maximized to look for the optimum hyperplane. Lagrange multipliers (αi) are applied to tackle this
task [24]. The decision function can be formulated as:

f (x) = sign(
p

∑
i=1

yiαi 〈x · x〉+ b) (2)

SVM can also address nonlinear classification problems by mapping the input vectors to a
higher-dimensional space with kernel functions k(xi, xj) =

〈
(xi) · (xj)

〉
[25]. Therefore, the decision

function can be expressed as:

f (x) = sign(
p

∑
i=1

yiαik(x, xi) + b) (3)

Four commonly used kernel functions:

1. Linear: k(xi, xj) = xi · xj

2. Polynomial: k(xi, xj) = (xi · xj + 1)d

3. Radial Basis Function: k(xi, xj) = exp(−||xi − xj||2/2σ2)
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4. Sigmoid: k(xi, xj) = tanh(k(xi · xj)− c)

PCA was introduced to extract the most useful features in each image. PCA has a wide variety of
applications in areas such as data compression to eliminate redundancy and data noise. Specifically, if
the dataset is n-dimensional and there are m samples (x1, x2, ..., xm), PCA can reduce the dimensions
of these m samples from n-dimensional to n

′
-dimensional, and the m n

′
-dimensional samples can

represent the original dataset as much as possible. There would be a loss in the data from n-dimensional
to n

′
-dimensional, but we wanted the loss to be as small as possible. The algorithm of PCA is

demonstrated in the steps listed below.

Implimentation of the PCA Algorithm:

1. Supposing there are m n-dimensional samples and arraying the original data by columns into a
matrix X with n rows and m columns;

2. Zero-averaging each row of X (representing an attribute field), i.e., subtracting the mean of
the row;

3. Calculating the covariance matrix C = 1
m XXT ;

4. Determining the eigenvalues of the covariance matrix and the corresponding eigenvectors;
5. Arranging the feature vectors decreasingly according to the corresponding feature value and

selecting the first n
′

rows to form a matrix P;
6. Y = PX is the new data after reducing to n

′
dimension.

Integrating PCA with SVM is widely adopted in pattern recognition as it not only can avoid the
SVM kernel gram to become overlarge but also improves computational efficiency for classification [26].
Therefore, we selected PCA/SVM method as one of the approaches to address this butterfly classification
problem in this paper.

3.1.2. Decision Tree and Random Forests

A decision tree is a tree-like structure (binary tree or non-binary tree) that solves classification
and regression problems by splitting samples into sub-populations recursively [27]. Each of a decision
tree’s non-leaf nodes represents a test on a feature attribute, each branch represents the output of this
feature attribute over a range and each leaf node is a class. The process to use a decision tree is to start
from the root node and test the feature attributes in samples, then select the branch according to the
output until reach the leaf node. At last, the class of the leaf node is the decision result.

In 2001, Breiman and Cutler developed an algorithm to randomly ensemble decision trees into a
forest [28]. In the forest, there are many decision trees and all of these trees have no correlation and
dependency between each other. After obtaining the forest, each decision tree in the forest will calculate
the class of a new incoming sample (for the classification problems). The final decision depends on
which class is voted by most trees. Random forests can tackle both discrete values, such as the
Iterative Dichotomiser 3 (ID3) algorithm [29], and continuous values, such as the C4.5 algorithm [30].
Additionally, random forests can be used for unsupervised learning clustering and outlier detection.
Because random forests are not sensitive to multicollinearity, they are robust to missing and unbalanced
data so that they can predict well for up to thousands of variables [28]. Random forests currently is one
of the most prevalent methods for classification and regression problems in machine learning field.

Implimentation of the Random Forests (RF) Algorithm:

1. Take a random sample of size N with replacement from the data;
2. Take a random sample without replacement of the predictors;
3. Construct the first Classification And Regression Tree (CART) for partition of the data;
4. Repeat Step 2 for each subsequent split until the tree is as large as desired and do not prune;
5. Repeat Step 1 to Step 4 a large number of times (e.g., 500).
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Random Forests is a great statistical learning model as it is highly efficient for the classification of
multi-dimensional features and can realize feature selection. However, overfitting happens when data
noise is relatively large.

3.2. Deep Learning

The most important advancement of deep learning over traditional machine learning is that its
performance improves with the increasing of the amount of data. A 4 convolutional layers model
(4-Conv CNN) was built from scratch for this paper. The structure of CNN is shown in Figure 1. This
4-Conv CNN has 4 Conv2D layers, 2 MaxPooling layers, and 5 Dropout layers, and a fully connected
layer is the following.

