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Abstract: For incremental machine-learning applications it is often important to robustly estimate
the system accuracy during training, especially if humans perform the supervised teaching.
Cross-validation and interleaved test/train error are here the standard supervised approaches.
We propose a novel semi-supervised accuracy estimation approach that clearly outperforms these
two methods. We introduce the Configram Estimation (CGEM) approach to predict the accuracy of
any classifier that delivers confidences. By calculating classification confidences for unseen samples,
it is possible to train an offline regression model, capable of predicting the classifier’s accuracy on
novel data in a semi-supervised fashion. We evaluate our method with several diverse classifiers
and on analytical and real-world benchmark data sets for both incremental and active learning.
The results show that our novel method improves accuracy estimation over standard methods and
requires less supervised training data after deployment of the model. We demonstrate the application
of our approach to a challenging robot object recognition task, where the human teacher can use our
method to judge sufficient training.

Keywords: accuracy estimation; classifier evaluation; error prediction; benchmarking; online learning;
incremental learning; active learning

1. Motivation

Estimating the classification accuracy of a machine-learning model is particularly important in
incremental and life-long learning tasks, where a continuous stream of new training data adapts the
classifier state over time. We can imagine service robots that will adapt to their application environment
by continued human teaching and error correction to improve their performance during operation.
Current examples are vacuum or mowing robots that may already have some limited adaptivity to
the spatial working area layout and configuration. It could be very helpful to allow a home user to
incrementally teach those service robots how to deal with special obstacles or objects in the home
environment. Consider for example an autonomous lawn mower with a camera for object recognition
in the garden. The robot mows the lawn at regular intervals and concurrently stores views of objects
which were encountered during operation. Occasionally the robot will ask the user to classify the
objects and how to deal with them (e.g., “mow over leaves but avoid flowers”). This raises the question
when the robot is good enough in object recognition to fulfill this task autonomously. To limit the
teaching effort, it first makes sense to choose requested labeling examples according to standard active
learning approaches. These methods select those training examples that offer the largest expected
performance gain. Secondly, additional training data is only needed to be requested as long as the
classifier accuracy is below a user-defined threshold. This requires a robust estimation of the current
accuracy. Also, if the system accuracy does not improve with additional labeled data, the task cannot
be carried out autonomously by the robot [1].
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The research topics of incremental and life-long learning have gained more attention in recent
years. Humans and animals are especially good in perceiving, integrating and transferring information
from continuous data streams. In this article, we are interested in the special topic of accuracy
estimation for an incrementally learning classifier. This is highly relevant information for initiating
and managing the learning process.

Our approach is to train a regression model using the confidence information of an arbitrary
classification model to predict its accuracy on a test set with only a fraction of supervised labeled
data. This semi-supervised technique allows us to predict the classifier’s accuracy while training
(also illustrated in Figure 1). So, our goal is to determine it in each stage of training and not only to
predict the final accuracy after training is completed like in most of the other related work. The selection
of training data has a strong influence on the classifier accuracy gain, which is well-known from active
learning research [2]. We investigate the relation of this effect towards the estimation of the incremental
classifier performance. However, no new methods for active learning are proposed here, we rather
analyze the problematic effect of active query strategies on using standard supervised accuracy
estimation techniques.

Figure 1. Illustration of accuracy estimation. The accuracy estimation model is trained to predict the
working classifier accuracy (computed from ground-truth samples) based on confidence histograms
(configrams) of the classifier on unlabeled samples.

We evaluate our method on several analytical and real-world data sets and within an object
recognition task, both with random and active querying, where uncertainty sampling is used to select
the most uncertain samples for training. Our algorithm clearly outperforms cross-validation (CV)
and interleaved test/train error (ITT) in both cases but especially while querying actively. To further
motivate our approach, an incremental life-long learning experiment is simulated, where new data is
inserted while training and the accuracy estimation module is used to determine the time of retraining
to achieve a minimum desired task accuracy.

2. Related Work

Accuracy estimation for classification algorithms can be considered to be a tool for judging the
suitability of machine-learning methods for certain applications. Since this is a subdomain of the rising



Mach. Learn. Knowl. Extr. 2020, 2 329

research field of explainable artificial intelligence (XAI), we first position our work in relation to this.
We then discuss recent approaches for accuracy estimation in offline or batch learning and finally
review methods applied for online or incremental learning.

In recent years, the research field of explainable artificial intelligence (XAI) has gained a lot
of attention [3–5]. The key goals of XAI are to determine if or if not an AI system satisfies
application-centered requirements [6] and to explain why it behaves as it does [4]. The latter question
becomes more and more important today, since generic models like deep neural networks have
become more and more complex. This complexity induces opaqueness about which feature leads to
a decision [7] or what characteristics of a sample is responsible for a certain model output [8]. Our focus
is an estimation of how well an AI system for classification will perform. Being able to answer this
question is essential for human users to build trust in the reliability of the model [9–11].

The reliability of a classifier can be quantified by computing accuracy on a hold-out test set or
by accumulating confidences from predicting single examples [12]. While probabilistic classifiers
have an integrated confidence prediction, non-probabilistic models are using model-specific heuristics
estimating confidences (see Section 4). There are also model-agnostic approaches for estimating
confidences like Conformal Prediction [13]. Jiang et al. suggest comparing the output of any classifier
with a high-density nearest neighbor model to get high quality confidence estimates [14].

