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Abstract: The main challenges are discussed together with the lessons learned from past and ongoing
research along the development cycle of machine learning systems. This will be done by taking into
account intrinsic conditions of nowadays deep learning models, data and software quality issues and
human-centered artificial intelligence (AI) postulates, including confidentiality and ethical aspects.
The analysis outlines a fundamental theory-practice gap which superimposes the challenges of AI
system engineering at the level of data quality assurance, model building, software engineering and
deployment. The aim of this paper is to pinpoint research topics to explore approaches to address
these challenges.

Keywords: AI system engineering; deep learning; embedded AI; federated learning; transfer learning;
human centered AI

1. Introduction

Many real-world tasks are characterized by uncertainties and probabilistic data that is
hard to understand and hard to process for humans. Machine learning (ML) and knowledge
extraction [1] help turning this data into useful information for realizing a wide spectrum
of applications such as image recognition, scene understanding, decision-support systems,
and so forth, that enable new use cases across a broad range of domains.

The success of various machine learning methods, in particular Deep Neural Net-
works (DNNs), for challenging problems of computer vision and pattern recognition, has
led to a Cambrian explosion in the field of Artificial Intelligence (AI). In many application
areas, AI researchers have turned to deep learning as the solution of choice [2,3]. A char-
acteristic of this development is the acceleration of progress in AI over the last decade,
which has led to AI systems that are strong enough to raise serious ethical and societal
acceptance questions. Another characteristic of this development is the way how such
systems are engineered.

Above all, there is an increasing interconnection of traditionally separate disciplines
such as data analysis, model building and software engineering. As outlined in Figure 1 AI
system engineering encompasses all steps of building AI systems, from problem under-
standing, problem specification, AI model selection, data acquisition and data conditioning
to deployment on target platforms and application environments.
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Figure 1. Artificial Intelligence (AI) System Engineering Lifecyle comprised of AI modelling cycle and software system
development loop.

In particular, data-driven AI methods such as DNNs allow data to shape models and
software systems that operate them. Hurdels, respectively, challenges for engineering AI
systems can be split into the following three categories:

• Hurdles from Current Machine Learning Paradigms, see Section 2. These modelling
and system development steps are made much more challenging by hurdles resulting
from current machine learning paradigms. Such hurdles result from limitations of
nowadays theoretical foundations in statistical learning theory and peculiarities or
shortcomings of today’s deep learning methods.

– Theory-practice gap in machine learning with impact on reproducibilty and sta-
bility;

– Lack of uniqueness of internal configuration of deep learning models with impact
on reproducibility, transparancy and interpretability;

– Lack of confidence measure of deep learning models with impact on trustworthi-
ness and interpretability;

– Lack of control of high-dimensionality effects of deep learning model with impact
on stability, integrity and interpretability.

• Key Challenges of AI Model Lifecycle, see Section 3. The development of data-
driven AI models and software systems therefore faces novel challenges at all stages
of the AI model and AI system lifecycle, which arise along transforming data to
learning models in the design and training phase, particularly

– Data challenge to fuel the learning models with sufficiently representative data
or to otherwise compensate for their lack, as for example by means of data
conditioning techniques like data augmentation;
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– Information fusion challenge to incorporate constraints or knowledge available
in different knowledge representation;

– Model integrity and stability challenge due to unstable performance profiles trig-
gered by small variations in the implementation or input data (adversarial noise);

– Security and confidentiality to shield machine learning driven systems from
espionage or adversarial interventions;

– Interpretability and transparancy challenge to decode the ambiguities of hidden
implicit knowledge representation of distributed neural parametrization;

– Trust challenge to consider ethical aspects as a matter of principle, for example,
to ensure correct behavior even in case of a possible malfunction or failure.

• Key Challenges of AI System Lifecycle, see Section 4. Once a proof of concept of a
data-driven solution to a machine learning problem has been tackled by means of
sufficient data and appropriate learning models, requirements beyond the proper
machine learning performance criteria have to be taken into account to come up with
a software system for a target computational platform intended to operate in a target
operational environment. Key challenges arise from application specific requirements:

– Deployment challenge and computational resource constraints, for example, on
embedded systems or edge hardware;

– Data and software quality;
– Model validation and system verification including testing, debugging and doc-

umentation, for example, certification and regulation challenges resulting from
highly regulated target domains such as in a bio-medical laboratory setting.

Outline and Structure

The outline of this paper follows the structure of our previous conference paper [4],
which is now refined and extended by further use cases, details and diagrams. The paper
is intended as a “Lessons learned” paper where we reflect on our experiences of past
and ongoing research and development projects of machine learning systems for cus-
tomers and research partners in such diverse fields as manufacturing, chemical industry,
healthcare and mobility. In contrast to recent survey papers with focus on challenges of
deploying machine learning systems [5], we also outline in-progress approaches from
on-going research projects. the paper is composed in to an analysis section and a section of
illustrative examples to demonstrate emerging approaches from selected ongoing research
projects. The analysis part consists of three building blocks according to Figure 1: Block
1—Application Requirements raising hurdles (see Section 2), Block 2—AI Modeling Cycle
(see Section 3) and Block 3—Software System Engineering Cycle (see Section 4). Selected
approaches based on ongoing research are given in Section 5. An overview of the structure
is given in the following:

• Overview of challenges and analysis

(1) Application Requirements raising hurdles (see Section 2)
(2) AI Modeling Cycle (see Section 3)
(3) Software System Engineering Cycle (see Section 4)

• Outline of approaches from selected ongoing research projects

(1) Automated and Continuous Data Quality Assurance (see Section 5.1)
(2) Domain Adaptation Approach for Tackling Deviating Data Characteristics at

Training and Test Time (see Section 5.2)
(3) Hybrid Model Design for Improving Model Accuracy (see Section 5.3)
(4) Interpretability by Correction Model Approach (see Section 5.4)
(5) Software Quality by Automated Code Analysis and Documentation Generation

(see Section 5.5)
(6) the ALOHA Toolchain for Embedded Platforms (see Section 5.6)
(7) Confidentiality-Preserving Transfer Learning (see Section 5.7)
(8) Human AI Teaming as Key to Human Centered AI (see Section 5.8)
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2. Hurdles from Current Machine Learning Paradigms

There are peculiarities of deep learning methods that affect the correct interpretation
of the system’s output and the transparency of the system’s configuration.

2.1. Theory-Practice Gap in Machine Learning

The design and test principles of machine learning are underpinned by statistical
learning theory and its fundamental theorems such as Vapnik’s theorem [6]. The theoretical
analysis relies on idealized assumptions such as that the data is drawn independent and
identically distributed from the same probability distribution. As outlined in Reference [7];
however, this assumption may be violated in typical applications such as natural language
processing [8] and computer vision [9,10].