Figure 1. The structure of CNN.

Functions of different layers:

• The first layer in this structure is a Conv2D layer for the convolution operation which can extract
features from the input data by sliding the filter over the input to generate a feature map. In this
case, the size of the filter is 3× 3.

• The second layer is a MaxPooling2D layer for the max-pooling operation which can reduce the
dimensionality of each feature. In this case, the size of the pooling window is 2× 2.

• The third layer is a Dropout layer for reducing overfitting. In this case, the dropout function will
randomly abandon 20% of the outputs.

We repeated these steps to add more hidden layers, which are 4 Conv2D layers, 2 MaxPooling2D
layers, and 5 Dropout layers. Then, a Flatten layer is used to flatten the output to 1D shape because
the classifier will finally output a 1D prediction (category). Two Dense layers have a fully connected
function and another Dropout layer between them can discard 30% of the outputs. Because this task
is a 10 categories classification, a final layer is combined with a Softmax activation to transform the
outputs to 10 possibilities. This is shown in Figure 2.
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Figure 2. The structure of 4-Conv CNN.

3.3. Transfer Learning

As the name suggested, transfer learning migrates the learned parameters in a model to a new
model to train the new model. Traditional machine learning and transfer learning are shown in
Figure 3. Considering that most of the data or tasks are related, already learned parameters in an
existing model (pre-trained model) can be shared with the new model in some way through transfer
learning, so as to accelerate and optimize the learning efficiency of the new model, and unlike most
networks that need to start from scratch.

Figure 3. Traditional Machine Learning and Transfer Learning.

The last fully connected layer in a pre-trained model will be removed and two new fully connected
layers will be added to the model when this model serves as a feature extractor. Except for these two
new layers, all other structures and weights are fixed. Although we can also initialize all weights in
the pre-trained model, it is not common to do so and it is suggested to have some of the earlier layers
fixed because they stand for generic features.

Recently, the advanced VGG19 [31] is more widely used, shown in Figure 4. One improvement of
the VGG19 over other models is the use of several consecutive 3× 3 convolution kernels instead of the
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larger convolution kernels. For a given receptive field (the local size of the input image related to the
output), the use of stacked small convolution kernels is superior to the use of large convolution kernels,
because multiple nonlinear layers can increase network depth to ensure more complex learning modes,
and the cost is relatively small in terms of fewer parameters. As a result, we adopted the VGG19 as the
base model for this paper. The convolutional base of VGG19 structure was frozen and we added our
own fully connected layer on top of the base.

Figure 4. The structures of VGG.

4. Dataset and Application

4.1. Dataset

The dataset used in this project is called Leeds Butterfly Dataset [32]. This dataset has ten species
of butterflies with both images and textual descriptions. An example of the different categories is
shown in Figure 5. The origin of these images was gathered from Google Images according to the
scientific name of the species.

Figure 5. Ten species of butterflies used in this project.

There are 832 images in total, and the image distribution of different species is relatively balanced,
as shown in Figure 6. This is beneficial for machine learning algorithms to learn the features of each
category more evenly.
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Figure 6. The distribution of Leeds butterfly dataset.

The textual descriptions of every butterfly species were collected from the eNature online nature
guide [33], which is for online open biology resources, shown in Figure 7. The description files include
the name, the normal size and a brief introduction of each species. The name was taken as the label
of each image, and the brief introduction was used as a depiction in Android application when the
system returns a prediction of what the user inputs.

Figure 7. An example of image and description in one category [32].

4.2. Android Application

After model selection, we aimed to build an Android application (App) that used the best model
to detect the category of the butterfly. We built the app in Android Studio. The Sdkversion of the
environment is 27 and the mobile phone is API 19.

4.2.1. Comparison of Models Saved in Server and in Application

The traditional way to deploy deep learning models is to save the model on a server. When the
client-side needs to have a prediction from the model, it should make a call to the server-side to get the
result. After the data are processed on the server-side, the result will be sent back to the client-side and
displayed. The server should respond to the requests as soon as possible. However, the server may
produce slow work and there is also latency issue during data transmission. Additionally, users prefer
not to send private data to servers because of the potential problems of cybersecurity. As a result,
the demand for on-device intelligence capabilities is increasing. As a complement to the TensorFlow
ecosystem, TensorFlow Mobile and TensorFlow Lite offer researchers and developers the opportunity
to run deep learning models on smartphones and tablets locally with low latency, efficient runtimes,
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and accurate inference. Especially with the computational ability of GPU in presently used mobile
devices, more complex deep learning models can take advantage of TensorFlow Lite, which allows
massively parallelizable workloads and previously not available real-time applications to run fast
enough on smartphones and tablets [34]. Therefore, we chose to implement the model with the
cutting-edge technology in this paper.