Let us now review approaches for accuracy estimation in offline settings. Platanios et al. [15]
estimated classifier accuracy by considering the agreement rate of multiple classifiers of different types
trained with independent features, possibly underestimating performance gains using all features.
Another recent approach by Donmez et al. [16] is also applicable with a single classifier but requires
the label distribution p(y) for evaluating a maximum likelihood. This is applicable, e.g., for medical
diagnosis or handwriting recognition, where the marginal frequency of each class is known. Aghazadeh
and Carlsson [17] proposed a method to determine the quality of a train and test set by evaluating local
and global moments for each class, like intra-class variation and connectivity. They evaluated this fully
supervised approach via a leave one out cross-validation on Pascal VOC 2007 and could predict the
final mean absolute error (MAE) of the held-out class with about 4–5% accuracy. Welinder et al. [12]
showed that it is possible to estimate a binary classifiers precision and recall class-wise by fitting
a mixture model per class in a histogram of confidences and sample those mixture models with various
techniques. This comes closest to our problem setting but it is most likely only applicable on binary
classification problems.

After discussing offline learning approaches let us now focus on incremental learning scenarios.
Artificial models can be fragile if they cannot access the entire training data at once [18,19]. Catastrophic
forgetting [20,21] describes the problem of new information suppressing information from earlier
training. Especially if new classes occur during training this is a problem[22]. Another problem can be
imbalance of data [23] that is quite natural for, e.g., a robot that acquires a high proportion of samples
of one particularly “dominant” class and must be, therefore, very attentive for classes that it perceives
rarely. Concept drift [24,25] describes the problem of sample distributions that change over time.
This can be an abrupt event in the data stream, but it also can be a gradual, reoccurring or even virtual
process [26]. Gomes et al. [27] mention other possible research directions within incremental learning
like anomaly detection [28], ensemble learning, recurrent neural networks and reinforcement learning.

Active learning is an efficient technique for incrementally training a classifier. One variant is
pool-based active learning, which is also evaluated later in this manuscript. By using a querying
method for selecting useful unlabeled samples for training, it is possible to boost the training process.
There are a variety of querying approaches for finding the best samples to be queried [2]. An often-used
querying technique is uncertainty sampling [29] which requests the samples with the least certainty
for labeling. Other strategies select samples based on the expected model output change [30], or they
consider a committee of different classifiers [31] for choosing the samples to be queried. A current
trend is to train data-driven approaches for querying [32,33].
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Although these are the main research fields in incremental and active learning, comparably
less research has been done related to accuracy estimation in incremental or active learning, which
requires the accuracy estimation model to adapt to an evolving classifier. A common choice for
estimating the accuracy in incremental learning is storing a fraction of the labeled training data and to
perform a cross-validation [34]. Another common approach is called interleaved test/train error [19,35].
It requires a classification of each new sample before using it for training. The classifier’s accuracy
is then estimated by averaging over a window of past classifications. However, both approaches
solely estimate the accuracy based on labeled instances. In the following we investigate a novel
semi-supervised approach that also takes confidences on unlabeled data into account.

3. Accuracy Estimation of Incrementally Trained Classifiers

In this contribution we want to answer the following question: “How can we best estimate the
current accuracy of an incremental learning classifier, taking previous learning sessions into account?”

We wish to create an accuracy estimator for a classifier trained by incremental learning. In such
a setting one frequently wishes to monitor the accuracy of the classifier as more and more training
examples are added (e.g., in order to be able to stop learning when a requested accuracy threshold is
surpassed). Ideally, changes in accuracy can be detected that may be caused by changes in the statistics
of the data (e.g., when dynamically adding new or removing existing classes).

Although it is straightforward to detect such accuracy changes by permanently sampling many
examples and querying their labels, this straightforward strategy may be too expensive for many
applications. Therefore, we aim for an estimator that can predict the accuracy of the trained classifier on
the basis of a sufficiently large sample of unlabeled examples (compare Figure 1). Such an estimator
could then predict accuracy changes of a trained classifier under changes of the pool of unlabeled
examples. For instance, changes in the relative frequencies of examples that are associated with
particular classes, or addition of new examples which represent existing classes in modified ways.
Obviously, such a flexible accuracy monitoring that is based only on unlabeled examples is of high
value in many applications (one specific example is presented in Section 6).

To fix our notation we denote by D the data set that characterizes our domain. Subsets S and S′

denote possible training data pools within D (see Figure 2). Each subset consists of an unlabeled pool
(U, U′) and a labeled pool (L, L′).

We make use of a standard incremental learning paradigm [19] to train an incremental classifier
either with random or active sampling.

The beginning of training starts with an empty L. A querying function selects samples,
either randomly or uncertainty-based, from the unlabeled set U in mini-batches with size B.
These batches are labeled by an oracle. This is in most cases a human annotator, whereas in our
experiments ground-truth label data were used. As the training progresses, samples from the unlabeled
pool U are labeled and moved into the labeled pool L. Simultaneously, the classifier C is trained online
with the new labeled batch. The classifier is trained with N batches.

