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Abstract: This review article provides a deep insight into the Brain–Computer Interface (BCI) and
the application of Machine Learning (ML) technology in BCIs. It investigates the various types of
research undertaken in this realm and discusses the role played by ML in performing different BCI
tasks. It also reviews the ML methods used for mental state detection, mental task categorization,
emotion classification, electroencephalogram (EEG) signal classification, event-related potential
(ERP) signal classification, motor imagery categorization, and limb movement classification. This
work explores the various methods employed in BCI mechanisms for feature extraction, selection,
and classification and provides a comparative study of reviewed methods. This paper assists the
readers to gain information regarding the developments made in BCI and ML domains and future
improvements needed for improving and designing better BCI applications.

Keywords: brain–computer interface; BCI; EEG signals; emotion state; ERP signals; ML; mental state;
motor imagery

1. Introduction

In the last few years, vast developments have occurred in automated control and
monitoring applications. These developments have promoted the discovery of advanced
technologies such as Brain–Computer Interfaces (BCIs). BCIs provide a methodology for
manipulating computers and devices to operate based on signals and thoughts generated.
It is a direct link between the human brain and computers. BCI applications generally
record the human brain signals and transmit them to a machine that can execute the antici-
pated task. BCI is a breakthrough innovation in the domain of brain mapping. It generally
interprets the message of neurons and employs it for executing the tasks [1]. This direct
bridge between the machine and the brain has numerous applications in the medication
domain for physically disabled or locked-in people. It is not less than a boon for locked-in
people whose brains are paralyzed due to physical disorders. It also possesses the ability
to assist people beyond medical fields, such as gaming, entertainment, and experimenta-
tion with learning. BCI connects the human brain with peripheral devices by creating a
direct interacting link between the outer world and the brain and creating a bi-directional
communication interface between the outer environment and the brain. They provide a
muscle-free medium for conveying persons’ purposes of actions to outer/external devices
such as computers, neural prostheses, and other assistive appliances. Unlike the classical
input devices such as keyboard, pen, and mouse, the BCI reads the signals generated from
the human brain at distinct locations, translates them into actions and commands through
which computer(s) can be controlled for executing desired control/monitoring tasks [2].

A comprehensive BCI system normally includes four components: collecting and in-
tensifying brain signals, algorithm identifying and categorizing the brain signals, algorithm
transmitting the detected commands to the controlling equipment and the tool/device
transmitting back the feedback. The brain produces signals for controlling the user’s
intentions and the BCI system translates such signals into manageable output commands
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for controlling external devices. In brain–machine fusion mechanisms, the BCI is a vital
element of information exchange. In BCI, there is no need to transmit signals via peripheral
muscles and nerves, instead, EEG signals can be used directly for establishing the link
between peripheral devices and the brain. In general terms, BCI allows people to interact
with the outer world or surroundings through utilizing control signals produced from
EEG activity, without involving peripheral muscles and nerves. The user’s intentions
are reflected employing EEG waves, which are later transformed into the desired output
forms. A standard BCI system comprising a signal acquisition unit, signal processing unit,
controlling unit, and application & feedback unit is depicted in Figure 1 [1,3–6]. The signal
processing unit further includes three parts, namely, preprocessing, feature extraction,
and feature classification. In the signal acquisition phase, brain signals are captured. In
the preprocessing phase, noise and other artifacts are removed and signals are prepared
in a form suitable for processing. In the feature extraction phase, discriminative data in
the recorded brain signals are identified. After measuring, the signal is then mapped to
a vector comprising discriminant and effective features from the signals observed. In
the classification phase, signals with feature vectors are classified. The selection of better
discriminative features is essential for achieving good pattern recognition and deciphering
the user’s intentions. The signals thus classified are translated into useful instructions
for a connected device such as a computer or any other assistive appliance. BCIs can be
independent BCI and dependent BCI. In an independent BCI, the ordinary output paths of
peripheral muscles and nerves do not possess any role. These BCIs are useful for people
suffering an acute neuromuscular disability. In the case of dependent BCI, the brain’s
ordinary paths are not utilized for carrying messages instead the brain activity is employed
for generating EEG.

Figure 1. Standard BCI system.

Research in the BCI domain started late back in the 1970′s. The foremost researches
were conducted on monkeys and rat cortices at the University of Washington, School of
Medicine, making an effort for imitating their neural actions. Until this phase, BCI research
was constrained to only the medical diagnosis and examining the brain function. However,
with technological advances, numerous developments have occurred in the BCI area over
time. Now the scope of BCI has been extended to multiple domains including artificial
intelligence (AI) which can provide a new way of recording human brain wave activity
for understanding the improved functional operation of human brain activity, emotion
recognition, human limb/hand movement detection, etc. The evolution and availability
of cost-effective microelectronics will facilitate BCI users to execute complex tasks via
embedded circuits. Also, the latest surge in self-decision making and improved algorithms
such as Machine Learning (ML) may aid to explore more and surpass the bounds of brain-
controlled applications. This has motivated the researchers to employ ML in BCI systems
for executing its tasks in a more precise and useful manner.
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ML is one of the crucial branches of statistics and computer science, which exploits
computers to perform tasks without being programmed explicitly. ML studies computer
architectures and algorithms, which are learned from generally observed facts. Typically,
ML techniques are considered to be one of the important methods for implementing AI,
which develops hardware, software, machines, and devices with human-type intelligence.
It is a powerful tool exploited in diverse BCI applications. With the advances in modern
science, the ML domain has made rapid progress and is widely exploited in monitoring,
detection, classification, and other tasks. Moreover, these algorithms have become im-
perative for accomplishing huge developments towards human-level AI. ML techniques
play a predominant part in data analysis in BCI systems [7]. Through these techniques,
useful knowledge can be automatically obtained and this knowledge can be applied to the
target task. Since existing BCI systems are not sufficient and capable enough for learning,
understanding, and interpreting complex brain activities, the use of ML technology with
BCIs can create wonders in understanding the complex brain signals and recognizing the
actions more effectively.

1.1. Motivation

Diverse challenges are encountered by BCIs when exploited in real-world applications.
The EEG, ERP, and other brain signals in BCI systems play a vital part in controlling,
monitoring, and detecting human actions. However, many BCI systems fail to recognize
and categorize these signals effectively. Inaccurate classification of these signals often
degrades the BCI system performance. Moreover, the lack of methods for recognizing
human mental states and emotions further adds to complexities in BCI systems employed
for emotion detection and mental condition recognition. Additionally, the inadequacy
of precise methods for recognizing hand/limb motions of individuals in BCI systems
makes human motion identification more complex and weaker. All these BCI tasks depend
on algorithms employed for feature extraction, selection, and categorization or detection
of recognition parameters. Thus, the improvement of these algorithms can aid in the
enhancement of BCI systems and their detection abilities. Therefore, utilization of better
algorithms for feature extraction, selection, classification, and advanced AI algorithms such
as ML can aid in improving BCI system performance and in achieving better outcomes,
thereby supporting to deal with BCI real-life challenges more effectively and smoothly.
This has given the motivation to explore better methods for analyzing and performing
BCI tasks with greater precision and accurate results and to investigate the role of these
methods in enhancing the performance of existing BCI applications.

1.2. Paper Organization

The rest of the paper is structured as follows: Section 2 investigates the existing works
conducted on BCI and ML. Section 3 discusses the significance and role played by ML in
diverse BCI tasks such as EEG signal classification, motor imagery classification, mental
state recognition, etc. Section 4 discusses the different techniques employed for feature
extraction, selection, and classification. Section 5 presents the findings of this work.

1.3. Contributions of the Study

The important contributions of this work include:

• To explore the role of ML in BCI applications.
• To determine the advantages of employing ML in various BCI tasks such as motor

imagery classification, ERP signal classification, emotional and mental state detection,
and several others.

• To study the diverse feature extraction, selection, and classification methods exploited
for BCI applications.
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2. Literature Survey

Currently, BCIs have drawn ample attention among researchers owing to their capabil-
ity of understanding neural communications and functions within the brain. Motivated by
this attractive feature of BCI systems numerous research studies have been conducted over
the past several years. In this section, some existing works on BCIs have been explored.