This problem of data set shifting can result from the way input characteristics are
used, from the way training and test sets are selected, from data sparsity, from shifts in
data distribution due to non-stationary environments, and also from changes in activation
patterns within layers of deep neural networks. Such a data set shift can cause misleading
parameter tuning when performing test strategies such as cross-validation [11,12].

This is why engineering machine learning systems largely relies on the skill of the data
scientist to examine and resolve such problems.

2.2. Lack of Uniqueness of Internal Configuration

First of all, in contrast to traditional engineering, there is a lack of uniqueness of
internal configuration causing difficulties in model comparison. Systems based on machine
learning, in particular deep learning models, are typically regarded as black boxes. How-
ever, it is not just simply the complex nested non-linear structure which matters as often
pointed out in the literature, see Reference [13]. There are mathematical or physical systems
which are also complex, nested and non-linear, and yet interpretable (e.g., wavelets, statisti-
cal mechanics). It is an amazing, unexpected phenomenon that such deep networks become
easier to be optimized (trained) with an increasing number of layers, hence complexity,
see References [14,15]. More precisely, to find a reasonable sub-optimum out of many
equally good possibilities. As consequence, and in contrast to classical engineering, we
lose uniqueness of the internal optimal state.

2.3. Lack of Confidence Measure

A further peculiarity of state of the art deep learning methods is the lack of confidence
measure. In contrast to Bayesian based approaches to machine learning, most deep learning
models do not offer a justified confidence measure of the model’s uncertainties. For exam-
ple, in classification models, the probability vector obtained in the top layer (predominantly
softmax output) is often interpreted as model confidence, see, for example, Reference [16]
or Reference [17]. However, functions like softmax can result in extrapolations with unjus-
tified high confidence for points far from the training data, hence providing a false sense of
safety [18]. Therefore, it seems natural to try to introduce the Bayesian approach also to
DNN models. The resulting uncertainty measures (or, synonymously, confidence measures)
rely on approximations of the posterior distribution regarding the weights given the data.
As a promising approach in this context, variational techniques, for example, based on
Monte Carlo dropout [19], allow to turn these Bayesian concepts into computationally
tractable algorithms. The variational approach relies on the Kullback-Leibler divergence
for measuring the dissimilarity between distributions. As a consequence, the resultant
approximating distribution becomes concentrated around a single mode, underestimating
the uncertainty beyond this mode. Thus, the resulting measure of confidence for a given
instance remains unsatisfactory and there might be still regions with misinterpreted high
confidence.
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2.4. Lack of Control of High-Dimensionality Effects

Further, there is the still unsolved problem of lack of control of high-dimensionality
effects. There are high dimensional effects, which are not yet fully understood in the con-
text of deep learning, see References [20,21]. Such high-dimensional effects can cause
instabilities as illustrated, for example, by the emergence of so-called adversarial examples,
see for example, References [22,23].

3. Key Challenges of AI Model Lifecycle

AI model lifecycle refers to the development steps of data-driven modelling, starting
from data conditioning as basis for model training to finding a solution configuration
of a proposed machine learning model for the task at hand. Typically these steps aim
at extracting higher level semantics and meaning from lower level representations as
indicated in Figure 2.

Figure 2. Steps of Developing AI Models.

3.1. Data Challenge: Data Augmentation with Pitfalls

Instead of using the raw sampled data directly, it has been become a standard tech-
nique in machine learning to apply additional data curation and data conditioning methods
to enhance the expressiveness of data to be used for training. An example would be the im-
putation of missing values to increase the amount of training data [24]. This way, data aug-
mentation techniques are used to improve the model’s generalisation capabilities [25–28]
and, also to mitigate adversarial vulnerability [25,29–31]. Some augmentation methods
incorporate inductive bias into the model by (classical) invariance-preserving geometric
transformations designed by domain experts, while others rely on statistical heuristics
(e.g., Mixup [29]) or sampling from a learned data distribution (e.g., GANs [26,31]). But,
by affecting a model’s behavior beyond the given training data, any data augmentation
strategy introduces a certain bias caused by its assumptions about the task at hand [32].
So, as in medicine, where a drug can have side effects, data augmentation might have side
effects which have hardly been investigated yet [33].

3.2. Information Fusion Challenge

Often a single source of information does not provide the sufficient information that
is required or is not reliable enough. Therefore, the exploitation of different sources and
modalities having potentially complementing predictive power and noise topology is vital
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for many applications to achieve the required robustness. There is ongoing progress in
the integration of different modalities and representation variants of information. For ex-
ample, generative adversarial networks (GAN) [34] successfully are applied to narrow
the distribution deviation between modalities by an adversarial process; attention mecha-
nisms [35] allow the localization of salient features from modalities such that they are simi-
lar or complementary to each other. Nevertheless there remain major challenges [36–39]:

• Current deep learning models cannot capture the fully semantic knowledge of the mul-
timodal data. Although attention mechanisms can be used to mitigate these problems
partly, they work implicitly and cannot be actively controlled. In this context the com-
bination of deep learning with semantic fusion and reasoning strategies are promising
approaches [39].

• In contrast to the widespread use of convenient and effective knowledge transfer
strategies in the image and language domain, similar methods are not yet available
for audio or video data, not to mention other fields of applications for example, in
manufacturing.

• The situation is worsened when it comes to dynamically changing data with shifts
in its distribution. The traditional method of deep learning for adopting to dynamic
multimodal data is to train a new model when the data distribution changes. This,
however, takes too much time and is therefore not feasible in many applications.
A promising approach is the combination with transfer learning techniques, which aim
to handle deviating distributions as outlined in References [40,41]. See also Section 2.1.

3.3. Model Integrity and Stability Challenge

Deep learning methods are known to be surprisingly prone to adversarial attacks
in the form of small perturbations to the input data. This intriguing weakness was first
discovered and demonstrated by Szegedy et al. [22] by means of images that remain
almost imperceptible to humans. Such adversarial perturbations can be caused by targeted
attacks to cause a neural network classifier to completely change its prediction, even with
reported high confidence on the wrong prediction. This effect is both a security and a
safety issue [22,42–44]. As pointed out in Section 2.4 the susceptibility to compromise
model integrity and stability is closely related to some intrinsic of nowadays deep model
architectures such as high-dimensional effects.