Formally, the classifier is given as a function y = Cθ(u) that maps some unlabeled data item u
into its class label y. In the following, it will be denoted as working classifier and θ denotes its adaptive
parameters. Additionally, it is required that the working classifier comes with a confidence measure
cp(u, θ) ∈ [0, 1] that reflects the reliability of its output on a given input item u when training led to
parameters θ. Section 4 outlines some classifiers which were used in the evaluation together with their
unique approaches for cp.

The construction of the accuracy estimator M for the chosen working classifier requires the one-off
solution of an associated learning or regression task. After that the estimator becomes available for
subsequent monitoring of incremental training of various instances of the chosen same working
classifier. As will be seen shortly, this associated regression task will make use of some initial
incremental training runs of several working classifier instances to generate the ground-truth data to
compute the regression model that provides M.
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Formally, the accuracy estimator M will have to map from a suitably chosen input feature vector
φ(U, θ). This input feature vector captures information about the accuracy of the working classifier
with parameters θ when classifying samples from the pool U. The accuracy value is the desired output
a = M(φ(U, θ)) of the desired mapping (for M the explicit notation of its own adaptive parameters
is omitted).

The input feature vector φ(U, θ) is obtained from confidence histograms (“configrams”) that are
computed from the working classifier’s confidence measure as follows: J-dimensional confidence
histograms over “confidence bins” of width K = 1/J in the confidence interval [0,1] are created,
based on sampling a “representative” subset of our data pool. The histogram count φj of bin j, j = 1..J,
is thus given as

φj = ∑
u∈U

D(u, j)

with the bin membership indicator function

D(u, j) =

{
1 if (j− 1) · K < cp(u, θ) < j · K
0 else

and U a suitably large subset of D. Each histogram φ(U, θ) will be a single input point for the
regression model M. To determine this model, many such points are needed.

Figure 2. A domain D contains data pools S, S′. To predict (predictor M) the accuracy of a classifier
Cθ′ (U

′) while incrementally trained on pool L′ (querying labels from U′, moving samples to L′,
right side), we first create from another instance C(S, θ) of the same classifier, but incrementally trained
on a “training pool” S (with label queries from L, left side), ground-truth data for a regression model
M . This regression model captures the relationship between classifier confidences (“configrams”) φ

and accuracies a on its training pool S. Once the model has been formed, it can be used to generalize
this relationship to the new pool S′ allowing accurate prediction of the accuracy of incremental training
from the unlabeled pool U′ and the few queried labels in L′. The same model could be used to monitor
incremental training on further pools U′′, U′′′ etc. (not depicted).

For the monitoring, the model must be appropriate for working classifiers in different incremental
states. Therefore, configrams are created not for just a single, but instead for a sequence n = 1,2,..N of
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different such training states. This sequence is obtained in a similar fashion as in the later application:
samples from the data pool are grouped into mini-batches which are counted by the index n. Each new
mini-batch leads to an incremental update of the working classifier with changed adaptive parameters
θn and corresponding histogram counts φnj (that now depend on training state n together with bin
number j). This generates a sequence of input feature vectors φn, component-wise given as:

φnj = ∑
u∈U

Dn(u, j)

with the bin membership indicator function

Dn(u, j) =

{
1 if (j− 1) · K < cp(u, θn) < j · K
0 else

Finally, each training state n and sample u requires checking of whether the prediction

ŷu = Cθn(u) coincides with the true label yu or not: L0/1(y, ŷ) =

{
0, if y = ŷ

1, else
The average

an(U, Cθn) =
1
|U| ∑

u∈U
1− L0/1(yu, ŷu)

represents the ground-truth accuracy that belongs to histogram vector φn. (note that this last step
of ground-truth computation for the regression model requires the access of all labels in subset U ).
Finally, all φn(U, θ) and an(U, Cθ) become concatenated into two vectors. To generate more of these
configram-accuracy pairs, not only one classifier instance but a classifier ensemble with Q instances
C1..Q of the same classifier is trained with different initializations (random queries from U).

After training the ensemble of classifiers and collecting several configram sets, they are stacked to
a feature vector Φ. Analogously the ground-truth accuracies are stacked to a vector A. The accuracy
estimator M is an arbitrary regression model, trained with (Φ, A) as features and target values.

Once the Configram Estimation Model (CGEM) M has been obtained, it can be applied to further
incremental learning tasks. These are drawn from the domain D that may use pool U′ whose statistics
may differ from the “model-training” pool U. The model will then extrapolate what is has learned
from U about the relationship between configrams and output accuracy of an incrementally trained
working classifier instance. Therefore, it permits on U′ very quick accuracy predictions without needing
to query any labels in U′. This extrapolation assumes that the domain D is sufficiently homogeneous so
that new pools drawn from D have a high likelihood to be sufficiently similar to the model-training
pool S to admit the above accuracy extrapolation through the model M. The workflow of training and
applying M is also visualized in Figure 3.

Also note that two different quality measures are discussed: the accuracy of Cθ, defined as Working
Classifier Accuracy (WCA). And—as a more important quality measure for this contribution—the
error estimated with M on test set U′ and denoted Accuracy Estimation Error (AEE). It is defined as

AEE =
1
N

N

∑
i=0
|M(φi)− ai|

For M common regression models [36] were tested, like a neural net (mlp), nearest neighbor
regression (NNR), ridge regression (ridge), XGB regression (XGB), gaussian process regression (GPR)
and support vector regression (SVR).