In [4], the role of BCIs in control and communication was discussed. The features of
BCI and its crucial parts were discussed. Furthermore, the different sorts of BCI based
on utilization of electrophysical signals were described and the critical problems in BCI-
based control and communication systems were highlighted. In [5], the role of BCIs in
communication and motor rehabilitation was explained. This study discussed the use of
BCIs for communication in individuals suffering from locked-in disorder or paralysis. BCI
use in motor rehabilitation after spinal cord impairment and severe stroke was also been
described. This study reported the promising advantages of BCIs in clinical applications.
In [8], a study on P300-dependent BCI systems was presented. This study revealed that
despite its acceptance, several P300-BCI systems still require improvement prior to con-
sidering them as substitute communication instruments for individuals suffering from
locked-in problems. This work also recommended improvements in diverse regions of
P300-BCI operations for optimizing the convenience, consistency, accuracy, and speed of
existing systems, particularly for real-life environments. In [9], four application realms,
namely, motor recovery, control and communication, entertainment, and motor substitution
where physically challenged people could largely benefit from developments in BCI were
identified. This work indicated the necessity for further progress in user–machine adapt-
able methods, hybrid BCI frameworks, and user’s mental condition recognition schemes
for developing better EEG devices and enhancing BCI usability. In [10], a profound study
on EEG-based BCIs was conducted. The research trends in EEG-based BCIs were surveyed
along with exploring BCI paradigms, target applications, kinds of BCI systems, feature
types, and classification schemes. This study revealed that the number of BCI research
works, particularly EEG-based BCI studies, have continuously increased over the past
5 years. In [6], non-invasive, EEG-dependent BCI systems for motor-impaired people’s
communication and rehabilitation were investigated. It focused on methods exploited for
assisting locked-in people and severely paralyzed individuals to regain communication
through three distinct BCI modalities, namely, P300 potentials, slow cortical potentials, and
sensorimotor rhythms. This study also explored BCI systems utilized for motor function
restoration in patients suffering a chronic stroke and spinal cord impairment. In [11], the
BCI significance in multimodal interaction was discussed. The real-time and state-of-the-art
multimodal applications of BCI were investigated for illustrating the usefulness of BCI as a
modality in multimodal interaction. The technical and experimental challenges involved
in multimodal interaction BCI systems were elaborated along with few guidelines for
overcoming the encountered challenges such as interference and noise during multimodal
blending, distraction during the process, experimental limitations concerning task, environ-
ment and the user, and the physical limitations concerning multimodal deployment. This
study indicated that through multimodal BCI systems, user experience, task performance,
and error handling could be improved. Moreover, the user spectrum could also be broad-
ened using such systems. In [12], a study on BCI was presented. This study described the
vital components of BCI and signal acquisition approaches. It explained the electrical sig-
nals of BCI such as event-related synchronization (ERS) and event-related potential (ERP).
The application areas, usability challenges, and technical hardships encountered during
brain signal usage in BCI systems were discussed. Furthermore, the necessary solutions
for boosting the BCI system performance were provided. In [13], different classification
approaches for EEG-oriented BCIs were reviewed. This study reviewed five categories of
classification approaches, namely, nearest neighbor schemes, non-linear Bayesian schemes,
neural networks, linear classifiers, and fusions of classifiers. This study revealed that
among five categories, fusions of classifiers seemed very effective for contemporaneous
BCI experiments. In [14], discriminative spatiospectral attributes of ERPs were studied
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for capturing the relevant neural actions from EEG recordings. This study indicated that
the highly discriminative frequencies essential for decoding ERPs were found to be in a
spectral limit lower than 6.4 Hz. In [15], the ML approach was proposed for EEG signal
analysis in real-time. It even discussed the significance of ML schemes for mental condition
monitoring and EEG-oriented BCI applications. In [16], several classification schemes were
investigated for EEG-BCI systems. Additionally, numerous challenges were identified for
further strengthening the EEG categorization performance in BCI.

3. Role of ML in BCI

Recently, BCIs have acquired widespread attraction in human–machine interaction
applications [17]. BCI systems perform their tasks through analyzing ERP, EEG signals
linked with human motion, expression, and mental condition. EEG signals are generally
employed for measuring diverse brain activities. ERPs are electrophysiological responses
that arise at a specific period after a specific internal or external event [18]. They occur when
exposed to a mental, sensory event or the dereliction of a consistently occurring stimulus.
ERPs are employed for determining the subject’s brain states in response to distinct stimuli.
The ERPs are useful for diverse BCI-related tasks [19]. The EEG and ERP signal features
are helpful in the classification of mental states, mental tasks, human emotions, and motor
imagery (MI) in BCIs. MI-EEG is a self-controlled EEG that does not involve any external
stimulus. In the MI-oriented BCI mechanism, the subject is urged to visualize moving
distinct parts of the body for triggering neuronal activities in particular brain regions that
are linked with the movements [20]. Generally, during the MI procedure, the event-related
synchronization and desynchronization (ERS/ERD) patterns of EEG simultaneously occur.
The ERD/ERS patterns generated by visualized or imagined movements are similar to
original movements but may vary among diverse subjects. Therefore, every subject requires
intensive training. Decoding of MI is a vital segment of the BCI system that translates
the subject’s intentions to commands which external gadgets can execute. However, the
low signal-to-noise ratio (SNR) of EEG recordings makes accurate decoding of recorded
EEG of neuronal activities further challenging. Conventional techniques for distinctive
feature extraction only concentrate on energy attributes of EEG and highly ignore the
further examination of temporal data, which is critical in performance enhancement of
MI interpretation. In mental state-oriented BCIs, distinct sorts of mental actions trigger
diverse parts of the cortex and provoke distinct EEG signals [21]. These signals aid in
classifying mental tasks for realizing a BCI system. In emotion recognition-oriented BCIs,
diverse emotions are recognized through analyzing EEG signals [22,23]. However, effective
feature extraction and precise classification of ERP and EEG signals linked with mental
states, mental tasks, MI, and emotions are serious challenges encountered in BCI systems.
EEG-enabled BCI mechanisms possess low SNRs, suffer from weak spatial resolution and
are anti-static by nature. These constraints further worsen owing to fluctuating electrode
impedances, eye movements, muscular actions and variations in the mental states of users.
All these aspects further complicate brain dynamics analysis and BCI-related heterogeneous
signal classification. Under these contexts, ML techniques serve as highly promising and
productive techniques for performing BCI-related tasks. ML approaches are even helpful
in determining the phase of BCI medication for stroke rehabilitation [24]. The effective
feature learning and complex pattern recognizing characteristics make ML a more beneficial
and supportive technique for signal feature extraction and classification in BCI-related
operations [25,26]. Table 1 compares different feature extraction/selection and classification
methods in terms of publication year, performance metrics, accuracy level, types of BCI
tasks, merits and demerits, and future directions.
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Table 1. Comparison of feature extraction and classification techniques.

Reference Publication
Year

Feature
Extraction/Selection

Method
Classification

Method Performance Measure Accuracy Level BCI Task Merits Demerits or Future Directions

[7] 2020 - Linear regression - 95% EEG signal categorization Showed high accuracy. Involved numerous
mathematical computations.

[15] 2008 CSP LDA - - EEG signal analysis Analyzed EEG
signals effectively.

Distinct physiological features
should be combined for

multi-category classification.

[19] 2012 - SVM Classification accuracy 90.55% ERP signal categorization Effectively categorized
ERP signals.

More participants should be
considered in the work.

[23] 2019 CSP
Independent
decision path

integration

Classification accuracy,
specificity, sensitivity 70.32% Mental state categorization Categorized multicategory

mental states. Accuracy should be improved.

[24] 2018 PCA SVM Classification accuracy,
specificity, sensitivity 92.5% BCI therapy stage

classification Assisted in stroke rehabilitation. More participants should be
included in the study.

[27] 2015 EEG coherence-based
method

Fisher’s linear
discriminant Classification accuracy 73.6% EEG coherence selection Effectively discriminated motor

and cognitive tasks.
The accuracy level

requires improvement.

[28] 2006 ACSP SVM Classification accuracy 65.12% Classification of EEG signals
Extracted most discriminative

attributes pertinent to brain
states.

Failed to show improvements
in EEG signal categorization.

[29] 2003 GA SVM, LDA, and
NNs Classification accuracy 76% Classification of EEG signals Improved feature selection.

Parameter variations and
additional databases must be

considered.

[30] 2013 WT, GA

KNN, SVM, LDA,
Bayesian, MLP
and weighted

majority voting

Classification accuracy - EEG signal categorization
The proposed multiclassifier

outperformed the
individual classifiers.

-

[31] 2021 PCA Convolutional
autoencoder Classification accuracy - MI classification

Showed promising MI
categorization performance

compared to
contemporary methods.

Performance evaluation using
additional and more

discriminative subjects
is required.