3.4. Security and Confidentiality Challenge

Neural networks are not just input-output functions, they also represent a form of
memory mechanism via compressed representations of the training data stored within
their weights. This can cause unintended memorization. It is therefore possible to partially
reconstruct input data from the model parameters (weights) themselves [45]. Such model
inversion attacks can cause severe data leakage [46]. The purpose of such attacks is often
not to disrupt (poison) the learning mechanism, but to extract sensitive information in
the process of or after the creation of the models. For example, membership inference
attacks aim at determining whether a given sample is part of the training data or not [47–50].
Protection against membership inference attacks is of particular interest in GDPR-critical
domains with sensitive personal data such as healthcare, e-government or customer data in
trade and industry. In contrast, the goal of property inference attacks is not at the individual
level (membership of a certain class), but rather at the level of aggregated properties of
the training data such as amount of data [51]. Protection against property inference attacks
are of particular interest in industry to keep secrets of underlying business models.

In the literature, the notions of privacy and confidentiality are used in this context. The
former refers to personal data, for example, related to GDPR standards, while confidential-
ity is broader, taking also non-personal data such as company secrets into account. As this
distinction is only a matter of application and not a conceptual one, we use them synony-
mously.
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The necessity of techniques to protect privacy is emphasized by a growing number
of attacks on machine learning models in potentially security-critical domains such as
healthcare [52]. As a counter measure there is great interest in privacy-preserving AI
that aims at allowing learning from data without disclosing the data itself. In this con-
text, federated machine learning systems in combination with differential privacy have
emerged as a promising approach [53]. Federated learning is based on the principle to keep
the execution of data processing at the sites or devices where the data is kept. This way
training iterations are performed locally and only results of the computation (e.g., updated
neural network weights) are returned to a central repository to update the main model.
Differential privacy is based on the idea to perturb the data in a way that allows statistical
reasoning while reducing individually recognizable information [54]. This way differential
privacy complicates considerably membership inference attacks. The main advantage is
to maintain data sovereignty by keeping the data with its owner, while at the same time
the training of algorithms on the data is made possible. But there is an unavoidable tradeoff
between protection of confidentiality and other performance criteria such as accuracy or
transparency [55,56]. Moreover, current federated learning systems rely on assumptions on
the distribution of the data which often are not applicable for industrial applications [57,58].

3.5. Interpretability Challenge

Essential aspects of trusted AI are explainability and interpretability. While inter-
pretability is about being able to discern the mechanics without necessarily knowing why.
Explainability is being able to quite literally explain what is happening, for example,
by referring to mechanical laws. It is well known that the great successes of machine
learning in recent decades in terms of applicability and acceptance are relativized by
the fact that they can be explained less easily with increasing complexity of the learning
model [59–61]. Explainability of the solution is thus increasingly perceived as an inherent
quality of the respective methods [61–64]. Particularly in the case of deep learning methods
attempts to interpret the predictions made using parameters fail [64]. The necessity to
obtain not only increasing prediction accuracy but also the interpretation of the solutions
determined by ML or Deep Learning arises at the latest with the ethical [65,66], legal [67],
psychological [68], medical [69,70], and sociological [71] questions tied to their application.
The common element of these questions is the demand to clearly interpret the decisions
proposed by AI. The complex of problems that derives from this aspect of artificial intelli-
gence for explainability, transparency, trustworthiness, and so forth, is generally described
with the term Explainable Artificial Intelligence, synonymously Explainable AI or XAI.
Its broad relevance can be seen in the interdisciplinary nature of the scientific discussion
that is currently taking place on such terms as interpretation, explanation and refined
versions such as causability and causality in connection with AI methods [64,72–74].

3.6. Trust Challenge

In contrast to traditional computing, AI can now perform tasks that previously only
humans were able to do. As such it contains the possibility to revolutionize every aspect
of our society. The impact is far-reaching. First, with the increasing spread of AI systems,
the interaction between humans and AI will increasingly become the dominant form of
human-computer interaction [75]. Second, this development will shape the future work-
force. PwC (https://www.pwc.com/gx/en/services/people-organisation/workforce-of-
the-future/workforce-of-the-future-the-competing-forces-shaping-2030-pwc.pdf) predicts
a relatively low displacement of jobs (around 3%) in the first wave of AI, but this could dra-
matically increase up to 30% by the mid-2030’s. Therefore, human centered AI has started
coming to the forefront of AI research based on postulated ethical principles for protect-
ing human autonomy and preventing harm. Recent initiatives at national (https://www.
whitehouse.gov/wp-content/uploads/2019/06/National-AI-Research-and-Development-
Strategic-Plan-2019-Update-June-2019.pdf) and supra-national (https://ec.europa.eu/
digital-single-market/en/news/ethics-guidelines-trustworthy-ai) level emphasize the
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need for research in trusted AI. In contrast to interpretability, trust is a much more com-
prehensive concept. Trust is linked to the uncertainty about a possible malfunctioning or
failure of the AI system as well as to circumstances of delegating control to a machine as a
black box. Predictability and dependability of AI technology as well as the understanding
of the technology’s operations and the intentions of its creators are essential drivers of
trust [76]. Particularly, in critical applications the user wants to understand the rationale
behind a classification, and under which conditions the system is trustful and when not.
Consequently, AI systems must make it possible to take these human needs of trust and
social compatibility into account. On the other hand, we have to be aware of limitations and
peculiarities of state of the art AI systems. Currently, the topic of trusted AI is discussed in
different communities at different levels of abstraction:

• in terms of high level ethical guidelines (e.g., ethics boards such as algorithmwatch.org
(https://algorithmwatch.org/en/project/ai-ethics-guidelines-global-inventory/),
EU’s Draft Ethics Guidelines (https://ec.europa.eu/digital-single-market/en/news/
ethics-guidelines-trustworthy-ai));

• in terms of regulatory postulates for current AI systems regarding for example, trans-
parency (working groups on standardization, for example, ISO/IEC JTC 1/SC 42 on
artificial intelligence (https://www.iso.org/committee/6794475/x/catalogue/p/0/
u/1/w/0/d/0));

• in terms of improved features of AI models (above all by explainable AI
community [77,78]);

• in terms of trust modelling approaches (e.g., multi-agent systems community [76]).

In view of the model-intrinsic and system-technical challenges of AI that have been
pointed out in the Sections 2 and 3, the gap between the envisioned high-level ethical
guidelines of human-centered AI and the state of the art of AI systems becomes evident.

4. Key Challenges of AI System Lifecycle

In data-driven AI systems, there are two equally consequential components—software
code and data. However, some input data are inherently volatile and may change over
time. Therefore, it is important that these changes can be identified and tracked to fully
understand the models and the final system [79]. To this end, the development of such
data-driven systems has all the challenges of traditional software engineering combined
with specific machine learning problems causing additional hidden technical debts [80].