The different regression models were compared by evaluating them on collected configram-
accuracy-pairs from trainings of all tested working classifiers on all data sets that are evaluated later in
this article in Table 4. The averaged AEE of all models is displayed in Figure 4 where the performance
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of the models for both the training set U with blue boxes (this is the training error for estimating
the configrams used for training the model itself) and on the test set U′ with red boxes is shown.
Although GPR has the lowest AEE on U, the model is highly overfitting and thus has by far the largest
error on U′. We experienced that regression using the neural net (mlp) can deliver high performance
for certain configrams, but is under-performing on others. Also, we experienced a high oscillation
of accuracy in terms of the number of trained epochs. Nearest neighbor regression (nnr) is the most
reliable approach on our data, so we select nnr to be used in our further evaluation as the overall best
performing regression model.

save

Working Classifier

Accuracy Estimation Model

train

Sample Batch Querying on
Training Set

repeat

Calculation of Configrams
and Ground Truth Accuracy

train

Configrams and Ground
Truth Accuracy

2. Train Accuracy Estimation Model

3. Apply Accuracy Estimation Model

test

Working Classifier

train

Sample Batch Querying on
Testing Set

repeat

Accuracy Estimation Model

1. Collect Training Data

Figure 3. Workflow of accuracy estimation.

Figure 4. Comparison of regression models used for estimating ground-truth accuracy of several
classifiers averaged on tested real-world data sets.

4. Set of Classifiers and Their Confidence Estimation

We denote our target classifier as C and choose four different classifiers (KNN, GLVQ, SVM,
RFC) for our evaluation. In our experiments KNN and GLVQ are trained in an online fashion.
Especially GLVQ is explained here in depth because it is not so well known but past research has shown
that it fits well in our incremental learning setting. SVM and RFC are retrained in an accumulated way
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after each trained batch on L. Each classifier has a unique way of estimating its confidence and this
will reflect how the configrams will look like.

4.1. Support Vector Machine (SVM)

A Support Vector Machine (SVM) [37] is a maximum margin classifier, separating classes using
a hyperplane defined by a linear combination of so-called support vectors. In our experiments
a one-vs-all encoding is used, where one SVM is trained for each class as positive and all other classes as
negative, for supporting multi-class classification. A popular way for estimating classifier confidences
is the Platt Scaling [38], that fits a sigmoid function mapping the SVM’s outputs to probabilities.

4.2. Random Forest Classifier (RFC)

A Random Forest Classifier (RFC) [39] is an Ensemble of Decision Tree Classifiers (DTC). A DTC
is trained by determining the most important features and placing them in a tree-wise structure.
The classification-labels are in the leaf notes. As the splitting measure for finding the most important
features the Gini Index is chosen. The confidences are estimated by determining for each leaf node the
fraction of training samples of the same class.

4.3. k-Nearest Neighbors (KNN)

kNN is an instance-based classifier which simply memorizes samples L. The classification of an
unlabeled sample u ∈ U is done by determining its k-nearest samples n = {n1, ..., nk}within L together
with their given labels l = {l1, ..., lk} and distances to u: du = {du1, ..., duk}. Normalized weights
are determined for n by: w = {1− du1/ ∑ du, ..., 1− duk/ ∑ du}. The winning class p is estimated by
p = argmaxz∑ w(l = z) denoting all unique labels as z. The confidence estimates is calculated with
cp = ∑ w(l = p)/ ∑ w.

4.4. Generalized Learning Vector Quantization (GLVQ)

GLVQ [40] is using so-called prototypes to represent data. They are interpretative, the number
of classes does not have to be known beforehand, no complete retraining is necessary and efficient
techniques for querying new samples in active learning were studied before [41].

GLVQ is derived from LVQ, which is also instance-based but more memory efficient compared to
kNN, because several samples are represented by a single prototype. In LVQ, as originally proposed by
Kohonen et al. [42], data set D is modeled through p prototypes W = {w1, ..., wp} and their assigned
labels J = {{j1, ..., jp}|ji ∈ {1, ..., k}} for k classes. Notice that p and k can be varying during training.
An input sample is classified by choosing the label of the nearest prototype, where the Euclidean
distance is used. During supervised training, the algorithm adjusts the position of the prototypes so
they model the training set optimally. An efficient variant is generalized LVQ. The prototype positions

are updated via the rules ∆w+ = λ
Φ′(µ(x))d−

(d++d−)2 (x− w+) and ∆w− = λ
Φ′(µ(x))d+

(d++d−)2 (x− w−) where w+ is

the prototype of the true class and w− is the nearest prototype of another class, d+ and d− are their
corresponding distances to x. Sato et al. [40] suggest to set Φ(x) = 1

1+e−x and to use a relative distance
for µ:

µ(x) =
d+(x)− d−(x)
d+(x) + d−(x)

(1)

Performing a prototype position update as above is equivalent to a stochastic gradient descent.
We reformulate µ to an unsupervised measure

µ∗ =
d+∗ (x)− d−∗ (x)
d+∗ (x) + d−∗ (x)

(2)
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where d+∗ is the distance to the nearest prototype and d−∗ is the distance to the next nearest prototype
of another class. With this we calculate confidence estimates:

cp =
1
2

µ∗ +
1
2

(3)

5. Evaluation

We evaluate the CGEM approach on static analytical data sets and show properties on drifting
analytical data. We further evaluate a variety of real-world data sets and we finally test CGEM in a
simulated human–robot interaction experiment.