[32] 2020 Spatial filtering Temporal-spatial
CNN Classification accuracy 65.7% MI classification

Displayed significant
performance enhancement

compared with
classical strategies.

Required separate training of
classification layers and
feature extraction layers.
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Table 1. Cont.

Reference Publication
Year

Feature
Extraction/Selection

Method
Classification

Method Performance Measure Accuracy Level BCI Task Merits Demerits or Future Directions

[33] 2020 SSD CNN Kappa value, classification
accuracy 79.3% MI classification Displayed high robustness and

classification quality.

DL network structure and
layer selection require

optimization.

[34] 2005 ARX LDA Accuracy 79.1% EEG feature extraction
ARX method outperformed the

AR technique in EEG feature
extraction.

Classification performance
needs further improvement.

[35] 2019 Riemannian geometry, CSP
and PSO CNN Classification accuracy 80.44% EEG signal categorization

Improved EEG signal
categorization accuracy for

multifarious subjects.
Required data augmentation.

[36] 2013 ICA NNs and SVM Classification accuracy 89.8%, 97.1% EEG signal categorization
Displayed promising feature

extraction outputs for classifying
EEG signals.

Performance evaluation with
additional databases is

required.

[37] 2018 WT SVM Sensitivity, classification
accuracy >90% EEG signal categorization

Effectively performed multiclass
classification with three distinct

subjects.
-

[38] 2019 STFT, Continuous WT CNN

Classification accuracy,
specificity, error percent,
kappa value, sensitivity,

f1-score,

99.35% MI classification
Achieved greater accuracy scores

in MI categorization than
existing strategies.

MI categorization using
ResNet, GoogleNet, and

VGGNet frameworks must be
explored.

[39] 2018 CSP Neuro-fuzzy
scheme

Classification accuracy, the
kappa value 91.43% EEG signal categorization Outperformed related existing

techniques by 4.5%.

Intelligent optimization
schemes are required for

adjusting classification model
parameters.

[40] 2016 mRMR SVM Classification accuracy 62.33% BCI-oriented emotion
recognition

Recognized multiple emotion
types without employing

additional classifiers.

Highly exhaustive setup
assessments are required for
assessing model parameters
affecting the efficacy of the

approach.

[41] 2011 WT SVM Classification accuracy 88.6% EEG signal categorization
Exhibited excellent potential and
encouraging outcomes towards
asynchronous BCI applications.

EEG signals linked with MI
should be analyzed.

[42] 2020 PCA, FLD K-ELM Classification accuracy 96.54% MI classification Achieved higher accuracy score
than other approaches.

Experienced certain data loss
due to the energy function of

compressed input
information.
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Table 1. Cont.

Reference Publication
Year

Feature
Extraction/Selection

Method
Classification

Method Performance Measure Accuracy Level BCI Task Merits Demerits or Future Directions

[43] 2017 WT, Lasso regularization,
mRMR GNB, LDA, SVM Confusion matrix, k-score,

classification accuracy
95.47% (GNB),
91.10% (LDA),
92.26% (SVM)

MI classification
Improved two-class MI

categorization using only a few
feature vectors.

Multiclass MI categorization
should be conducted.

[44] 2016 WT, PCA, FFT SVM, ANN Classification accuracy 84% EEG signal categorization
Effectively categorized EEG

signals linked with five distinct
mental tasks.

EEG signals linked with MI
and emotions need to

be categorized.

[45] 2016 Kolmogorov complexity Adaboost ELM Classification accuracy 79.5% EEG signal categorization
Improved EEG signal

categorization for multi-category
samples.

Performance of devised
approach in distinct mental
task categorization for BCI

development should
be inspected.

[46] 2016 WT Probabilistic NB Classification accuracy 78.33% Limb movement
categorization

Considered both spatial and
frequency domain attributes of
EEG without immolating the

accuracy.

The accuracy level should
be upgraded.

[47] 2018

Short-term windowing,
symmetrical uncertainty,
information gain, oneR,

correlation, and
evolutionary technique

Bayesian networks,
random forest,

SVM
Classification accuracy 87% Mental state categorization Effectively categorized diverse

mental states.

DL models should be
exploited for further

incrementing the accuracy.

[48] 2006 AR ELM, SVM, BPNN Classification accuracy

45.66 ± 7.95%
(BPNN),

49.68 ± 8.30%
(ELM),

52.07 ± 9.11%
(SVM)

Mental task categorization ELM utilized a shorter training
time than BPNN and SVM.

The accuracy score should
be intensified.

[49] 2020 CSP MLP Mean square error,
classification accuracy 97.8214% EEG signal categorization Displayed acceptable

performance than the rest.

Additional metrics must be
employed for assessing the
EEG signal categorization

performance.

[50] 2020 Wavelet ICA Fuzzy kernel-SVM Specificity, accuracy,
sensitivity 86.1% EEG signal categorization

Automatically removed EEG
signal artifacts from the raw

database.

Further increment in accuracy
score is necessary.

[51] 2014 EMD RBF kernel with
SVM Classification accuracy 100% EEG signal categorization Displayed superior EEG signal

categorization accuracy.

Additional samples must be
incorporated for assessing

EEG categorization
performance.
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Table 1. Cont.

Reference Publication
Year

Feature
Extraction/Selection

Method
Classification

Method Performance Measure Accuracy Level BCI Task Merits Demerits or Future Directions

[52] 2020 FAWT

Subspace KNN,
LDA, SVM,

Decision Trees
(DT), standard

KNN

Accuracy, specificity, kappa
value, sensitivity, f1-score

99.33% (Subspace
KNN), 81.1%

(LDA), 95.72%
(SVM), 91.79%

(DT), 92.8%
(standard KNN)

MI classification

Outperformed the previously
available methods in MI
categorization with the

same dataset.

Parameters employed should
be optimized for incrementing

the accuracy.

[53] 2019
AR, WT, WPD, class
separability feature

selection

Ensemble ELM
with LDA Classification accuracy 99.43% EEG signal categorization

Achieved higher class
separability compared to

previously existing schemes.

Applicability of ensemble
ELM with LDA approach to

other BCI-pertinent
biomedical signals must

be examined.

[54] 2020 Continuous WT

Autoencoder,
SVM, logistic

regression and
MLP

Accuracy, recall, precision,
f-score

92.09 ±0.5%
(autoencoder),
88.48 ± 0.5%

(SVM),
89.25 ± 0.5%

(logistic regression),
95.58 ± 0.5%

(MLP)

EEG signal categorization
Outperformed the cutting-edge

learning frameworks and
yielded greater accuracy rates.

Utility of approach in diverse
BCI-pertinent tasks must

be assayed.

[55] 2009 WT Fuzzy SVM
Classification accuracy,

classification time, minimal
misclassification rate,

80.71% EEG signal categorization
Provided a contemporary means

for online EEG signal
categorization.

Required huge computational
effort and training time.

[56] 2016 PCA ANN, naive bayes,
KNN, LDA, SVM Classification accuracy

71.80% (ANN),
55.52% (naive
bayes), 65.51%
(KNN), 62.94%
(LDA), 68.56%

(SVM)

EEG signal categorization Efficiently classified EEG signals
linked with mental states.

Further increment in accuracy
score is needed.

[57] 2016 FFT
MLP-ANN, KNN,

SVM, logistic
regression

Classification accuracy

66.42%
(MLP-ANN),

56.71% (KNN),
68.97% (SVM),

73.03% (logistic
regression)

EEG signal categorization Classified EEG signals linked
with MI within a limited period.

Further increment in accuracy
levels is required.

[58] 2014 AR, Continuous WT LDA, KNN, SVM Classification accuracy
55.92% (LDA),
57.90% (KNN),
82.24% (SVM)

EEG signal categorization Showed a 12.25% improvement
in EEG signal categorization.

Utilized more time for
decision formulation.

[59] 2017 WT, PCA Naive Bayes, KNN,
ANN, SVM Classification accuracy

50.7% (naive
bayes), 49.82%
(KNN), 55.58%
(ANN), 51.82%

(SVM)

EEG-dependent emotion
classification

Classified EEG-dependent
emotions accurately.

Lesser electrodes should be
employed

for experimentation.



Mach. Learn. Knowl. Extr. 2021, 3 844

Table 1. Cont.

Reference Publication
Year

Feature
Extraction/Selection

Method
Classification

Method Performance Measure Accuracy Level BCI Task Merits Demerits or Future Directions

[60] 2014
WT, FFT, PCA, LDA,

correlation-dependent
feature selection

SVM Classification accuracy 91.77% EEG-dependent emotion
classification

Provided a promising procedure
for visualizing the subject’s
emotional condition/state.