4.2.2. TensorFlow Mobile and TensorFlow Lite

Figure 8 demonstrates the flowchart of how TensorFlow Lite works. When the model is fixed,
it can be saved in a format containing both of its graph and weights so that the model can be frozen
to a .pb file with its graph and weights, and only this format can be recognized in Android App
(for TensorFlow Lite, it should be a .tflite file). During the process to freeze the model, all variables
used in training would be converted to constants.

Figure 8. The TensorFlow Lite conversion process.

4.2.3. Flowchart

In this Android App, the model will be loaded first, including the label file. The label file contains
ten butterfly category names, their main features and their indexes which were used in this App (every
name is a label). Users can choose an image either by taking a picture with the camera or selecting one
from the gallery. The chosen image will be fed into the model and the model can start to calculate the
probability of each category. Then the system determines the category with the highest probability
as the output. However, the highest probability has to be above a threshold, or the App will throw
a warning "The target is not likely to be in the following butterfly categories: Danaus plexippus,
Heliconius charitonius, Heliconius erato, Junonia coenia, Lycaena phlaeas, Nymphalis antiopa, Papilio
cresphontes, Pieris rapae, Vanessa atalanta, and Vanessa cardui." In this paper, the threshold is 0.5 to
ensure that there will not be more than one output due to the same probabilities. The flowchart of the
developed application is shown in Figure 9.
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Figure 9. Flowchart of the developed Android application.

5. Experimental Results and Discussions

Usually, after models are built, they need further optimization to achieve the best accuracy.
The optimization process is a time-consuming and experience-oriented task. Multiple parameters need
to be configured and we tested several of them in this paper. The parameters with which we have
tested included Data Augmentation, Batch Size, Batch Normalization, and Optimizer. All experiments
were conducted on a device with NVIDIA GeForce GTX 1080 Ti GPU and Intel(R) Core (TM) i7-8700K
CPU.

5.1. Optimization

5.1.1. Data Augmentation

The quality and quantity of datasets are always a concern to researchers and developers as
this will affect the accuracy of machine learning algorithms. The common problems are overfitting
and underfitting. The easiest way to alleviate these problems is to increase the sample size in the
training set as it can be beneficial to extract image features and generalize models. In machine learning,
we sometimes cannot increase the amount of training data because it is costly to find labeled data.
However, the dataset can be expanded by rotating, cropping, shifting, scaling, transforming the images,
and so on. Although the augmented images are almost the same as the original image in human
beings’ vision, they are new data structures from the perspective of a computer as the data arrays,
which are used to describe the pixel information to a computer, are changed. In this way, we can
generally improve the accuracy of the model, and it is also a common technique for optimizing the
model, as shown in Figure 10.

(a) original image (b) augmented images

Figure 10. Data augmentation. (a) original image, (b) augmented images.
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After applying the augmentation technique, there are 4160 images in total. We used 60% (2496
images) of the dataset as a training set, 20% (832 images) of the dataset as a validation set and 20%
(832 images) of the dataset as a testing set. All sets are independent. In this paper, all the results shown
in tables are testing accuracy.

SVM

With SVM, data augmentation has no obvious enhancement as the size of the original dataset has
already challenged the models, especially that this is a ten classes classification task. Table 1 shows the
accuracy of the PCA/SVM method and it implies that the highest accuracy 52.6% occurred when the
top 20 components were extracted by PCA.

Table 1. The evaluation of PCA/SVM.

Number of Components Acc Precision Recall F1-score

10 46.0% 50% 46% 46%
15 48.4% 52% 48% 49%
20 52.6% 56% 52% 53%
25 44.4% 49% 44% 45%
30 44.6% 47% 44% 45%
35 44.1% 49% 44% 45%
40 44.0% 49% 44% 45%

Because the overall accuracy was the highest when 20 principal components were extracted,
we visualized the contrast of original input images and their 20 principal components as Figure 11.
From this figure, we can understand better that PCA reduced the complex dataset into a simplified
dataset with 20 components that can express the information of the dataset best.

(a) Full dimension input

(b) 20 dimension construction

Figure 11. Before (a) and after (b) extracting 20 principal components.