For evaluating the regression model M, the data set D is split into an equal sized train set S and
a test set S′ randomly. For training M, the classifier ensemble C1..Q is trained on S with N = 50
mini-batches for the analytical experiments and with N = 100 mini-batches for the real-world
experiments. Each batch has the size B = 3 samples. The regression model M is trained as
described earlier. To test M, a second classifier ensemble C′1..Q is trained on S′, analogously to
the training of C before. After each trained batch of C′, the configrams were extracted for evaluating
M. Also, two baseline methods are evaluated for comparison: interleaved test/train error (ITT) and
stratified 5-fold cross-validation (CV) where the implementation of the sklearn python package is used.
For the window size parameter of ITT, we found out that 30 is a good value. If too few samples are in
the labeled pool in the early stage of training, both the number of folds for CV and the window size for
ITT are adjusted to a lower number.

As mentioned earlier we deal with two different quality measures. On the one hand we evaluate
the Working Classifier Accuracy (WCA) of C′ after training for N batches. More important for us
in this contribution is the Accuracy Estimation Error (AEE) which we define as the mean absolute
error (MAE) of the respective accuracy estimation approach compared to the ground-truth accuracy,
both computed on U′. This is evaluated after each trained batch and averaged over all N batches for
defining a mean accuracy over the entire training of C′.

For our analytical experiments a classifier ensemble with Q = 10 instances of the same classifier
is used and each experiment is repeated W = 20 times with a shuffled train test split (only for static
data) to average our results. For the real-world experiments Q = 6 instances of the same classifier are
trained, and each experiment is repeated W = 3 times since these experiments were significantly more
resource-intensive.

5.1. Analytical Static Data Sets

In our first evaluation step we choose to classify samples drawn from four Gaussian distributions
(“Four Gaussian data set”). All Gaussian distributions have a standard deviation σ = 1.0 and are
located on a circle with various radii (see Figure 5).

The final Working Classifier Accuracy (WCA) after training the classifiers is listed in Table 1. Also,
an Optimal Bayes Classifier (OBC) is evaluated to provide the best possible WCA on the respective
data set.

Table 1. Working Classifier Accuracies (WCA) after training on Four Gaussians data sets r1, r2, r3, r4.

r4 r3 r2 r1

OBC 0.996 0.962 0.853 0.564
GLVQ 0.993 0.946 0.813 0.527
KNN 0.994 0.953 0.813 0.477
RFC 0.983 0.941 0.809 0.49
SVM 0.993 0.956 0.838 0.556
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Figure 5. Samples drawn from four variants of the Four Gaussian data set. All Gaussians have σ = 1.0
and their means lie on a circle with radii 4, 3, 2, 1.

The classifiers’ performance is mostly comparable on all data sets. On r1, the data set with the
largest overlap, KNN and RFC performed worse.

The mean Accuracy Estimation Error (AEE) can be seen in Table 2. CGEM is outperforming
cross-validation (CV) and interleaved test/train error (ITT) by a significant margin. As expected, with a
smaller r (i.e., a harder classification problem), AEE is getting higher for all tested approaches, this is
similar for CV and ITT.

To better understand CGEM, several configrams from the Four Gaussians r3 data set were
visualized in Figure A1. It is visible that during training the confidences are shifting nearer to 1.
An exception is the GLVQ classifier, which is in our case first placing prototypes for representing classes
(mid plot) and then moving those prototypes (late plot). M needs to adapt to this. GLVQ also has the
flattest configrams, which may also explain the poorer performance compared to the other classifiers.

Table 2. Accuracy Estimation Errors (AEE) of tested classifiers on Four Gaussians data sets.

r4 r3 r2 r1 Average

GLVQ CV 0.028 0.042 0.057 0.07 0.049
ITT 0.066 0.088 0.11 0.107 0.093

CGEM 0.005 0.013 0.031 0.039 0.022
KNN CV 0.036 0.048 0.064 0.071 0.055

ITT 0.071 0.088 0.105 0.102 0.091
CGEM 0.012 0.019 0.026 0.027 0.021

RFC CV 0.035 0.046 0.066 0.071 0.055
ITT 0.081 0.094 0.104 0.101 0.095

CGEM 0.02 0.024 0.03 0.029 0.026
SVM CV 0.034 0.046 0.062 0.071 0.053

ITT 0.067 0.086 0.106 0.105 0.091
CGEM 0.015 0.019 0.021 0.025 0.02
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5.2. Analytical Drifting Data Sets

We also want to show properties of CGEM with drifting data, where it is assumed that S′

is drawn from a different distribution that ’drifted away’ from S. This evaluation sections uses a
different setting as described earlier. Here, a base data set is used consisting of two classes c1 and c2,
which were sampled from Gaussian distributions as pool S with 500 samples per class (see Figure 6
top). Both distributions are isotropic with standard deviation of σ = 1, and the means µ1 = [0, 0] and
µ2 = [3, 0]. The base data set is then modified in 6 different ways and with 6 different intensities each
(see Figure 6) for use as S′. The maximum intensity is denoted as Imax, where all other intensities are
sampled uniformly from the respective parameter of the base data set to Imax (which is described in
the following list).