More subjects and
experiments are required for

improving the presented
model’s efficiency.

[61] 2018 FFT LDA, KNN, SVM Classification accuracy
95% (LDA), 100%

(KNN), 100%
(SVM)

EEG signal categorization

Provided a better method for
examining EEG signals from

diverse human cognitive
conditions.

Investigated EEG attributes
considering only two

mental exercises.

[62] 2012 AR, PSD, Hjorth parameter,
LOO, LAR LDA, SVM Classification accuracy 74.3% (LDA),

70.5% (SVM) EEG signal categorization
Did not require tunable

parameter for classification and
attribute selection phases.

Conducted EEG signal
categorization only using an

offline approach.

[63] 2012 Bayesian approach
with SSO SVM Classification accuracy >95% MI classification Outperformed the cutting-edge

techniques in MI categorization.

Other features such as cortical
potential, readiness potential,

or Bereitschafts potential
should be incorporated apart

from ERS/ERD features.

[64] 2019 Hilbert transform SVM, Naive bayes,
LDA

Classification accuracy,
kappa coefficient

82.22% (SVM),
71.64% (naive
bayes), 75.52%

(LDA)

MI categorization

EEG attributes extracted via
Hilbert transform showed the

finest performance than
previously exploited methods.

Applicability of approach
towards diverse BCI-pertinent

tasks must be inspected.

[65] 2017 CSP with sparse regression Weighted naive
Bayes Classification accuracy 85.24% MI categorization Improved MI classification

performance.
Required large

computation time.

[66] 2013

ICA, WT, PCA, AR, interval
feature extracting

method, fast
correlation-dependent filter

Perceptron SVM,
linear SVM,

random forest,
KNN

Classification accuracy

97% (Perceptron
SVM), 86% (Linear

SVM), 97%
(Random Forest),

97% (KNN)

ERP signal categorization Classified ERP signals accurately.

Electrode information should
be coupled with extracted

valuable features for further
incrementing the accuracy.

[67] 2018 CSP Multi-kernel ELM Classification accuracy 87.5 ± 10.5% EEG signal categorization Provided an improved solution
for devising an MI-oriented BCI.

An increment in accuracy
score for undersized samples

is necessary.

[68] 2020 CSP CNNs Classification accuracy

72.7296% (mental
state

categorization),
48.0469% (subject

independent
emotion

categorization)

Emotional and mental state
categorization

Performed both emotional and
mental state categorization using

EEG signals.

Emotional and mental state
categorization using other
bio-medical signals must

be investigated.
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Table 1. Cont.

Reference Publication
Year

Feature
Extraction/Selection

Method
Classification

Method Performance Measure Accuracy Level BCI Task Merits Demerits or Future Directions

[69] 2016 - ANN, KNN Classification accuracy,
sensitivity

98.58% (ANN),
96.06% (KNN) EEG signal categorization Displayed fine performance in

EEG signal categorization.

Performance must be
incremented by combining

EEG with diverse biomedical
signals.

[70] 2006 PCA SVM Classification accuracy >95% EEG signal categorization
Lowered training time and

substantially incremented speed
and accuracy.

-

[71] 2007 - SVM, KNN and
DT Classification accuracy

64.92% (SVM),
64.63% (KNN),

56.74% (DT)
EEG signal categorization

Ensemble schemes displayed
better EEG signal categorization
over an individual base classifier.

Issues regarding online
evaluation and parameter
tuning should be probed.

[72] 2020 - LSTM Classification accuracy,
recall, f1-score, precision 97.13% EEG signal categorization Offered a reliable platform for

intelligent visual classification.

Sophisticated techniques are
required for distinguishing
EEG signals for additional

image categories.

[73] 2021 - KNN - - EEG signal categorization Displayed highest accuracy
scores. -

[74] 2017 PCA LDA Classification accuracy 71 ±10.9% EEG signal categorization

Extracted both time-frequency
and temporal attributes

effectively from three distinct
brain lobes.

The accuracy level must be
incremented.

[75] 2013 - SVM Classification accuracy 71.43% EEG signal categorization Exhibited good EEG signal
categorization performance.

The accuracy score must be
upgraded.

[76] 2017 - ANN, LDA,
Bayesian classifier Classification accuracy

78.84% (ANN),
70.05% (LDA),

65.08% (Bayesian)
EEG signal categorization

Performed better with
diminutive training sets and
time-variant brain signals.

Further increment in accuracy
rate is needed.

[77] 2018 - Semi-supervised
ELM Classification accuracy 68.12 ± 1.38% EEG signal categorization

Provided an efficient and safe
approach for categorizing EEG

signals.

Additional evaluation
measures for examining the

risk level of unlabeled
information instances should

be incorporated.

[78] 2014 - Multiple
kernel-SVM Classification accuracy

99.20% (2-class),
81.25% (3-class),
76.76% (4-class),
75.25% (5-class)

EEG signal categorization
Effectively executed multi-class
categorization of EEG signals

linked with mental tasks.

The categorization of EEG
signals for BCI-pertinent tasks

should be scrutinized.

[79] 2013 - SVM - - EEG signal analysis Discussed the role of SVM in
EEG signal analysis.

Experiment validation of SVM
and its variants in EEG signal

categorization should be
conducted.
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Table 1. Cont.

Reference Publication
Year

Feature
Extraction/Selection

Method
Classification

Method Performance Measure Accuracy Level BCI Task Merits Demerits or Future Directions

[80] 2016 Band-power scheme ELM, LDA, SVM Mutual information,
classification accuracy

82.02% (ELM),
77.1% (LDA),
78.18% (SVM)

EEG signal categorization Displayed greater accuracy level
and mutual information. -

[81] 2015 - SBLaplace method Classification accuracy - EEG signal categorization
Automatically estimated model
parameters without requiring

cross-validation.

The performance of EEG
signal categorization should

be further intensified.

[82] 2020 - Sparse Bayesian
ELM Classification accuracy 78.5 ± 14.3% EEG signal categorization Exhibited good EEG signal

categorization accuracy.

More distinctive and
high-level attributes should be

learned for augmenting the
categorization performance.

[83] 2017 STFT CNN-SA Classification accuracy,
kappa value 90.0% MI classification

Performed swift classification
with few samples and yielded

greater performance.

More pooling layers should be
incorporated for boosting MI
categorization performance.

[84] 2020 - CNN Classification accuracy 97.28% MI classification

Classified raw EEG signals
linked with MI without any

synthetic feature extraction and
preprocessing operations.

A system for real-time EEG
wave/signal acquisition
should be constructed.

[85] 2020 Stockwell transform DML Classification accuracy,
recall, precision 64.7% MI classification

Offered a promising procedure
for classifying MI signals with

just fewer training samples.

The accuracy level must be
further augmented.

[86] 2018 - CNN Classification accuracy 86.13% MI classification
Showed 6–9% of mean

improvement in MI
categorization accuracy.

Categorization of EEG signals
linked with other BCI
functions is needed.

[87] 2015 - Bayesian network Kappa coefficient - MI classification Displayed excellent multiclass
MI categorization performance.

Alternatives for minimizing
the time involved for training
information collection should

be probed.

[88] 2010 - CNN
Classification accuracy,

noise, precision, error, f1
measure, silence, recall

95.5% ERP signal classification
Provided a contemporary

approach for examining brain
activities.

The impact of P300 waves on
character identification

problems should be studied.

[89] 2011 - LDA Classification accuracy - ERP signal classification Provided an effective procedure
for ERP signal classification.

The accuracy level must be
augmented.
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Table 1. Cont.

Reference Publication
Year

Feature
Extraction/Selection

Method
Classification

Method Performance Measure Accuracy Level BCI Task Merits Demerits or Future Directions

[90] 2014 - Aggregated sparse
LDA Classification accuracy 61.5 ± 19.2% ERP signal classification

Demonstrated better
performance even with

inadequate training samples.

Applicability of aggregated
sparse LDA for diverse

BCI-related functions must be
reconnoitered.

[91] 2013 - STDA Classification accuracy 80.8 ± 6.32% ERP signal classification
Displayed superior ERP signal

categorization performance with
scarce training samples.

Categorization performance
must be further augmented.

[92] 2014 - SVM Classification accuracy
59.75%, 72.89%
and 91.42% for

four, three and two
mental tasks

Mental task categorization Effectively executed multiclass
mental task categorization.

Involved in an additional
procedure for determining the

best electrodes and tasks.

