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Abstract: Detecting events in videos is a complex task, and many different approaches, aimed at
a large variety of use-cases, have been proposed in the literature. Most approaches, however, are
unimodal and only consider the visual information in the videos. This paper presents and evaluates
different approaches based on neural networks where we combine visual features with audio features
to detect (spot) and classify events in soccer videos. We employ model fusion to combine different
modalities such as video and audio, and test these combinations against different state-of-the-art
models on the SoccerNet dataset. The results show that a multimodal approach is beneficial. We
also analyze how the tolerance for delays in classification and spotting time, and the tolerance for
prediction accuracy, influence the results. Our experiments show that using multiple modalities
improves event detection performance for certain types of events.

Keywords: audio; video; multimodality; event classification; event detection; machine learning; soccer

1. Introduction

The generation of video summaries and highlights from sports games is of tremendous
interest for broadcasters as a large percent of audiences prefer to view only the main
events in a game. Having worked closely with and observed soccer domain experts for
a decade, and lately been part of building a soccer tagging operation center used in the
Norwegian and Swedish elite leagues, we see the need for high-performance automatic
event detection systems in soccer. The current manual annotation process, where a group
of people annotates video segments as they are aired during a live broadcast, is tedious
and expensive. The “holy grail” of event annotation has long been anticipated to be a fully
automated event extraction system. Such a system needs to be timely and accurate, and
must capture events in near real-time.

One of the key components of such a comprehensive pipeline is the detection and
classification of significant events in real-time. Existing approaches for this task need
significant improvement in terms of detection and classification accuracy. Much work has
been done on using visual information to detect events in soccer videos, and promising
examples with a good detection performance [1–4] are available. However, in order to be
usable in practice, the detection performance must be high, and for events such as goals in
soccer, 100% (perfect) detection is required for any method to be considered for deployment
as an official tool.

In this paper, we aim to develop an intelligent soccer event detection and classification
system using machine learning (ML). In particular, we explore the potential in the data
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itself to improve the performance of both event detection (also called spotting), and event
classification. Typically, a data stream contains several types of data. For example, a sports
broadcast might be composed of several video and audio streams. The final broadcast
consumed by the viewers typically consists of a video stream created from various camera
views and an audio stream containing, for example, the commentators’ voices with the
background audio from the audience in the stadium. However, research on detecting
particular events has traditionally focused solely on the visual modality of the video. Even
in multimedia venues, researchers have for a long time presented work based on video
only. Thus, our objective in this study is to evaluate whether the narrow focus of existing
multimedia research limits the potential for high-performance event detection, by not
utilizing all available modalities.

Using the SoccerNet dataset [1], from which a number of samples are presented in
Figure 1, we evaluate two previous unimodal approaches focusing on video [2,4] and ex-
periment with different parameters, showing the trade-offs between accuracy and latency.
Subsequently, we evaluate the performance of an audio model, where the audio is sampled
and transformed into a Log-Mel spectrogram [5], which is analyzed using a 2D-ResNet
model. Following this single-modality event analysis, we fuse the models using softmax
predictions. Our results show the various trade-offs between different requirements, but
more importantly, that existing state-of-the-art visual models achieve increased perfor-
mance when a causally related audio analysis is added. Hence, we prove the importance
of multimedia analysis in future event detection systems. The main contributions of this
work are as follows:

(a) Card.

(b) Substitution.

(c) Goal.

Figure 1. Sample frames from the SoccerNet dataset [1] for three different event types. The middle
frame is at the annotated time for the event.

• We implement, configure, and test two state-of-the-art visual models [2,4] built on the
ResNet model and assess their detection performance of various soccer events, such as
cards, substitutions, and goals, using the SoccerNet dataset [1]. As expected, adding
higher tolerance (enabling the models to use more data) improves the performance,
trading off event processing delay for event detection (spotting) accuracy.
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• We implement a Log-Mel spectrogram-based audio model, testing different audio
sample windows and assessing the model’s event detection and classification perfor-
mance. The results show that using the audio model alone gives poor performance
compared to using the visual models.

• We combine the visual and audio models, proving that utilizing all the potential of
the data (multiple modalities) improves the performance. We observe a performance
increase for various events under different configurations. In particular, for events
such as goals, the multimodal approach is superior. For other events such as cards
and substitutions, the gain depends more on the tolerances, and in some cases, adding
audio information can be detrimental to the performance.