4.1. Deployment Challenge and Computational Resource Constraints

The design and training of the learning algorithm and the inference of the resulting
model are two different activities. The training is very computationally intensive and is
usually conducted on a high performance platform [81]. It is an iterative process that leads
to the selection of an optimal algorithm configuration, usually known as hyperparameter
optimization, with accuracy as the only major goal of the design [82]. While the training
process is usually conducted offline, inference very often has to deal with real-time con-
straints, tight power or energy budgets, and security threats. This dichotomy determines
the need for multiple design re-spins (before a successful integration), potentially leading
to long tuning phases, overloading the designers and producing results highly depending
on their skills. Despite the variety of resources available, optimizing these heterogeneous
computing architectures for performing low-latency and energy-efficient DL inference
tasks without compromising performance is still a challenge [83].

4.2. Data and Software Quality

This section highlights quality assurance issues related to data and software maintenance.

4.2.1. Data Quality Assurance Challenge

While much of the research in machine learning and its theoretical foundation has
focused on improving the accuracy and efficiency of training and inference algorithms, less
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attention has been paid to the equally important practical problem of monitoring the quality
of the data supplied to AI systems [84,85]. Due to the multi-dimensional nature of poor
data quality, the gain of a comprehensive understanding is not trivial [86]. The culture
and management of an organization is often a critical factor for data quality, which means
that organizations with a high awareness for quality in general (e.g., production quality
or manufacturing of high-quality products) are often more willing to deal with data
quality [86,87].

Common causes for poor data quality are errors during data collection (e.g., by sen-
sors or humans), complex and insufficiently defined data management processes, errors in
the data integration pipeline, incorrect data usage, and the expiration of data (e.g., customer
addresses or telephone numbers) [86]. With respect to data management, especially hetero-
geneous data sources and a large number of schema-free data pose additional challenges,
which directly impact data extraction from multiple sources, data preparation, and data
cleansing [88–90].

To select a proper method to assure (i.e., to measure and improve) the quality of data,
on the one hand the intrinsic data characteristics, and on the other hand, the purpose of
the data needs to be taken into account [91]. In complex AI systems, data quality needs to be
monitored over the entire lifecycle: from data preparation, training, testing, and validating
computational models. In the following, we summarize key data quality challenges, which
appeared throughout our projects:

• Missing data is a prevalent problem in data sets. In industrial use cases, faulty sen-
sors or errors during data integration are common causes for systematically missing
values. Historically, a lot of research into missing data comes from the social sci-
ences, especially with respect to survey data, whereas little research work deals with
industrial missing data [24]. In terms of missing data handling, it is distinguished
between deletion methods (where records with missing values are simply not used),
and imputation methods, where missing values are replaced with estimated values for
a specific analysis [24]. Little & Rubin [92] state that “the idea of imputation is both
seductive and dangerous”, pointing out the fact that the imputed data is pretended to
be truly complete, but might have substantial bias that impairs inference. For example,
the common practice of replacing missing values with the mean of the respective
variable (known as mean substitution) clearly disturbs the variance of the respective
variable as well as correlations to other variables. A more sophisticated statistical
approach as investigated in Reference [24] is multiple imputation, where each missing
value is replaced with a set of plausible values to represent the uncertainty caused
by the imputation and to decrease the bias in downstream prediction tasks. In a
follow-up research, also the integration of knowledge about missing data pattern
is investigated.

• Semantic shift (also: semantic change, semantic drift) is a term originally stemming
from linguistics and describes the evolution of word meaning over time, which can
have different triggers and development [93]. In the context of data quality, semantic
shift is defined as the circumstance when “the meaning of data evolves depending on
contextual factors” [94]. Consequently, when these factors are modeled accordingly
(e.g., described with rules), it is possible to handle semantic shift even in very complex
environments as outlined in Reference [94]. While the most common ways to overcome
semantic shift are rule-based approaches, more sophisticated approaches take into
account the semantics of the data to reach a higher degree of automation. Example
information about contextual knowledge are the respective sensor or machine with
which the data is collected [94].

• Duplicate data describes the issue that one real-world entity has more than one rep-
resentation in an information system [95–98]. This subtopic of data quality is also
commonly referred to as entity resolution, redundancy detection, record linkage,
record matching, or data merging [96]. Specifically, the detection of approximate
duplicates has been researched intensively over the last decades [99].
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A further challenge is the detection of outlying values, which are considered abnor-
malities, discordants, or deviants when compared to the remaining data [100]. We explicitly
want to distinguish invalid data from outlying data. Although there is a plethora of research
on statistical outlier detection (cf. Reference [100]), there are little automated and statistical
approaches that detect invalid data beyond pure rule-based solutions [101]. The detection
and distinction between invalid and outlying data is therefore at the same a practical
challenge for companies and a scientific challenge in terms of methodology.

4.2.2. Software Quality: Configuration Maintenance Challenge

ML system developers usually start from ready-made, pre-trained networks and try
to optimize their execution on the target processing platform as much as possible. This
practice is prone to the entanglement problem [80]: If changes are made to an input feature,
the meaning, weighting, or use of the other features may also change. This means that
machine learning systems must be designed so that feature engineering and selection
changes are easily tracked. Especially when models are constantly revised and subtly
changed, the tracking of configuration updates while maintaining the clarity and flexibility
of the configuration become an additional burden.

Furthermore, developing data preparation pipelines and ML systems requires detailed
knowledge and expertise in the correct and optimal use of the existing libraries and
frameworks. The rapid evolution of these libraries and frameworks associated with often
incompatible API changes and outdated documentation, increases the potential confusion
and the risk of making mistakes. A recent study [102] on deep learning bugs and anti-
patterns in using popular libraries such as Caffe, Keras, Tensorflow, theano, and Torch
found that these mistakes can lead to poor performance in model construction, crashes and
hangs, for example, due to running out of memory, underperforming models and even
data corruption.

5. Approaches, In-Progress Research and Lessons Learned

In this section, we discuss ongoing research facing the outlined challenges in the pre-
vious section, comprising:

(1) Automated and Continuous Data Quality Assurance, see Section 5.1;
(2) Domain Adaptation Approach for Tackling Deviating Data Characteristics at Training

and Test Time, see Section 5.2;
(3) Hybrid Model Design for Improving Model Accuracy, see Section 5.3;
(4) Interpretability by Correction Model Approach, see Section 5.4;
(5) Software Quality by Automated Code Analysis and Documentation Generation,

see Section 5.5;
(6) the ALOHA Toolchain for Embedded Platforms, see Section 5.6;
(7) Confidentiality-Preserving Transfer Learning, see Section 5.7;
(8) Human AI Teaming as Key to Human Centered AI, see Section 5.8.