[93] 2021 - CNN - - EEG signal categorization Displayed good EEG signal
categorization performance.

Cortical regions involved with
hand unlock/close gestures

must be studied.

[94] 2018 CSP LDA, ELM, SVM - - EEG signal analysis
Described brain activities

leading to a substantial rise in
hemodynamic response.

Suggested recognition of brain
areas and categorization of

hemodynamic reactions.

[95] 2013 Spatial filtering Bayesian network Classification accuracy - EEG signal analysis Effectively analyzed EEG
signals.

The accuracy score should be
further enhanced.

[96] 2010 - Unsupervised
LDA Mean, PMean - EEG signal analysis Outperformed the cutting-edge

approaches.

Analysis pertinent to
asynchronous BCI tasks is

required.

[97] 2019 -
Sparse

discriminant
analysis

Classification accuracy, time
complexity >60% P300 detection and

categorization
Exhibited good P300

categorization accuracy.
The accuracy score must be

further incremented.

[98] 2018 PCA Weighted SVM - - P300 detection Performed better in P300 signal
recognition.

Training time must be
lowered.

[99] 2016 - SVM Accuracy 92.5% P300-based BCI operation Improved P300 detection
performance.

Augmentation of the test set
for accuracy up-gradation is

required.

[100] 2011 -

Linear SVM,
stepwise-LDA,
fisher’s LDA,

Bayesian-LDA,
ANN, non-linear

SVM

Intensification sequences - P300-based BCI operation Bayesian LDA exhibited
remarkable performance.

The impact of the P300 speller
on stroke patients should be

scrutinized.
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4. Methods
4.1. Feature Extraction and Selection

Various feature extraction and selection techniques are employed for BCIs in the
literature [25,26]. Commonly exploited techniques explored in this survey include:

4.1.1. Common Spatial Pattern (CSP)

CSP is a feature extraction technique wherein multichannel EEG signals are projected
into a subspace [101] and differences between the categories are highlighted while the
similarities are reduced. In this scheme, Gaussianity is assumed in addition to considering
the time and frequency as known variables. In CSP, a transformed EEG matrix could be
obtained by implementing the following steps:

Normalization of the spatial covariance of EEG [101] using Equation (1)

CK = (YK YK
T)/Trace (YKYK

T) (1)

where K represents the categories and trace(y) represents the sum of diagonal values of y.
Computation of spatial covariance using Equation (2):

Cov = ∑ CK, ∀ categories (2)

CK = ZKλk ZT
K (3)

where ˘K represents eigenvalue’s diagonal matrix and ZK represents eigenvector matrix.
Computation of projection matrix using Equation (4):

P = ZT U, (4)

where U denotes whitening transformation matrix estimated using U =
√

λZ0. The reduc-
tion of original EEG signal into uncorrelated components through projection matrix using
Equation (5):

W = PY, (5)

where W denotes the source component of EEG signals containing specific and common
components of diverse tasks.

Estimation of original EEG ‘Y’ using Equation (6):

Y = P−1 W (6)

where columns of P−1 denote the spatial patterns.
The CSP method was exploited for extracting highly distinctive EEG features in [28,35,49,67]

for EEG signal categorization. An artifact-dropping CSP scheme was utilized in [39] for ex-
tracting EEG attributes. This feature extraction approach provided more robust features than
the ordinary CSP technique. This approach achieved 91.43% accuracy. The CSP scheme used
in [65] for extracting discriminative temporal, frequency, and spatial features utilized a sparse
regression technique for selecting crucial features for classifying EEG-MI signals. This method-
ology is aimed at optimizing the spatial-temporal-frequency patterns for distinctive feature
extraction. Through identifying distinctive spatial features on every time-frequency segment,
spatial optimization was achieved. Distinctive features contained in several time-frequency
segments were selected automatically by this approach. A further selection of vital features was
achieved using a sparse regression scheme. Optimization of spatial-temporal-frequency patterns
greatly augmented the classification performance.

4.1.2. Principal Component Analysis (PCA)

PCA is a well-known method for dimensionality reduction and feature extraction.
In PCA, input data are projected on a s-dimension eigenspace of s eigenvectors. All data
points are projected in the first eigenvector’s direction such that resultant variance is at
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optimum. PCA executes transformation through optimizing the rate of decrease of data
variance. It employs a transformation matrix containing low variance elements. The
transformation matrix TM is represented using Equation (7):

TM = (1/n) ∑n
i−1(pi− µ) (pi− µ), (7)

where pi represents the element of the N dimension database and n represents total elements
in the actual database.

TM · Z = Λ · Z, (8)

where Z indicates the matrix with eigenvectors z1, z2, . . . , zn and Λ denotes eigenvalue
diagonal matrix containing elements λ1, λ2, . . . , λn.

The PCA technique was exploited in [42,44,56,59,66] for extracting signal features.
The authors in [31] exploited the PCA method for extracting features. They split the
time sequences of different EEG channels into transient blocks and computed connectiv-
ity matrices for every block through adaptive sparse representation. They constructed
the connectivity patterns and applied PCA to those patterns for learning discriminatory
representations. The PCA-based feature extraction led to promising MI categorization
performance than existing schemes.

4.1.3. Independent Component Analysis (ICA)

In ICA, data are decomposed into several independent components as per their
statistical interrelation. ICA expresses the output/resultant signal v(t) with respect to
input/source signal u(t) as represented by Equation (9):

v(t) = f (u(t)) + n(t), (9)

where f denotes the mixer function and n(t) represents the noisy signal.
ICA method was employed for feature extraction in [50,66]. In [36], ERS, ERD, and

movement-pertinent cortical potential features were exploited for classifying left/right-
hand motion EEG signals. These features were extracted through ICA. The employed ICA
technique encouraging feature extraction outputs for classification.

4.1.4. Autoregressive (AR) Method

The AR method is employed for extracting time-domain attributes. It is generally
exploited in time series fitting and can characterize EEG signals better. AR coefficients thus
provide effective features from EEG signals. Let {z1, z2, . . . , zn} be a time series, now the
AR model can be defined using Equation (10):

zt = Φ0 + Φ1 Zt -1 + Φ2 Zt -2 + ... + Φk Zt−k + εt, (10)

where k denotes the order of AR model, εt denotes Gaussian noise, Φ0 represents absolute
term and {Φ1, Φ2, . . . , Φk} represents autoregressive coefficients. Using the AR model, the
relationship between historical values {zt−1, zt−2, . . . , zt−k} and the observed value zt can
be determined.

The authors in [34,48,62,66] executed feature extraction using AR technique. Highly
useful features were extracted using this technique. In the AR method, determining the AR
coefficients and order are considered major issues. In [53], AR coefficients were estimated
using the Burg technique, and order was determined using the Akaike criterion. The
authors in [58], estimated AR coefficients through the forward–backward method. The
estimated coefficients were employed as features, which were determined based on AR
order, recorded time length, and selected channel. This AR-based feature extraction scheme
provided effective features for EEG signal categorization.
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4.1.5. Wavelet Packet Decomposition (WPD)

WPD is a feature analysis technique in the frequency-time domain. In WPD, signals are
projected onto the space which is spanned through a group of mutually orthogonal wavelet
basis functions and are decomposed into high frequency and low-frequency parts. Figure 2
illustrates the steps involved in WPD [53]. The u(n) and v(n) in Figure 2 represent the low-
pass and high-pass filters. The signal in WPD is initially decomposed into low-frequency
and high-frequency parts. Further, (in the next layer) the signal is again decomposed into
low frequency and high-frequency parts. This decomposition process is continued until
desired features are obtained. The wavelet packet coefficients of (y + 1) th level and zth
sample are obtained using Equations (11) and (12):

a2n, y+1
z = ∑

p
v (p− 2z) an, y

p (11)

a2n+1, y+1
z = ∑

p
u (p− 2z) an, y

p (12)

where n = 0, 1, 2, . . . , 2y − 1. v and u are filters and a denotes wavelet packet coefficient.

Figure 2. WPD process.

The packet coefficients of the xth band form a 1-dimensional vector ax = [ax 1, ax 2, . . . , ax p].
WPD method was exploited in [53] for extracting EEG signal features. This method

provided effective features for classifying EEG signals.