RF

Similar to SVM, we first conducted experiments without and with data augmentation, respectively.
However, RF did not show any improvements after data augmentation. Then we tried to apply PCA
before RF with the original dataset. However, there are no significant enhancements either and most
of the results are even not as good as without using PCA. We believe the reason PCA prior RF is not a
great advantage is that RF already performs a good regularization without assuming linearity, PCA is
not necessarily an advantage. Consequently, we take the result of 350 trees with data augmentation
and without PCA as the best performance of RF, as shown in Table 2.
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Table 2. The prediction accuracy of PCA/RF.

Number of Trees No PCA 10 20 30 40 50

100 62.7% 58.4% 60.0% 57.6% 57.2% 60.8%
150 65.1% 59.2% 58.8% 60.4% 60.0% 56.0%
200 67.5% 62.4% 61.6% 57.2% 60.4% 62.4%
250 67.5% 60% 60.0% 61.2% 57.6% 60.8%
300 66.3% 63.6% 62.8% 60.4% 62.4% 59.6%
350 72.3% 59.6% 61.2% 64.0% 60.0% 61.6%
400 68.7% 62% 60.8% 64.0% 61.6% 60.0%
450 63.9% 61.2% 60.8% 62.0% 62.0% 60.8%
500 66.3% 62.8% 60.4% 64.4% 61.6% 61.2%

4-Conv CNN and VGG19

When it comes to 4-Conv CNN model, we notice typical o%verfitting after training this model.
With certain epochs of training, the validation accuracy of this model started to keep stable while the
training accuracy was still increasing. The validation accuracy stopped to increase after 15 epochs of
training (Figure 12a), and the testing accuracy ended up with 85.7% on 4-Conv CNN model. After
applying the data augmentation technique, it is clear that the 4-Conv CNN model overcame the early
overfitting problem (Figure 12b). In transfer learning, the pre-trained VGG19 model also showed
improvement after data augmentation.

(a) before data augmentation (b) after data augmentation

Figure 12. Before (a) and after (b) applying data augmentation on 4-Conv CNN model.

Table 3 shows that performance of both the 4-Conv CNN model and VGG19 model improved so
that we have determined that data augmentation indeed prevents overfitting problem to a large extent
with deep learning algorithms.

Table 3. The comparison between training with original data and augmented data.

Model Augmentation Epochs Acc Precision Recall F1-score

4-Conv CNN Before 36 84.4% 84% 84% 84%
After 100 95.2% 95% 95% 95%

VGG19 Before 41 94.1% 94% 94% 94%
After 66 96.0% 96% 96% 96%

5.1.2. Batch Size

When comparing the results of training with different batch sizes in Table 4, it is noticeable that
the final accuracy with 64 is higher than that with 128 in both groups.
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Table 4. The comparison between different batch sizes.

Model Batch size Epochs Acc Precision Recall F1-score

4-Conv CNN 128 100 95.2% 95% 95% 95%
64 79 96.3% 97% 96% 96%

VGG19 128 66 96.0% 96% 96% 96%
64 57 97.1% 97% 97% 97%

The reason why small batch sizes perform better is that small batch size brings a more stochastic
factor to the learning so that the learning has more chances to leave the local minimum and keeps
looking for the accurate gradient direction. Although training with large batch size needs less time
to finish a training epoch, more epochs are needed to reach the same precision as the small batch
size, or even could not reach the same precision. Small batch size causes the loss function to fluctuate
severely if the network is deeper and wider. To make the difference more obvious, we trained 4-Conv
CNN with a batch size of 16 and 256, and we can observe from Figure 13 that when batch size is 256, it
took more epochs to arrive at a similar accuracy than the other one.

(a) batch size is 16. (b) batch size is 256.

Figure 13. Training 4-Conv CNN with different batch sizes. (a) batch size is 16, (b) batch size is 256.

5.1.3. Optimizer

With conducting experiments on 4-Conv CNN and pre-trained VGG19 models, we can notice
that the Stochastic Gradient Descent (SGD) [35] needs much more epochs and time to converge and
the final accuracy is lower than the other two methods from Table 5 and Table 6.

Table 5. Different optimizers on 4-Conv CNN model.

4-Conv CNN

Batch size=64 Acc Precision Recall F1-score Epochs Time(minutes)

Adam 96.3% 97% 96% 96% 79 7
SGD 90.7% 91% 91% 91% 1278 125

Adam+SGD 97.1% 97% 97% 97% 79+39 7+4

Table 6. Different optimizers on pre-trained VGG19 model.