5.1. Approach 1 on Automated and Continuous Data Quality Assurance

In times of large and volatile amounts of data, which are often generated automatically
by sensors (e.g., in smart home solutions of housing units or industrial settings), it is
especially important to, (i), automatically, and, (ii), continuously monitor the quality of
data [79,87]. A recent study [101] shows that the continuous monitoring of data quality
is only supported by very few software tools. In the open-source area these are Apache
Griffin (https://griffin.incubator.apache.org), MobyDQ (https://github.com/mobydq/
mobydq), and QuaIIe [88]. Apache Griffin and QuaIIe implement data quality metrics
from the reference literature (see References [88,103]), whereby most of them require a
reference database (gold standard) for calculation. Two examples from our research, which
can be used for complete automated data quality measurement, are a novel metric to
measure minimality (i.e., deduplication) in Reference [98], and a novel metric to measure
the readability in Reference [104].

https://griffin.incubator.apache.org
https://github.com/mobydq/mobydq
https://github.com/mobydq/mobydq
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MobyDQ, on the other hand, is rule-based, with the focus on data quality checks
along a pipeline, where data is compared between two different databases. Since existing
open-source tools were insufficient for the permanent measurement of data quality within
a database or a data stream used for data analysis and machine learning, we developed
the Data Quality Library (DaQL) depicted in Figure 3 and introduced in Reference [85].
DaQL allows the extensive definition of data quality rules, based on the newly developed
DaQL language. These rules do not require reference data and DaQL has already been used
for a ML application in an industrial setting [85]. However, to ensure their validity, the rules
for DaQL are created manually by domain experts. Recently, DaQL has been extended with
entity models, which supports a user in the definition of data quality rules since domain
knowledge about the underlying data structure is not necessary any more [105].

Figure 3. Architecture of Data Quality Library (DaQL) to Monitor Data Quality [85].

Lesson Learned: In the literature, data quality is typically defined with the fitness for use
principle, which illustrates the high contextual dependency of the topic [91,106]. Thus,
one important lesson learned is the need for more research into domain-specific approaches
into data quality, which are at the same time suitable for automation [79]. An example
from our ongoing research is the data quality tool DQ-MeeRKat (https://github.com/
lisehr/dq-meerkat), which implements the novel concept of “reference data profiles” for
automated data quality monitoring. Reference data profiles serve as quasi-gold-standard
to automatically verify the quality of modified (i.e., inserted, updated, deleted) data.
On the one hand, reference data profiles can be learned automatically and therefore require
less human effort than rule-based approaches, and on the other hand (ii) they are adjusted
to the respective data to be monitored and can therefore considered context-dependent.

As complement to the measurement (i.e., detection) of data quality issues, we consider
research into the automated correction (i.e., cleansing) of sensor data as additional chal-
lenge [24]. Especially since automated data cleansing poses the risk to insert new errors in
the data [95], which is specifically critical in enterprise settings.

In addition, the integration of contextual knowledge (e.g., the respective ML model
using the data) needs to be considered. Here, knowledge graphs pose a promising solution
(cf. Reference [107]), which indicates that knowledge about the quality of data is part of
the bigger picture outlined in Section 5.8: the usage of knowledge graphs to interpret
the quality of AI systems. However, also for data quality measurement, interpretability
and explainability are considered a core requirement [101]. Therefore, we recommend
to focus on clearly interpretable statistics and algorithms when measuring data quality
since they prevent a user from deriving wrong conclusions from data quality measurement
results [101].

5.2. Approach 2 on Domain Adaptation Approach for Tackling Deviating Data Characteristics at
Training and Test Time

In References [9,10], we introduced a novel distance measure, the so-called Centralized
Moment Discrepancy (CMD), for aligning probability distributions in the context of domain

https://github.com/lisehr/dq-meerkat
https://github.com/lisehr/dq-meerkat
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adaption. Domain adaptation algorithms minimize the misclassification risk of a machine
learning model for a target domain with little training data by adapting a model from
a source domain with a large amount of training data. This is often done by mapping
the domain-specific data samples in a new space where similarity is enforced by minimizing
a probability metric, and, by subsequently learning a model on the mapped source data,
see Figure 4.

In Reference [108] we can show that our CMD approach, refined by practice-oriented
information-theoretic assumptions of the involved distributions, yields a generalization of
the fundamental learning theoretic result of Vapnik [6]. As a result we obtain quantitative
generalization bounds for recently proposed moment-based algorithms for unsupervised
domain adaptation which perform particularly well in many applications such as object
recognition [9,109], industrial manufacturing [110], analytical chemistry [111,112] and
stereoscopic video analysis [113].

Figure 4. Illustration of domain adaptation: adapt learning capabilities from an auxiliary known problem with known labels to a new
task with deviating distribution and unknown labels [114].

Lesson Learned: It is interesting that moment-based probability distance measure are
The weakest among those utilized in the machine learning and, in particular, domain
adaptation. Weak in this setting means that convergence by the stronger distance measures
entails convergence of the weaker. Our lesson learned is that a weaker distance measure
can be more robust than stronger distance measures. At the first glance, this observation
might appear counter-intuitive. However, at a second look, it becomes intuitive that
the minimization of stronger distance measures are more prone to the effect of negative
transfer [115], that is, the adaptation of source-specific information not present in the target
domain. Further evidence can be found in the area of generative adversarial networks
where the alignment of distributions by strong probability metrics can cause problems of
mode collapse which can be mitigated by choosing weaker similarity concepts [116]. Thus,
it is better to abandon stronger concepts of similarity in favor of weaker ones and to use
stronger concepts only if they can be justified.

5.3. Approach 3 on Hybrid Model Design for Improving Model Accuracy by Integrating Expert
Hints in Biomedical Diagnostics

For diagnostics based on biomedical image analysis, image segmentation serves as a
prerequisite step to extract quantitative information [117]. If, however, segmentation results
are not accurate, quantitative analysis can lead to results that misrepresent the underlying
biological conditions [118]. To extract features from biomedical images at a single cell level,
robust automated segmentation algorithms have to be applied. In the Austrian FFG project
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VISIOMICS (Platform supporting an integrated analysis of image and multiOMICs data
based on liquid biopsies for tumor diagnostics—https://www.visiomics.at/), which is
devoted to cell analysis, we tackle this problem by following a cell segmentation ensemble
approach, consisting of several state-of-the-art deep neural networks [119,120]. In addition
to overcome the lack of training data, which is very time consuming to prepare and
annotate, we utilize a Generative Adversarial Network approach (GANs) for artificial
training data generation [121] (Nuclear Segmentation Pipeline code available: https://
github.com/SCCH-KVS/NuclearSegmentationPipeline). The underlying dataset was also
published [122] and is available online (BioStudies: https://www.ebi.ac.uk/biostudies/
studies/S-BSST265). The ensemble approach is depicted in Figure 5.

Figure 5. A cell segmentation ensemble approach in combination with Generative Adversarial Network approach (GANs)
for multimodal data fusion.