4.1.6. Wavelet Transform (WT)

WT is another popular frequency-time analysis scheme. In WT, functions are obtained
through either shifting or scaling a single function called the mother wavelet. On appli-
cation of WT, signals are decomposed into diverse frequency ranges, which are further
categorized into detail and approximation levels. For any signal c(n), the WT is defined
using Equation (13):

WT(p, q) = |p|−1/2
∫ ∞

−∞
c(n) ϕ

(
n− q

p

)
dn (13)

where ϕ(n) represents wavelet function, p represents the scale factor, and q represents
shift factor.

The two crucial types of WT include Discrete Wavelet Transform (DWT) and Continu-
ous Wavelet Transform (CWT). Figure 3 illustrates the multi-scale decomposition through
DWT [53]. The u(n) and v(n) in Figure 3 are the low-pass and high-pass filters. Initially, the
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original/input signal x(n) is decomposed into high and low frequencies. In the next layer,
the low-frequency part is decomposed further until desired features are acquired.

Figure 3. DWT process.

WT was utilized for extracting EEG features in [30,37,41,43,46,54–66]. The original
EEG signal was reduced into detail and approximate frequency coefficients. In the initial
level, the EEG signal was transformed into low-frequency and high-frequency components
of length half that of the original signal. The transformation was applied till desired
features were obtained. The adoption of WT in these works yielded useful EEG features
for classification. A wavelet ICA method was introduced in [50] by fusing WT and ICA
for extracting necessary features required for categorizing EEG signals. This approach
provided effective features necessary for categorizing EEG waves. EEG signal attributes
in [52] were extracted via a flexible analytic WT (FAWT) scheme. Initially, EEG signals
were decomposed into sub-bands by FAWT, and then temporal moment-dependent EEG
features were extracted from those sub-bands for MI classification. In [59], EEG features
were extracted through the WT technique while the feature dimensions were reduced
using PCA for EEG-enabled emotion classification. EEG features for MI classification were
extracted through continuous WT and Short-Time Fourier Transform (STFT) in [38]. The
continuous WT scheme provided better feature extraction outputs than the STFT method.
A hybrid EEG feature extraction scheme was employed in [53]. The required features were
extracted through the autoregressive approach, wavelet packet decomposition (WPD), and
WT methods. The redundant and irrelevant features were discarded by selecting only the
optimal features using a class separability-based feature selection scheme. This hybrid EEG
feature extraction scheme provided 99.43% accuracy.

4.1.7. Fast Fourier Transform (FFT)

The time signals are converted to the frequency domain through Fourier analysis.
FFT is performed by estimating the discrete Fourier transform (DFT) of the sequence. FFT
estimates the transformation through factorizing the DFT matrix into a product of sparse
factors. The N-point DFT of a sequence is represented using Equation (14):

Xk = ∑N−1
n=0 xn e−i2πk/N (14)

where Xk denotes the energy of current frequency and k = 0, . . . , N − 1 represents
current frequency.

The authors in [44,57,61] exploited FFT for extracting EEG features. It provided desired
features for EEG signal categorization. The features required for emotion categorization
from EEG information were extracted in [60] using the FFT method along with the WT
technique. Both of the methods provided useful features for emotion discrimination. The
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employed feature extraction methodology offered a promising procedure for visualizing
the subject’s emotional condition/state.

4.1.8. Other Techniques

In [29], feature selection for EEG signal categorization was achieved using a genetic
algorithm (GA) with SVM. Based on selected features by GA, data were classified us-
ing SVM. This approach yielded 76% accuracy. In [32], the filter bank spatial filtering
method was exploited for extracting required features from EEG raw signals through
retaining only discriminative data and eliminating features that are irrelevant for MI
classification. The extracted EEG features considerably enhanced the categorization per-
formance. In [33], a sparse spectrotemporal decomposition (SSD) scheme was exploited
for extracting relevant signal attributes necessary for EEG-MI categorization. This feature
extraction scheme showed promising outcomes in obtaining desired features. In [35], EEG
feature extraction was performed through Riemannian geometry and common spatial
features (CSP) methods, and a particle swarm optimization (PSO) scheme was utilized
for replacing irrelevant features with the mean values of contiguous features. The rele-
vant features thus selected improved EEG signal categorization accuracy for multifarious
subjects. In [40], appropriate features for BCI-oriented emotion recognition were selected
through the minimum-redundancy–maximum-relevance (mRMR) method. The features
were selected based on two conditions, namely, maximum relevance and minimum re-
dundancy. The mRMR scheme selected the better features by reducing data redundancy
between good and bad features and choosing the ones which correlated the most with
the categorization variable. The selected features helped in recognizing multiple emotion
types. In [45], features of EEG signals captured during resting state, right hand MI and
left hand MI were extracted through a Kolmogorov complexity approach. Initially, EEG
data were segregated into non-overlapping fragments. Then features were extracted via a
Kolmogorov complexity technique for signal categorization. These features improved EEG
signal categorization for multi-category samples. In [51], an empirical mode decomposition
(EMD) scheme was used for extracting EEG signal attributes. Initially, EEG signals were
decomposed into integral mode functions (IMFs). Further characteristic features acquired
from IMFs were fed as inputs to the classifier. These features greatly enhanced the EEG
signal categorization performance. Feature selection in [43] was executed using lasso
regularization and the mRMR technique. The selection of optimal features through these
feature selection approaches helped in addressing the inter-subject inconsistency and in
enhancing the classifier’s performance. EEG signal attributes in [47] were extracted through
the short-term windowing scheme for classifying the mental state. Feature selection was
carried out using different evaluators such as symmetrical uncertainty, information gain,
oneR, correlation, and evolutionary scheme. Among all feature selection evaluators, the
evolutionary technique displayed good results in selecting relevant EEG signal attributes.
The authors in [62] employed power spectral density (PSD), autoregressive modeling, and
Hjorth parameter methods for extracting EEG features. The feature ranking was executed
using least angle regression (LAR), and optimal features were selected through a leave-one-
out (LOO) criterion. These methods offered valuable features for EEG signal categorization.
A Bayesian approach was exploited in [63] for extracting discriminative EEG features. The
feature extraction procedure was optimized through a spatiospectral filter optimization
(SSO) scheme for the MI classification task. This Bayesian-SSO approach provided im-
proved features for MI categorization and largely helped in attaining >95% accuracy. The
authors in [64] exploited the Hilbert transform method for extracting signal features. The
proposed Hilbert transform scheme effectively extracted the ERP and band power features
for classifying MI tasks. EEG attributes extracted via Hilbert transform showed the finest
performance compared to previously exploited methods. In [66], required features were
extracted through an interval feature extraction method. The performance of this technique
was compared with ICA, WT, and PCA. The proposed interval feature extracting method
displayed superior performance than others. The redundant and irrelevant features were
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discarded and desired features were selected through a fast correlation-dependent filter
technique. In a fast correlation-dependent filter, relevant features are correlated with class
variables and not correlated among themselves. Features are selected as per their mutual
data with class variable while the features with mutual data below a selected threshold are
discarded. The employed feature extraction methodology offered improved features for
ERP signal categorization.

4.2. Classification

Different classification methods are exploited in BCI systems [25,26,68]. Commonly
exploited techniques explored in this survey include:

4.2.1. K-Nearest Neighbor (KNN)

In KNN, training samples closest to an unobserved point are determined and are
assigned to the dominant class. For BCI, nearest neighbors generally are obtained by
utilizing a distance metric. In [30], the distance between other samples and target sample
was determined using Euclidean distance measure:

d(x, y) =
√

∑n
i=1(xi− yi) 2, (15)

where d(x,y) denotes a distance between x and y samples, n represents a number of features,
and xi, yi represents the sample’s ith feature.

KNN was employed in [56–58,61,69] for categorizing EEG signals. In [73], KNN was
used for EEG signal categorization. For classification, Euclidean distance was measured
between neighboring signals, and further majority class was allocated to test signal among
K neighbors. The KNN method in [73] offered the highest categorization accuracy value
with enhanced specificity and sensitivity percentages. In [52], a subspace KNN scheme
was employed for MI categorization. The subspace KNN scheme estimated a fresh set
of KNN whenever an arbitrary subspace was selected. The majority voting on the test
sample’s class membership was carried out using aggregating k adjacent neighbors in
every selected subspace. This subspace KNN achieved 99.33% accuracy and outperformed
existing methods.

4.2.2. Linear Discriminant Analysis (LDA)

LDA seeks to isolate two or more categories of events or objects representing dis-
tinct categories. It employs hyperplanes for accomplishing this operation. Separating
hyperplane is achieved by searching for a projection that optimizes the distance between
the classes. The authors in [30,41,58,74] employed LDA for categorizing EEG signals and
in [89] for classifying ERP signals. An aggregated sparse LDA approach was employed
in [90] for categorizing ERP signals. For classification, the aggregated sparse LDA learned
multiple discriminant vectors by utilizing the conformity between least-squares regression
and LDA. This approach performed well and yielded better outputs for single-test ERP
classification and outperformed the standard LDA.