• one size: σ2 is multiplied by 2. Translating µ2 by [2, 0] ensures that both classes have the
same margin.

• both size: σ1 and σ2 are multiplied by 2. To ensure that both classes have the same margin µ2 is
translated by [4, 0].

• one samples: number of samples drawn from c1 are multiplied by 5.
• both samples: number of samples drawn from c1 and c2 are both multiplied by 5.
• move: µ2 is translated by [−10, 0].
• squeeze: σ2,1 is multiplied by 3

The AEE is mostly affected by moving one class (see Table 3). By moving one class over the other
the quality decreases until both classes are in the same spatial relation as in the base set, leading us to the
assumption that it is only important to have roughly the same relations between classes. Squeezing one
class is also affecting AEE negatively because the amount of overlap changes.

Table 3. Evaluation of the accuracy estimation error while applying CGEM to drifting data.
Each drifting modifications to the base data set is evaluated in different linear intensities, where 6 the
modification that most drifted away from training data.

1 2 3 4 5 6

size both 0.015 0.018 0.021 0.023 0.028 0.031
size one 0.015 0.017 0.017 0.018 0.019 0.02
samples both 0.018 0.015 0.015 0.015 0.014 0.014
samples one 0.022 0.025 0.023 0.035 0.028 0.027
move 0.165 0.281 0.089 0.04 0.278 0.347
squeeze 0.021 0.032 0.039 0.042 0.054 0.068

Figure 6. Analytical drifting data sets used for determining properties of CGEM. The base data set
is displayed on the top with the six modifications below. Each modification is evaluated in multiple
linear intensities, while the figure displays the most intense modification.
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5.3. Real-World Data

5.3.1. Data Sets

We used five real-world data sets in this part of the evaluation. For WDBC [43] no preprocessing
was done at all. For CALTECH101 [44], PASCALVOC2012 [45] and OUTDOOR [35] the VGG19 deep
convolutional neural net [46] was used without the last SoftMax layer and with the weights from the
image net competition as a feature representation. For extracting facial features for CELEBA [47] dlib
(http://dlib.net/) was used. The target at CELEBA was to differentiate between males and females.

5.3.2. Incremental Learning

The accuracy estimation error (AEE) from incremental learning with random querying can be
seen in Table 4. CGEM is outperforming the baseline methods in nearly all cases with an AEE of 2.3%
to 4.0%. The final working classifier accuracy (WCA) is shown in Table 5.

Table 4. Evaluation of accuracy estimation error (AEE) of CGEM approach compared to baseline
models. The classifier was trained incrementally with random sampling. Accuracy estimation was
done after each batch. The table shows mean absolute error (MAE) compared to ground truth.

WDBC CALTECH PASCALVOC2012 OUTDOOR CELEBA Average
GLVQ CV 0.059 0.07 0.05 0.067 0.04 0.057

ITT 0.075 0.07 0.072 0.083 0.066 0.073
CGEM 0.052 0.025 0.033 0.026 0.016 0.03

KNN CV 0.035 0.065 0.056 0.096 0.029 0.056
ITT 0.064 0.075 0.079 0.078 0.052 0.07

CGEM 0.039 0.041 0.044 0.058 0.018 0.04
RFC CV 0.033 0.047 0.038 0.086 0.024 0.046

ITT 0.051 0.067 0.066 0.075 0.045 0.061
CGEM 0.022 0.031 0.016 0.031 0.015 0.023

SVM CV 0.049 0.072 0.047 0.073 0.021 0.052
ITT 0.082 0.079 0.071 0.079 0.046 0.071

CGEM 0.066 0.04 0.024 0.041 0.015 0.037

Table 5. Final classifier accuracies of real-world random sampling experiments.

WDBC CALTECH PASCALVOC2012 OUTDOOR CELEBA

GLVQ 0.765 0.621 0.442 0.83 0.816
KNN 0.919 0.498 0.454 0.683 0.981
RFC 0.953 0.329 0.273 0.544 0.976
SVM 0.859 0.65 0.494 0.857 0.986

Also, we wanted to analyze parameter choices for the baseline methods. Figure 7 depicts different
number of folds for CV and different window sizes for ITT related to their AEE on the OUTDOOR
data set for the GLVQ classifier. Changing the number of folds for CV does not seem to have a huge
effect in estimating the accuracy. If the ITT window size is too small there can be noise and calculating
the average of a smaller window results in coarser granularity. On the other hand, if the window is too
big, there is too much delay and information from older states of the classifier has a negative impact.
Choosing a window size of 30 seems to be a good trade-off.

http://dlib.net/
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Figure 7. Evaluation of different parameters for cross-validation (CV) and interleaved test/train error
(ITT) for GLVQ classifier on the OUTDOOR data set.