Particularly for cancer diagnostics, clinical decision-making often relies on timely
and cost-effective genome-wide testing. Similar to biomedical imaging, classical bioin-
formatic algorithms, often require manual data curation, which is error prone, extremely
time-consuming, and thus has negative effects on time and cost efficiency. To overcome
this problem, we developed the DeepSNP (DeepSNP code available: https://github.com/
SCCH-KVS/deepsnp) network to learn from genome-wide single-nucleotide polymor-
phism array (SNPa) data and to classify the presence or absence of genomic breakpoints
within large genomic windows with high precision and recall [123].

Lesson Learned: First, it is crucial to rely on expert knowledge when it comes to data
augmentation strategies. This becomes more important the more complex the data is (high
number of cores and overlapping cores). Less complex images do not necessarily benefit
from data augmentation. Second, by introducing so-called localization units the network
is able to gain the ability to exactly localize anomalies in terms of genomic breakpoints
despite never experiencing their exact location during training. In this way we have
learned that localization and attention units can be used to significantly ease the effort of
annotating data.

5.4. Approach 4 on Interpretability by Correction Model Approach

Last year, at a symposium on predictive analytics in Vienna [124], we introduced an
approach to the problem of formulating interpretability of AI models for classification or
regression problems [125] with a given basis model, for example, in the context of model
predictive control [126]. The basic idea is to root the problem of interpretability in the basic
model by considering the contribution of the AI model as correction of this basis model and

https://www.visiomics.at/
https://github.com/SCCH-KVS/NuclearSegmentationPipeline
https://github.com/SCCH-KVS/NuclearSegmentationPipeline
https://www.ebi.ac.uk/biostudies/studies/S-BSST265
https://www.ebi.ac.uk/biostudies/studies/S-BSST265
https://github.com/SCCH-KVS/deepsnp
https://github.com/SCCH-KVS/deepsnp
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is referred to as Before and After Correction Parameter Comparison (BAPC). The idea of
small correction is a common approach in mathematics in the field of perturbation theory,
for example of linear operators. In References [127,128] the idea of small-scale perturbation
(in the sense of linear algebra) was used to give estimates of the probability of return of an
odyssey on a percolation cluster. The notion of small influence appears here in a similar
way via the measures of determination for the AI model compared to the basic model.
Figure 6 visualizes the schema of BAPC.

According to BAPC, an AI-based correction of a solution of these problems, which is
previously provided by a basic model, is interpretable in the sense of this basic model, if its
effect can be described by its parameters. Since this effect refers to the estimated target
variables of the data. In other words, an AI correction in the sense of a basic model is
interpretable in the sense of this basic model exactly when the accompanying change of
the target variable estimation can be characterized with the solution of the basic model
under the corresponding parameter changes. The basic idea of the approach is thus to apply
the explanatory power of the basic model to the correcting AI method in that their effect
can be formulated with the help of the parameters of the basic model. BAPC’s ability to use
the basic model to predict the modified target variables makes it a so-called surrogate [62].

We have applied BAPC successfully to success-prediction of start-up companies with
the AI-correction model trained on psychological profile data in the framework of the well-
known newsvendor problem of econometrics [129] (“Best Service Innovation Award 2020”
at ISM 2020 (http://www.msc-les.org/ism2020/)). The proposed solution for the inter-
pretation of the AI correction is of course limited from the outset by the interpretation
horizon of the basic model. In the case of our results using the psychometric data (such as
‘risk-affinity’), it is desirable, however, to interpret their influence in terms of ’hard core’
key performance indicators. Furthermore, it must be considered that the basic model is
potentially too weak to describe the phenomena underlying the correction in accordance
with the actual facts. We therefore distinguish between explainability and interpretability
and, with the definition of interpretability in terms of the basic model introduced above,
we do not claim to always be able to explain, but rather to be able to describe (i.e., interpret)
the correction as a change of the solution using the basic model. This is achieved by means
of the features used in the basic model and their modified parameters. As with most XAI
approaches (e.g., feature importance vector [64]), the goal is to find the most significant
changes in these parameters.

Figure 6. Schema of Before and After Correction Parameter Comparison (BAPC) [124]. Left: Reference Model produces
prediction Yre f by means of parameter ϑre f due to some conventional parameter identification method; Right: An AI Model
is trained on (Xi, εi)i to compensate for the residuum of the reference model. The interpretation of the AI Model can be
grounded on the meaning of the parameter of the reference model.

http://www.msc-les.org/ism2020/
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Lesson Learned: This approach is work in progress and will be tackled in detail in the up-
coming Austrian FFG research project inAIco. As lesson learned we appreciate the BAPC
approach as result of interdisciplinary research at the intersection of mathematics, machine
learning and model predictive control. We expect that the approach generally only works
for small AI corrections. It must be possible to formulate conditions about the size (i.e.,
smallness) of the AI correction under which the approach will work in any case. However,
it is an advantage of our approach that interpretability does not depend on human under-
standing (see the discussion in References [62,64]). An important aspect is its mathematical
rigidity, which avoids the accusation of quasi-scientificity (see Reference [130]).

5.5. Approach 5 on Software Quality by Code Analysis and Automated Documentation

Quality assurance measures in software engineering include, for example, automated
testing [131], static code analysis [132], system redocumentation [133], or symbolic execu-
tion [134]. These measures need to be risk-based [135,136], exploiting knowledge about
system and design dependencies, business requirements, or characteristics of the applied
development process.

AI-based methods can be applied to extract knowledge from source code or test
specifications to support this analysis. In contrast to manual approaches, which require
extensive human annotation work, machine learning methods have been applied for
various extraction and classification tasks, such as comment classification of software
systems with promising results in References [137–139].

Software engineering approaches contribute to automate (i) AI-based system
testing, for example, by means of predicting fault-prone parts of the software system that
need particular attention [140], and (ii) system documentation to improve software
maintainability [133,141,142] and to support re-engineering and migration activities [142].
In particular, we developed a feed-back directed testing approach to derive tests from
interacting with a running system [143], which we successfully applied in various industry
projects [144,145].

Also software redocumentation with the aim to recover outdated or non-existing
documentation is becoming increasingly important in order to cope with raising complexity,
to enhance human understanding, and to ensure compliance with company policies or legal
regulations [146]. In an ongoing redocumentation project [147], we automatically generate
parts of the functional documentation, containing business rules and domain concepts, and
all the technical documentation. We also exploit source code comments, which provide
key information about the underlying software, as valuable source of information (see
Figure 7). We, therefore, apply classical machine learning techniques but also deep learning
approaches using NLP, word embedding and novel approaches for character-to-image
encoding [148]. By leveraging this ML/DL pipeline, it is possible to classify comments and
thus transfer valuable information from the source code into documentation with less effort
but the same quality than using a manual classification approach, for example, in the form
of heuristics, which is usually time-consuming, error-prone and strongly dependent on
programming languages or concrete software systems.
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Figure 7. Automated software documentation for AI system engineering [148].