4.2.3. Naive Bayes

In naive Bayes, features are assumed to be independent in every class. It forecasts the
class C of an arriving instance Z consisting of features [z1, . . . , zn] through estimating the
highest probability using Equation (16):

P(Ci /Z)=
(

P(Ci)∏j P(zj/Cj

)
)/P(Z), (16)

The naive Bayes technique was employed in [46,47,56,59] for categorizing EEG signals
and in [64,65] for MI categorization. The authors in [65], classified EEG-MI signals by
assigning a weight for every selected CSP attribute using a weighted naive Bayes method.
This approach provided 85.24% accuracy in MI categorization and performed better than
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various competing techniques in existing works. EEG-MI signal categorization in [43]
was accomplished using the Gaussian Naive Bayes (GNB) technique. The EEG-MI signals
were categorized by considering Gaussian distribution and exploiting the naïve Bayes con-
cept. The categorization performance of GNB was compared with two classical classifiers,
namely, SVM and LDA. The experimental assessment reported that GNB showed better
performance than SVM and LDA as GNB achieved 95.47% accuracy while SVM and LDA
achieved 92.26% and 91.10% accuracy. The probabilistic naive Bayes (NB) method was
employed in [46] for limb movement classification. It aimed at classifying right and left leg
motion directly from EEG signals. Comparison of probabilistic NB with conventional NB
indicated that the probabilistic NB performed better than conventional NB in classifying
right–left lower limb motion by achieving 78.33% accuracy.

4.2.4. Extreme Learning Machine (ELM)

ELM is based on random initialization of hidden nodes of single-layer hidden feed-
forward networks. The only parameters to be learned are the connections between the
output layer and the hidden layer [80].

EEG signal categorization was performed in [53,77] using the ELM method. The
exploitation of ELM for EEG signal categorization in [80] revealed that it displayed greater
accuracy than SVM and LDA schemes. In [48], the ELM technique was exploited for
classifying distinct mental tasks. For classification, the weights between hidden and input
neurons were chosen and fixed depending on some probability density functions. Then, the
weights between output and hidden neurons of the network were determined. Comparison
of ELM performance with back propagation neural network (BPNN) and SVM indicated
that ELM performed better concerning training time. EEG signals were classified using
a multi-kernel ELM in [67]. This approach was developed by integrating polynomial
kernel and Gaussian kernels for exploring supplementary data from multiple features
for a more powerful categorization of EEG. In multi-kernel ELM, multiple kernels were
defined and fused for achieving better EEG signal categorization. This method provided
precise EEG classification outputs as compared to similar existing schemes and achieved
87.5 ± 10.5% accuracy. A sparse Bayesian ELM method was employed for classifying
EEG signals in [82]. This approach considered the advantageous characteristics of both
Bayesian learning and ELM for EEG signal categorization. The redundant data reduction
was achieved by utilizing a relevance identification prior. The ELM structure was optimized
by excluding surplus hidden neurons automatically. This method exhibited 78.5 ± 14.3%
accuracy. In [42], EEG-MI signal categorization was accomplished using a kernel extreme
learning machine (K-ELM). For classification, the specific kernel function was chosen using
a specific kernel technique. The proposed K-ELM outperformed the Bayesian approach in
EEG-MI signal categorization. Moreover, it achieved 96.54% accuracy.

4.2.5. Support Vector Machine (SVM)

SVM employs supervised learning for isolating two distinct categories of data. The
classes are detected using a discriminant hyperplane. In SVM, the hyperplane that opti-
mizes the distance from the nearest training points is selected. It employs diverse kernels
functions such as linear, polynomial, radial basis, etc. for performance optimization.

SVM was employed in [28,29,36,44,58,70,75] for classifying EEG signals and in [60]
for emotion categorization. SVM was also exploited for ERP signal categorization in [66].
EEG signals linked with random words and right and left body movements were classi-
fied robustly in [37] using the multiclass SVM approach. The employed SVM provided
encouraging outputs with 52.78%, 86.12%, and 96.88% sensitivities for EEG signals linked
with random word and right, left body movements. The adoption of SVM classifier in [41]
led to improved EEG signal categorization than LDA. It provided 88.6% accuracy in EEG
signal categorization. The authors in [50] employed a fuzzy kernel-SVM approach for
classifying EEG signals. This approach offered 85.2% specificity, 86.1% accuracy, and 77.7%
sensitivity. EEG signals were classified by radial basis function (RBF) Kernel with the SVM
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approach in [53]. It offered 100% EEG signal categorization accuracy. In [55], EEG signals
were classified using a fuzzy SVM scheme. In the proposed fuzzy SVM classifier minor
proportion of support vectors were employed for choosing trade-off parameter and kernel
parameter along with membership parameter solely depending on training data. This
approach classified EEG signals effectively and outperformed the standard SVM technique
by achieving 80.71% accuracy. The authors in [78] exploited a multiple kernel-SVM scheme
for classifying EEG signals. The RBF kernel and polynomial kernels were combined to
form multiple kernels. The proposed multiple kernel-SVM displayed better performance
than single kernel SVM by providing mean accuracy of 99.20% and >75% for two-class and
multiclass classification. In [79], the suitability of SVM for EEG signal categorization was
discussed. It suggested SVM as the efficient classifier for categorizing EEG signals. Distinct
ML classifiers such as SVM, naive Bayes, and LDA were exploited in [64] for classifying
both right- and left-hand MI functions. In classifying MI functions, different classifiers
such as SVM, naïve Bayes, and LDA achieved 82.22%, 71.64%, and 75.52% accuracy. The
outcomes showed that the SVM performed better than LDA and naive Bayes schemes.
In [92], the classification of diverse mental tasks for the BCI system was performed using
the SVM technique. The SVM technique exhibited mean success rates of 59.75%, 72.89%,
and 91.42% for classification of four, three and two mental tasks. The distinct emotions were
categorized by a multiclass SVM scheme in [40]. This approach outperformed the existing
techniques by providing 62.4% and 60.72% accuracy for valence and arousal dimensions
when categorizing the emotions.

4.2.6. Neural Networks (NNs)

NNs are improved techniques that are exploited for classification in many BCI appli-
cations. In NNs, inputs known as neurons are connected with weights. The neurons with
weights are processed using processing units. These units comprise a summation section
that is ultimately linked to output [29]. Different types of NNs include Multilayer Per-
ceptron (MLP) networks, Artificial Neural Networks (ANNs), and Convolutional Neural
Networks (CNNs).

A. Multilayer Perceptron (MLP)

MLP comprises three layers, namely, input, output, and hidden. In MLP, the second
input layer’s output is fused to create another layer, and so on, till the problem is suitably
classified. It employs a backpropagation method for training NNs.

The authors in [30,49,57] employed MLP for classifying EEG signals. The exploitation
of different ML classifiers such as an autoencoder, SVM, logistic regression along MLP
in [54] revealed that MLP displayed superior performance in EEG signal categorization.
Results signified that the MLP offered 95.58 ± 0.5% accuracy.

B. Artificial Neural Networks (ANN)

ANNs comprise a group of neurons linked among others arranged in layers. The
patterns which codify the tangible problem codification (c) are transmitted through layers
and the data are transformed with respective synaptic weights (w). Furthermore, sum-
mation of these data is performed by neurons in the following layer for creating another
input known as bias. The bias is a threshold that indicates the minimum level required for
neuron activation and is denoted by θ. Equation (17) represents the summation function.

q= ∑N
i=1 ciwi + θ (17)

The summation result is then evaluated using transfer function f (q) leading to output
neuron. These data are then forwarded to other linked neurons, till the final layer is reached
where the ANN output is obtained.

The authors in [44,56,69,76] employed ANNs for EEG signal categorization. It was
noticed that the ANNs provided superior classification outputs than other compared
techniques. In [44], ANNs trained using a classical backpropagation scheme was exploited
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for categorizing EEG signals connected with diverse mental tasks such as math, baseline,
figure rotation, visual counting, and letter composing. Data recorded while performing
these tasks were divided into testing and training sets. One trail was employed for testing
and the remaining 9 trails for training. The number of input layer neurons were varied as
per the input vector’s length. This technique offered 84% accuracy. In [59], ANNs were
used for categorizing six distinct emotions, namely, satisfied, pleasant, happy, frustrated,
sad, and fear along with different ML schemes such as KNN, naive Bayes, and SVM. The
ANN structure employed 6 output and 10 hidden layers for classifying distinct emotional
states. The KNN, naïve Bayes, SVM, and ANN achieved 49.82%, 50.7%, 51.82%, and 55.58%
accuracies. Results signified that among the exploited ML schemes, ANN displayed good
classification performance by providing greater accuracy.