Furthermore, we want to analyze different ratios for train/test splits or in other words how
many samples training set S and test set S′ contains. For the other experiments, we choose to have
a 50/50 split. Figure 8 shows different ratios of the train/test split, again for the GLVQ classifier on
the OUTDOOR data set. The results are supporting our findings with the analytical data set from
Section 5.2. The AEE remains stable also if the training set S consists of only 10% of the samples from
the data set. The error raises to 4%, which is still better than the baseline models, if only 250 samples
are in the training set S. However, if the train set is defined too small, CGEM is not capable of building
an accurate estimation model.
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Figure 8. Evaluation of CGEM for different train/test split ratios for GLVQ classifier on OUTDOOR
data set (total of 5000 samples).

5.3.3. Active Learning

For active learning experiments, uncertainty sampling was used to query the samples with the
lowest classifier confidence (see Tables 6 and 7). The final WCA is usually better compared to random
sampling (see Table 5). However, the AEE predicted with CGEM is with 2.3% to 7.2% slightly higher
as in the random sampling experiments.

Predicting the accuracy of the classifier when applying an active querying strategy is challenging
for the baseline methods, because they are relying on the samples of L′ only and those samples have
lowest confidence, meaning they are hard to classify. So, the estimated accuracy is pessimistic in
this case. CGEM is adapting to this and still estimates the accuracy with high precision. In Figure 9
averaged incremental training runs are displayed showing the absolute ground-truth and estimated
accuracies of training GLVQ on the OUTDOOR data set with both random and active sampling.
Figure A2 visualizes the standard deviation of AEE for these trainings.
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Table 6. Evaluation of accuracy estimation error (AEE) of CGEM approach compared to baseline
models. The classifier was trained with incrementally using Active Learning with an uncertainty
sampling querying strategy. Accuracy estimation was done after each batch. The table shows mean
absolute error (MAE) compared to ground truth.

WDBC CALTECH PASCALVOC2012 OUTDOOR CELEBA Average
GLVQ CV 0.189 0.182 0.082 0.255 0.13 0.168

ITT 0.186 0.31 0.165 0.331 0.386 0.276
CGEM 0.056 0.052 0.045 0.028 0.013 0.039

KNN CV 0.128 0.225 0.127 0.21 0.251 0.188
ITT 0.124 0.257 0.239 0.319 0.463 0.28

CGEM 0.021 0.1 0.049 0.095 0.014 0.056
RFC CV 0.122 0.145 0.096 0.207 0.19 0.152

ITT 0.098 0.217 0.148 0.281 0.442 0.237
CGEM 0.008 0.035 0.029 0.031 0.014 0.023

SVM CV 0.204 0.39 0.137 0.333 0.311 0.275
ITT 0.184 0.235 0.191 0.208 0.397 0.243

CGEM 0.131 0.075 0.059 0.063 0.035 0.072

Figure 9. Ground-truth accuracy and estimated accuracy of the GLVQ classifier trained on the
OUTDOOR data set for both random sampling and uncertainty sampling and both train and test set.

Table 7. Final classifier accuracies of real-world uncertainty sampling experiments.

WDBC CALTECH PASCALVOC2012 OUTDOOR CELEBA

GLVQ 0.991 0.571 0.413 0.882 0.869
KNN 1.0 0.51 0.469 0.715 0.967
RFC 1.0 0.346 0.338 0.664 0.979
SVM 1.0 0.472 0.51 0.811 0.97

5.4. Comparison in Resource Demands

CGEM needs to be train beforehand. This requires a labeled data set for extracting configrams to
be used to train the regression model. CV and ITT do not need such a preparation phase; however,
after training CGEM it can be applied on demand and with no further overhead. Only the regression
model must be saved and for estimating the accuracy, confidences of unlabeled samples must be
calculated for creating a configram to be fed into CGEM.
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ITT is maybe the approach which needs less resources. Memory-wise it is relatively cheap,
because only the window of the last classifications must be saved. However, before training any
sample, it must be classified because ITT relies on the information whether these classifications were
correct or not. This makes ITT relatively inflexible, because these classifications must be done, even if
accuracy estimates are not necessary.

CV is the most resource demanding approach. Memory-wise it is expensive because a sufficient
number of trained samples must be saved for applying the CV, which is possibly not an option on some
mobile robot applications. In our evaluation we saved all yet trained samples for the best possible
performance of CV. However, also computation-wise CV is resource demanding, since for estimating
the accuracy k classifiers must be trained, where k is the number of CV-folds.

6. Competence-Based Human Machine Interaction

To have a look at a more practical evaluation, we want to know how CGEM can be used as a helper
for an efficient human–robot interaction in an more flexible incremental learning setting, where new
classes appear while in training. This relates to our use case of a service robot that regularly does
a particular job and must adapt to new conditions occasionally. In our training setting, the classifier
is not only trained incrementally, but also new samples (including new classes) are inserted to the
unlabeled pool U while training. To define the state of sufficient robot capability, a minimum desired
task accuracy (MDTA) is defined. If CGEM estimates a lower accuracy than MDTA, the robot stops the
task and waits for its supervision. The supervision is done by querying unlabeled samples and asking
the user for the respective labels. As in our former evaluation, CGEM is applied after each batch of
samples to determine the accuracy increase. This is done until the accuracy is equal to or above the
MDTA. If accuracy estimation detects a drop in accuracy again because of newly appearing unknown
classes, the robot stops and is retrained until the MDTA is reached again.