Lesson Learned: Keeping documentation up to date is essential for the maintainability of
frequently updated software and to minimize the risk of technical debt due to the entangle-
ment of data and sub-components of machine learning systems. The lesson learned is that
for this problem also machine learning can be utilized when it comes to establishing rules
for detecting and classifying comments (accuracy of >95%) and integrating them when
generating readable documentation.

5.6. Approach 6 on the ALOHA Toolchain for Embedded AI Platforms

In References [149,150] we introduce ALOHA, an integrated tool flow that tries to
make the design of deep learning (DL) applications and their porting on embedded het-
erogeneous architectures as simple and painless as possible. ALOHA is the result of
interdisciplinary research funded by the EU (https://www.aloha-h2020.eu/). The pro-
posed tool flow aims at automating different design steps and reducing development
costs by bridging the gap between DL algorithm training and inference phases. The tool
considers hardware-related variables and security, power efficiency, and adaptivity aspects
during the whole development process, from pre-training hyperparameter optimization
and algorithm configuration to deployment. According to Figure 8 the general architecture
of the ALOHA software framework [151] consists of three major steps:

• (Step 1) algorithm selection,
• (Step 2) application partitioning and mapping, and
• (Step 3) deployment on target hardware.

Starting from a user-specified set of input definitions and data, including a description
of the target architecture, the tool flow generates a partitioned and mapped neural network
configuration, ready to the target processing architecture, which also optimizes predefined
optimization criteria. The criteria for optimization include both application-level accu-
racy and the required security level, Inference execution time and power consumption.
A RESTful microservices approach allows each step of the development process to be
broken down into smaller, completely independent components that interact and influence
each other through the exchange of HTTP calls [152]. The implementations of the various
components are managed using a container orchestration platform. The standard ONNX
(https://onnx.ai/) (Open Neural Network Exchange) is used to exchange deep learning
models between the different components of the tool flow.

https://www.aloha-h2020.eu/
https://onnx.ai/
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Figure 8. General architecture of the ALOHA software framework for Edge AI taking computational resource constraints
at training time into account. Nodes in the upper part of the figure represent the key inputs of the tool flow specified by
the users, for details see Reference [151].

In Step 1 a Design Space comprising admissible model architectures for hyper-
paramerter tuning is defined. This Design Space is configured via satellite tools that
evaluate the fitness in terms of the predefined optimization criteria such as accuracy
(by the Training Engine), robustness against adversarial attacks (by the Security evalu-
ation tool) and power (by the Power evaluation tool). The optimization is based on (a)
hyperparameter tuning based on a non-stochastic infinite-armed bandit approach [153],
and (b) a parsimonious inference strategy that aims to reduce the bit depth of the activation
values from initially 8bit to 4bit by a iterative quantization and retraining steps [154].
The optimization in Step 2 exploits genetic algorithm for surfing the design space and
requiring evaluation of the candidate partitioning and mapping scheme to the satellite
tools Sesame [155] and Architecture Optimization Workbench (AOW) [156].

The gain in performance was evaluated in terms of inference time needed to execute
the modified model on NEURAghe [157], a Zynq-based processing platform that contains
both a dual ARM Cortex A9 processor (667 MHz) and a CNN accelerator implemented in
the programmable logic. The statistical analysis on the switching activity of our reference
models showed that, on average, only about 65% of the kernels are active in the layers of
the network throughout the target validation data set. The resulting model loses only 2%
accuracy (baseline 70%) while achieving an impressive 48.31% reduction in terms of FLOPs.

Lesson Learned: Following the standard training procedure deep models tend to be
oversized. This research shows that some of the CNN layers are operating in a static
or close-to-static mode, enabling the permanent pruning of the redundant kernels from
the model. But, the second optimization strategy dedicated to parsimonious inference
turns out to more effective on pure software execution, since it more directly deactivates
operations in the convolution process. All in all, this study shows that there is a lot of po-
tential for optimisation and improvement compared to standard deep learning engineering
approaches.

5.7. Approach 7 on Confidentiality-Preserving Transfer Learning

In our approach we, above all, tackle the following questions in the context of privacy-
preserving federated learning settings:
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(1) How to design a noise adding mechanism that achieves a given differential privacy-
loss bound with the minimum loss in accuracy?

(2) How to quantify the privacy-leakage? How to determine the noise model with optimal
tradeoff between privacy-leakage and the loss of accuracy?

(3) What is the scope of applicability in terms of assumptions on the distribution of
the input data and, what is about model fusion in a transfer learning setting?

Questions (1) is dealt with in the ongoing H2020 project SERUMS (https://www.
serums-h2020.org) and Austrian FFG research project PRIMAL and question (2) is ad-
dressed in the bi-national Germany-Austrian project KI-SIGS (Austrian sub-project PetAI)
(https://ki-sigs.de/). SERUMS and KI-SIGS are motivated by privacy issues in health-
care systems while PRIMAL focuses on industrial applications. Question (1) is addressed
in References [158,159] where first sufficient conditions for (ε, δ)− differential privacy are
derived and then using entropy as design parameter, the optimal noise distribution that
minimizes the expected noise magnitude together with satisfying the sufficient conditions
for (ε, δ)−differential privacy is derived. The optimal differentially private noise adding
mechanism could be applied for distributed deep learning [159,160] where a privacy wall
separates the private local training data from the globally shared data, and fuzzy sets
and fuzzy rules are used to aggregate robustly the local deep fuzzy models for building
the global model. For addressing Question (2), a conceptual and theoretical framework
could be established which we will outline next in its main features. For details, see Refer-
ence [161]. Question (3) is above all of interest in industrial settings where transfer learning
techniques become more and more important to overcome the limitations and costs of
data acquisition in flexible production with more personalized products, thus less mass
production and less big data per product specification. It is the central research topic in
the ongoing project S3AI (https://www.s3ai.at). In Reference [58] we propose a software
platform for this purpose. See Reference [57] for a similar approach.

Now let us outline the approach of Reference [161] related to (2) where privacy-leakage
is quantified in-terms of mutual information between private data and publicly released
data. There we introduce an information theoretic approach for analyzing the privacy-
utility tradeoff for multivariate data. First, we conceptualize and specify the problem
setting in terms of a data release mechanism that relies on source data which are partially
private and marked as such. Given this data we propose a mathematical framework that
allows us to express the tradeoff between privacy-leakage and loss of accuracy of to be
learned features of interest. The situation is illustrated in Figure 9, where x denotes private
data, y(x) corresponding features. Only data are released after adding some perturbing
noise v according to the differential privacy paradigm.