C. Convolutional Neural Networks (CNN)

In CNN, neurons are organized into three dimensions, namely, height, width, and
depth. CNNs comprise a five-layered structure involving input layer, convolutional layer,
linear unit layer, pooling, and fully connected layer [38,88]. Considering a CNN archi-
tecture comprising L layers, an input vector, M maps, b weight vector, ξ neurons, Ne
electrodes, Nssignal values and Np segments of signal values, then the layers 1, 2, 3, and 4
are represented using Equations (18)–(21) as

σ(1, M, ξ1) = ∑Ne
i=0 aij b(1, M, i) + bias→ (18)

where ai j denotes input vector of layer L0

σ(2, M, ξ2) → = ∑Ns/Np
i=0 a (1, M, ξ ∗

(
Ns/Np

)
)b(2, M, i) + bias (19)

σ(2, ξ3) =→∑M2
i=0 ∑Np

k=0 a (2, i, k) b(4, i, k) + bias (20)

σ(4, ξ4) = →∑ξ3
i=0 a (3, i)b(4, i) + bias (21)

CNN technique was used in [33] for MI classification. Using CNN, time-frequency
data were extracted from receptive fields. Then, by employing spatial data, feature
responses were recalibrated which further ameliorated the MI categorization perfor-
mance. It was noted from the results that the exploited CNN offered 79.3% accuracy.
The authors in [35,38,86] employed CNN for MI categorization. This approach improved
accuracy for different BCI subjects. A deep CNN approach was used in [84] for MI classifica-
tion. This approach effectively classified the raw MI-EEG waves of the right- and left-brain
electrodes without any unnatural feature extraction or preprocessing operations. EEG
features were learned using a 5-layered CNN, dimension reduction was carried out using
a 4-layered max pooling and final classification was achieved using a fully-connected CNN
layer. In group-wise classification, this approach exhibited accuracy of 95.76%, 97.28%,
96.01% and 94.80% for 10, 20, 60 and 100 subjects. In [88], convolutional neural networks
(CNNs) were employed for classifying ERP signals. This approach outperformed the
existing technique under two conditions: (a) with 10 epochs and (b) with 8 electrodes. In
this work, seven CNN-based classifiers (i.e., three multi-classifiers and four individual
classifiers with distinct feature sets) were proposed. Best results were obtained with multi-
classifiers rather than individual classifiers. About 95.5% accuracy was achieved with the
multi-classifier solution.

4.2.7. Other Techniques

A neuro-fuzzy classification approach was exploited for categorizing EEG signals
in [39]. The EEG non-stationaries were handled using a self-regulatory gaussian fuzzy
system. The self-regulatory learning method captured training samples as per the priority
and further created, pruned, or upgraded fuzzy rules through scanning existing knowl-
edge content in data patterns for rules’ creation. This neuro-fuzzy scheme showed larger
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performance improvement than existing techniques. It achieved 91.43% accuracy. A multi-
class AdaBoost with ELM technique was exploited in [45] for EEG signal categorization.
For classification, the weights between hidden and input neurons were chosen and fixed
depending on some probability density functions. Then the weights between output and
hidden neurons of the network were determined. Using Adaboost, training samples were
fed every time to the weaker learner. Further, hardly categorized samples were allocated
higher weights while easily categorized samples were allocated lower weights. After
multiple rounds, the acquired poor prediction rules were linearly combined for ultimate
classification. This approach displayed better mean categorization accuracy and greatly
outperformed classical classification approaches. It provided 79.5% accuracy in EEG sig-
nal categorization. The authors in [62] adopted a linear least squares (LLS) classifier for
categorizing EEG signals. The proposed LLS classifier displayed better categorization
performance than LDA and SVM. A long short-term memory (LSTM) with an ensemble
learning approach was exploited in [72] for classifying EEG waves. A classy activation
function was introduced into conventional LSTM for maximizing the training procedure
and lowering the vanishing gradient effect. The bagging method was then applied to
LSTM for optimizing classification performance. The proposed ensemble-LSTM method
displayed 97.13% of EEG categorization accuracy and greatly outperformed the classical
LSTM method. In [81], the sparse Bayesian (SB) technique with Laplace priors was em-
ployed for classifying EEG signals. Utilizing the Laplace prior, the discriminant vectors
were learned and all needed parameters were estimated automatically using training data.
The results signified that the SBLaplace method outperformed the competing techniques
for EEG signal categorization particularly for limited sample size environments. The
signals were categorized using a stacked autoencoder (SA), CNN, and a fused SA-CNN
scheme in [83]. In the fused SA-CNN scheme, the input EEG features were initially ex-
tracted through training convolutional layer filters of CNN. Later, these features were fed
to SA for classification. Experimental outputs reported that the fused SA-CNN scheme
provided better EEG-MI signal categorization results than the individual SA and CNN
techniques. Moreover, the fused SA-CNN scheme offered 90% accuracy and showed 9%
improvement in kappa value when compared to individual SA and CNN methods. The au-
thors in [85] performed MI classification through the deep metric learning (DML) method.
Convolutional encoders were employed for training a feature space in the training phase
wherein spectrogram features of identical subjects are clustered. Another CNN encoder
was adopted in the inference phase for comparing the EEG spectrogram’s features. The
nearest neighbor method was then exploited for classifying the EEG spectrogram category.
The proposed DML method exhibited 64.7% accuracy in MI classification. Moreover, this
approach performed classification effectively with only a few training samples compared
to existing techniques. Mental state categorization through EEG-dependent BCI was pre-
sented in [47]. Different classifiers such as SVM, Bayesian networks, and random forest
were exploited for classifying diverse mental states such as concentrated, relaxed, and
neutral conditions. Among the employed classifiers, random forest showed superior per-
formance and provided 87.16% accuracy. However, it achieved similar accuracy as that of
BPNN and SVM. A spatio-temporal discriminant analysis (STDA) was exploited in [91] for
classifying ERP signals. The discriminant data between non-target and target classes were
optimized through determining projection matrices from temporal and spatial dimensions
jointly which further helped in training sample minimization and feature dimensionality
reduction. The results signified that the STDA method offered 80.0 ± 6.32% accuracy.

4.3. Comparative Study

The number of recent papers (i.e., from 2016 to 2021) on BCI-related tasks reviewed in
Section 4.3 are depicted in Figure 4. In this survey, a greater number of papers published
in 2020 (13 papers) are considered for acquiring data about the latest progress attained
in BCIs.
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Figure 4. Publication year analysis.

4.4. Findings of the Research

Reviewing existing ML methods for feature extraction, feature selection, and classifi-
cation in Sections 4.1–4.3, it could be observed that the performance and efficacy of ML
methods must be further optimized with reduced training and computational complexities
without compromising accuracy for acquiring anticipated and precise outcomes concern-
ing BCI-oriented applications. Better methods for reducing over-fitting issues in neural
networks and ameliorating the classification accuracy in distinct BCI databases concerning
distinct BCI tasks are needed for satisfying the multifarious demands of BCI users.

5. Conclusions

This review work has presented a profound study of BCI and explained the scope of
ML technology in BCI. It has reviewed various BCI-related studies and described the role
played by ML towards diverse BCI tasks such as MI classification, emotion classification,
and mental state and mental task classification. It has explored diverse feature extraction,
selection, and classification schemes exploited in the literature for classification of EEG,
ERP signals, mental state, mental task, limb motion, emotion, and MI. It has reviewed
and tabulated various ML schemes and other techniques employed by researchers for
diverse BCI tasks for providing more knowledge and encouraging improved ML-based
BCI applications in the future.

BCI operations are linked with numerous tasks. Therefore, categorization of only
EEG/ERP signals linked with a single task such as either MI or emotions or mental states
is inadequate for developing contemporary BCI applications. Improved ML frameworks
are thus desired for determining EEG, ERP, and other sorts of biomedical signals linked
with multiple and discriminative tasks within one framework simultaneously with greater
precision level. Moreover, ML models with shorter training time, lesser training samples
without immolating classification quality, sensitivity, and computational complexity are
strongly needed for existing and looming BCI applications.
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