To simulate this use case in an experimental setting, the GLVQ classifier is trained on the
OUTDOOR data set, which is related to our scenario. We choose GLVQ because it is a very flexible
classifier, needs less resources compared to the other evaluated methods and because it is well suited
for efficient incremental training [48]. Also, GLVQ performed best on the OUTDOOR data set when
using uncertainty sampling and second best when querying randomly.

In our experimental setting the train test split in S and S′ is applied as described earlier.
The training of C is commences with only 10 classes from OUTDOOR. The training is done in
mini-batches as described earlier. After each mini-batch, the accuracy on U is calculated and if
it is above an MDTA of 80% the classifier is expected to be good enough until new objects appear.
To simulate this, 5 new classes are put in U and continue training until N batches are trained. M is then
trained with the extracted configram-accuracy pairs (Φ, A). After that, M is applied to S′ in a similar
fashion: C′ is trained as long as its estimated accuracy predicted by CGEM is below 80%. Please note
that we do not use ground-truth accuracy data here, but we are capturing it for comparison. Again
similar to before, 5 unknown classes are put in U′ if the predicted accuracy is equal or above an MDTA
of 80%.

The accuracy plot of C′ can be seen in Figure 10. In the plot the adding of the new samples to
U′ is noticeable in a drop of accuracy when the predicted accuracy (green line) is on or above 80%.
After the adding, the estimated accuracy is below 0.8 and the classifier is trained again until the MDTA
is reached again. Then new samples are added again, the classifier is retrained again and so on. It is
visible from the plot that CGEM is also capable of predicting the accuracy in this incremental learning
use case, except for some fluctuations in the beginning of training.
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Figure 10. CGEM applied in one incremental learning use case where new classes are added to the
unlabeled pool while training (noticeable in the decays of accuracy). CGEM, ITT and CV are used to
estimate the ground-truth accuracy. New samples are added to the unlabeled pool, when the estimated
accuracy by CGEM is over 80%.

7. Conclusions

We showed that the CGEM approach improves the prediction of accuracy for four incremental
trained classifiers with their specific confidence estimates. Our analytical experiments show that
data distributions need to be similar for training and test conditions, excluding strong drift scenarios.
Our in-depth evaluation of several state-of-the-art real-world data sets shows that CGEM estimates the
classifier’s accuracy for both random and active learning. Especially for active learning this is crucial,
because baseline methods are relying on the labeled training set which is not representative for the
whole data distribution. Our CGEM method can resolve this problem by also taking into account the
unlabeled data. Further we have shown that CGEM also deals with more interactive learning scenarios
where new samples are added while training incrementally.

For using CGEM, it needs to be trained with a labeled training data set first. After being trained
once, it can be applied in a very flexible manner and only if needed, without any extra overhead.
CGEM also has a very fast reaction time, which is crucial when dealing with fast changing environments
as our incremental learning use case has shown. The baseline methods CV and ITT both have a high
latency because they are working on a window of trained instances. The main qualitative difference
to CV and ITT is the additional exploitation of unlabeled data with respect to the confidences of the
targeted classifier.

There is little research done concerning the quality surveillance of continuously learning
autonomous intelligent systems. We think that this is an important goal for building adaptive
cooperative robots and we hope that a first step towards this was done with this contribution.
Further research is needed in analyzing how to apply CGEM to data that is different from the training
data and if domain adaptation techniques are applicable here. Also, it would be beneficial to have
a confidence for the estimated accuracy to further reject uncertain predictions. For reducing the label
effort to create set S for training CGEM, it can be explored if data set reduction techniques as described
in [14] can be applied, since our experiments show that CGEM is robust in terms of a varying number
of samples.
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As already motivated in the introduction, a possible application for CGEM could be,
e.g., a household service robot. As such a consumer robot is shipped from a factory to a customer it
has to learn the individual user environment, where the robot should do a certain task like cleaning
the room. The robot is trained incrementally by getting user supervision via a label interface [49] from
time to time. In this use case a first simplified goal could be to determine if the accuracy in recognizing
key objects in the environment can be estimated if CGEM is pre-trained with other objects within the
goal domain. The estimated accuracy could then be used to determine if the robot needs more training
or if the user must take a higher workload ratio to accomplish a needed minimal accuracy.

A second goal could be to determine if the estimated accuracy is related to the actual task
performance the robot has in its current state (like how good is the robot in cleaning up the
environment). Other interesting research within such a real-world application of CGEM could be to
determine if the whole task should be delegated, if the performance is not increasing while training.
Also, it could be interesting to evaluate a trade-off for training the robot compared to the user is doing
the task on his or her own.
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Appendix A

Figure A1. Configrams of evaluated classifiers extracted at the beginning, middle and end of training.
The different kinds of confidence estimations are visible in the configrams, too.
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Figure A2. Ground-truth accuracy and accuracy estimation errors with standard deviation of tested
approaches for the GLVQ classifier trained on the OUTDOOR data set for both random sampling and
uncertainty sampling and both train and test set.
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