The resulting released noisy data (x̃, ỹ(x̃)) will deviate from the original data (x, y(x)).
Now, the tradeoff problem (2) means to design a noise model that keeps the mutual informa-
tion I(x; x̃) below some specified bound while minimizing the expected distortion between
the original, y(x), and the resulting distorted features, ỹ(x̃). This optimization problem
can be solved by specifying a level of noise entropy, and then solving for the optimal noise
model by means of a variational optimization method. This way the noise entropy becomes
the key design parameter to control the tradeoff problem, which provides an approach
to tackle question (2). It is shown in Reference [159] that the noise model optimization
improves the tradeoff substantially, up to factor 4 compared to standard configuration with
a Gaussian noise model.

https://www.serums-h2020.org
https://www.serums-h2020.org
https://ki-sigs.de/
https://www.s3ai.at
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Figure 9. Design of optimal noise model for tackling the tradeoff between privacy-leakage (in terms of bounded mutual
information between private data and perturbed released data) and feature distortion (loss of accuracy); for details
see Reference [161].

Lesson Learned: Federated learning offers an infrastructural approach to privacy (and
confidentiality, respectively), but further functionalities are required to enhance its privacy-
preserving capabilities and scope of applicability. Most important, privacy-preservation of
data-driven AI turns out to be a matter of trade-off between privacy-leakage, on the one
hand, and loss of accuracy of the target AI model, on the other hand. In this context the con-
cept of differential privacy provides a powerful means of system design. But, the stan-
dard design based on a Gaussian noise model is only sub-optimal. The improvement of
this trade-off requires refined analysis, as for example, based on exploiting information-
theoretic concepts that allow to turn this problem into a feasible optimization problem.
However, particularly for industrial settings, when it comes to deviating statistical data
characteristics of its sources, respectively, the target application, further research is required
to enhance the scope of applicability of privacy-preserving federated learning towards
transfer learning.

5.8. Approach 8 on Human AI Teaming as Key to Human Centered AI

In Reference [162], we introduce an approach for human-centered AI in working
environments utilizing knowledge graphs and relational machine learning ([163,164]).
This approach is currently being refined in the ongoing Austrian project Human-centered AI
in digitized working environments (AI@Work). The discussion starts with a critical analysis of
the limitations of current AI systems whose learning/training is restricted to predefined
structured data, most vector-based with a pre-defined format. Therefore, we need an
approach that overcomes this restriction by utilizing a relational structures by means of a
knowledge graph (KG) that allows to represent relevant context data for linking ongoing
AI-based and human-based actions on the one hand and process knowledge and policies
on the other hand. Figure 10 outlines this general approach where the knowledge graph is
used as an intermediate representation of linked data to be exploited for improvement of
the machine learning system, respectively AI system.

Methods applied in this context will include knowledge graph completion techniques
that aim at filling missing facts within a knowledge graph [165]. The KG flexibly will allow
tying together contextual knowledge about the team of involved human and AI based
actors including interdependence relations, skills and tasks together with application and
system process and organizational knowledge [166]. Relational machine learning will
be developed in combination with an updatable knowledge graph embedding [167,168].
This relational ML will be exploited for analyzing and mining the knowledge graph for
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the purpose of detecting inconsistencies, curating, refinement, providing recommendations
for improvements and detecting compliance conflicts with predefined behavioral policies
(e.g., ethic or safety policies). The system will learn from the environment, user feedback,
changes in the application or deviations from committed behavioral patterns in order to
react by providing updated recommendations or triggering actions in case of compliance
conflicts. But, the construction of the knowledge graph and keeping it up-to-date is a critical
step as it usually includes laborious efforts for knowledge extraction, knowledge fusion,
knowledge verification and knowledge updates. In order to address this challenge, our
approach pursues bootstrapping strategies for knowledge extraction by recent advances
in deep learning and embedding representations as promising methods for matching
knowledge items represented in diverse formats.

Figure 10. A knowledge-graph approach to enhance vector-based machine learning in order to sup-
port human AI teaming by taking context and process knowledge into account. A knowledge graph is
used as an intermediate representation of data enriched with static and dynamic context information.

Lesson Learned: As pointed out in Section 3 there is a substantial gap between current state-
of-the-art research of AI systems and the requirements posed by ethical guidelines. Future
research will rely much more on machine learning on graph structures. Fast updatable
knowledge graphs and related knowledge graph embeddings might be a key towards
ethics by design enabling human centered AI.

6. Discussion and Conclusions

This paper can only give a small grasp of the broad field of AI research in connection
with the application of machine learning in practice. The associated research is indeed inter-
and even trans-disciplinary [169]. Nonetheless, we come to the conclusion that a discussion on
AI System Engineering needs to start with its theoretical foundations and a critical discussion
about the limitations of current data-driven AI systems as outlined in Sections 2–4. Approach
1, Section 5.1, and Approach 2, Section 5.2, help to stick to the theoretical prerequisites. Ap-
proach 1 contributes by reducing errors in the data and Approach 2 by extending the theory
by relaxing its preconditions, bringing statistical learning theory closer to the needs of prac-
tice. However, building such systems and addressing the related challenges as outlined in
Sections 3 and 4 requires a bunch of skills from different fields, predominantly model building
and software engineering know-how. Approach 3, Section 5.3, and Approach 4, Section 5.4,
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contribute to model building: Approach 3 by creatively adopting novel hybrid machine
learning model architectures and Approach 4 by means of system theory that investigates
AI as addendum to a basis model in order to be able to establish a notion of interpretability
in a strict mathematical sense. Every model applied in practice must be coded in software.
Approach 5, Section 5.5, outlines helpful state-of-the-art approaches in software engineer-
ing for maintaining the engineered software in good traceable and reusable quality which
becomes more and more important with increasing complexity. Approach 6, Section 5.6, is
an integrative approach that takes all the aspects discussed so far into account by proposing
a software framework that supports the developer in all these steps when optimizing an
AI system for embedded platforms. Approach 7 on confidentiality, Section 5.7, leads to
fundamental questions of modeling and quantifying the trade-off between privacy-leakage
and loss of accuracy of the target AI model. Finally, the challenge for human centered
AI as outlined in Section 3.6 is somehow beyond of the state of the art. While most of
the challenges described in this work require, above all, progress in the respective dis-
ciplines, the challenge for human centered AI addressing trust in the end will require
a mathematical theory of trust, that is a trust modeling approach at the level of system
engineering that takes the psychological and cognitive aspects of human trust into account
as well. Approach 8, Section 5.8, contributes to this endeavor by its conceptional approach
for human AI teaming and its analysis of its prerequisites from relational machine learning.
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