Pre-trained VGG19

Batch size=64 Acc Precision Recall F1-score Epochs Time(minutes)

Adam 97.1% 97% 97% 97% 57 5
SGD 96.2% 96% 96% 96% 324 32

Adam+SGD 98.4% 98% 98% 98% 57+42 5+4

Figure 14 illustrates that the fluctuations during training with the SGD process are way more
dramatic than training with Adam [36]. The reason is that the mechanism kept adjusting itself to
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search for the correct gradient direction. However, the training has not been converged even after
1200 epochs.

(a) Adam (b) SGD

Figure 14. Training 4-Conv CNN with different optimizers. (a) Adam, (b) SGD.

Because of the limited computing resources, we did not test SGD on other models and we adopted
Adam + SGD as our default optimization method. This hybrid of Adam + SGD method means that we
used Adam as the optimizer to train the model first because of its self-adaptive ability and fast speed,
but we applied SGD with a relatively low learning rate (0.00001) to train the model at the later training
phase to avoid missing the optimal solution.

5.1.4. Batch Normalization (BN)

VGG model does not have BN layers because BN did not exist before it, so we did not add BN to
this pre-trained model. Also, it would change the pre-trained weights by subtracting the mean and
dividing by the standard deviation for the activation layers [37]. Thus, we did experiments only on
the 4-Conv CNN model. Although the testing accuracy after adding BN layers is slightly higher than
without BN (Table 7), it took fewer epochs to converge than training without BN. It is because the
BN layer enables faster training by using much higher learning rates and alleviates the problem of
poor initialization.

Table 7. The comparison between before and after adding BN layer.

4-Conv CNN Epochs Acc Precision Recall 1-score

Before BN 118 97.1% 97% 97% 97%
After BN 78 98.3% 98% 98% 98%

5.2. Comparison between Final Results of Different Methodologies

After several attempts to optimize all models, we summarized the best performance of each
model. From Table 8, we learn that deep learning outperforms traditional machine learning. Although
the accuracy of the 4-Conv CNN model and the re-trained VGG19 model are very close, according
to Occam’s Razor [38], we chose 4-Conv CNN model to embed in Android App as its architecture is
simpler than VGG19. The average predicting time of the model is 3653 ms.

Because the structures of SVM and RF are shallow and simple, the only way to enhance the
performance is to integrate other algorithms into the existing models. This is why the main task
in traditional machine learning area is to search for suitable algorithms, while the chief problem in
deep learning is to adjust suitable parameters as the layers in deep learning are relatively easy to
understand, but the process to combine different layers and to adjust parameters is complicated and
time-consuming. When it comes to large datasets and complex scenarios, deep learning methods
are dominant.
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Table 8. The comparison among models.

Model Acc Precision Recall F1-score

Traditional machine learning SVM 52.6% 56% 52% 53%
Ramdom Forest 72.3% 79% 73% 73%

Deep learning 4-Conv CNN 98.3% 98% 98% 98%
Transfer learning VGG19 98.4% 98% 98% 98%

5.3. Android Application

5.3.1. Structure

In this Android App, we have three classes which are MainActivity, TensorFlowImageClassifier,
and Classifier. The deep learning model and label file were uploaded to the assets file. An image
can be passed to the model loaded in TensorFlowImageClassifier, where the label file is also loaded.
After the model successfully accepts and predicts the data, the index of the label and the confidence
(probability) of the result released from the output interface of the model are passed to the class
Classifier. Then the predicted label and the description of the image will be returned to the TextView
defined in MainActivity, and the confidence of the predicted label will be shown in the TextView at the
same time.

5.3.2. Layout and Output

The layout includes an ImageView, a TextView and two buttons, shown in Figure 15. An image can
either be captured by the camera or selected from the gallery and it will be shown on the ImageView.
Images from both the camera and gallery will be processed and sent to the classifier in the same way.
Then the returned label and description are on the TextView.

(a) layout (b) output

Figure 15. The layout and output of the Android application . (a) layout, (b) output.

5.3.3. Performance

Because the images can be input from either a smart phone’s camera or gallery, we tested on
20 images taken by the camera of the smartphone, such as Figure 16, and 20 online open-source images
in the smart phone’s gallery. In both groups, half of the images belong to the ten classes in the model
whereas the other half are excluded from the said 10 classes. All images of butterfly specimens and
alive butterflies in this experiment were taken in a Butterfly Conservatory (Cambridge, Canada).

It cost 363 ms for the App to load the model and the average time to predict an image’s category
(from inputting the image to outputting the result) is 3278 ms. The confusion matrices as Table 9 show
the performance of the App in real scenarios. The confusion matrices show that in both groups, some
input classes which are not in the training dataset can be easily predicted as one of the classes in the
training dataset. The reason for this is that the patterns of different butterfly categories can so resemble
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that the model will predict it as the most similar one in the training dataset. However, when the system
predicted images of non-butterfly objects, such as a water bottle and a toy in Figure 17, the output can
throw a warning that this target is not likely to be a butterfly in the ten categories because the highest
probability is below 0.5 (the value at the end of the output is the highest probability.). The 4 and 2 true
negatives (TN) in the two confusion matrices are the correct prediction of non-butterfly objects.

(a) example sample (b) example sample

Figure 16. The images taken by smart phone.

(a) example sample (b) example sample

Figure 17. The prediction of non-butterfly objects.

Table 9. The confusion matrices of App’s performance.

From Predicted Class From Predicted Class

Camera No Yes Gallery No Yes

Input Class No TN = 4 FP = 6 Input Class No TN = 2 FP = 8
Yes FN = 2 TP = 8 Yes FN = 1 TP = 9

TN: True Negative; FN: False Negative; TP: True Positive; FP: False Positive.

Table 10 shows the evaluation of the App’s prediction performance. There is no significant
difference between the prediction results of images from the camera and gallery.
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Table 10. The evaluation of the App.

Acc Precision Recall F1-score

Camera 60.0% 57.1%% 80.0% 66.7%
Gallery 55.0% 52.9% 90.0% 66.7%
Overall 57.5% 54.8% 85% 66.7%

Because there are only ten categories in the training dataset, when predicting butterflies other than
these ten categories, there is a high possibility that they will be predicted as one of the ten categories.
To solve this problem, we need to collect a larger training dataset including categories other than the
ten categories. Only in this way, the system could predict more butterfly categories precisely.

5.4. Summary

Users can use this Android application to distinguish different kinds of butterflies with ease.
Compared to save models on servers, this application’s superiority is that it does not require
communication between server-side and client-side, which makes this application can be used in an
environment without network connectivity. This advantage is crucial when butterfly researchers are
working in a wild area lacking network. From this perspective, we are convinced that implementing
deep learning algorithms in a limited resources platform, e.g., mobile, is essential.

The model we stored on the device is 82M, and the final application is 322M. If a neural network
is more complex than the one we adopted in this project, the model itself would be hundreds of
megabytes, which is usually unacceptable for mobile device users. There are optimized_for_inference
and quantized_graph methods in TensorFlow that can delete unnecessary nodes and compress the
model to reduce the size of the model, but the trade-off is that the accuracy of the model would
decrease to some extent. We have optimized our model with the tools and the output file is only a
quarter of the original one. However, the model stopped working. Therefore, we still used the original
model to build the App, but we will search for the reason for failure in future work.

To improve the application, we need to collect more categories of butterfly images. If we could
collect more butterfly categories to train the model, then it is reasonable to expect the app’s performance
to be significantly improved.

6. Conclusions

This paper proposed an Android application for detecting butterfly categories. We have presented
a description of building and optimizing several models to choose an ideal one that can be deployed
to an Android mobile device to classify butterfly categories. These structures include the traditional
machine learning models (SVM and RF), deep learning architecture (4-Conv CNN) and transfer
learning pre-trained model (VGG19). During the process of training all these models, we also adjusted
the parameters to find the optimal one. The results show that different models are sensitive to the
choice of parameters. For example, with SVM, when the amount of data reached a certain amount, the
testing accuracy would not improve anymore because they cannot handle complex scenarios. However,
the data augmentation operation has a significant meaning to 4-Conv CNN, while the transfer learning
method is not sensitive to the size of this butterfly dataset either because the domain of this dataset is
very similar to their original domain. Therefore, selecting tuning parameters requires patience and
experience as the choice of tuning parameters depends on the architectures of the model and the
objective of the project.

At last, we converted the optimal model to a format that can be executed in an Android application
with TensorFlow Lite. The result shows that it is feasible to use deep learning models on mobile
devices while preserving the accuracy of the model. However, we still need to figure out how to
further optimize the model so that the size of the model file could be compressed, and this would
prompt users to download the application. We believe this butterfly detection Android application
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will bring convenience to butterfly researchers and the industry and that it is essential that more deep
learning algorithms be integrated into mobile applications.
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