The rest of the paper is structured as follows. In Section 2, we provide an overview of
related work. We present our ML models in Section 3 and show how we combine them
to achieve a multimodal system for soccer event classification in Section 4. In Section 5,
we present our experiments and discuss various aspects in Section 6. We summarize our
results and conclude the paper in Section 7.

2. Related Work

This section briefly introduces relevant research on action detection and, more specifi-
cally, the automatic detection of events from soccer videos.

2.1. Action Detection and Localization

Computer vision has been an active field of research for many decades. One of
the most important areas of computer vision is video understanding. There are several
interesting subareas of video understanding, but the two most relevant in our context are
action recognition and action detection, i.e., aiming to find what actions occur and at what
time, in videos.

Several different approaches have been proposed for the task of action recognition. In
earlier works, features such as histogram of oriented gradients (HOG), histogram of flow
(HOF), motion boundary histograms (MBH) [6], and dense trajectories [7,8] have shown
promising results. More recently, proposed approaches have started to use some variant
of neural networks. For example, Karpathy et al. [9] provided an empirical evaluation of
convolutional neural networks (CNNs) on large-scale video classification using a dataset
of 1 million YouTube videos belonging to 487 classes. Multiple CNN architectures were
studied to find an approach that combines information across the time domain. The CNN
architecture was modified to process two streams to improve runtime performance, a
context stream and a fovea stream. Moreover, the stream was cropped at the center of the
image and down-sampled. The runtime performance was increased by up to 4×, and the
accuracy of classification was increased by about 60–64% compared to the 2014 state-of-
the-art. The learned features generalized to a different smaller dataset, showing benefits
of transfer learning. Simonyan and Zisserman [10] also used a two-stream convolutional
network, related to the two-streams hypothesis [11], and their performance exceeded the
previous works using deep neural networks, by a large margin. They used two separate
CNNs, with a spatial CNN [12] pre-trained on ImageNet [13] using RGB input by sampling
frames from video, and the temporal stream using optical flow fields as input.

Tran et al. [14] proposed 3-dimensional convolutional networks (3D-CNNs) and found
out that 3D CNNs are more suitable for spatio-temporal feature learning than 2D CNNs,
also having compact features. Later, Tran et al. [15] introduced a new spatiotemporal
convolutional block R(2+1)D, which is based on (2+1)D convolutions separating the 3D
convolution into two steps. The idea is that it may be easier for the network to learn spatial
and temporal features separately. Furthermore, Feichtenhofer et al. [16] have introduced
the SlowFast architecture. The model is based on the use of two different frame rates as
input, where the idea is to have a high-capacity slow pathway that sub-samples the input
heavily, and a fast pathway that has less capacity but significantly higher frame rate.
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Carreira and Zisserman [17] introduced an inflated 3D-CNN (I3D) that is expanded
from the 2D CNN inflation, using both 3D convolution and the inception architecture [18].
I3D works much like the two-stream networks, using one network for the RGB stream
input and one for the optical flow. To enable 3D convolution, they inflated filters on a pre-
trained 2D CNN, i.e., they used transfer learning to initialize the 3D filters. Feichtenhofer
et al. [19] explored the fusion process with 3D convolution and 3D pooling. The two-stream
architecture is also extended with ST-ResNet [20], which adds residual connections [21] in
both streams and from the motion stream to the spatial stream. Research into a combination
of hand-crafted features and deep-learned features has also shown promising results [22].
Wang et al. [23,24] proposed temporal segment networks (TSNs), arguing that existing
models mostly focused on short-term motion rather than on long-range temporal structures.
TSN takes a video input, separates it into multiple snippets, and makes a prediction using
two-stream networks for each snippet. C3D [14] explored learning spatio-temporal features
with 3D convolutional networks. When compared to existing 2D convolution solutions, 3D
convolution indeed proves beneficial by adding temporal information such as motion.

Donahue et al. [25] used long-term recurrent convolutional networks and models com-
bining CNN as a feature extractor, and they fed the features to a long short-term memory
(LSTM) model. This approach produced comparable results to Simonyan and Zisserman’s
two-stream approach on the UCF101 dataset [26]. Qiu et al. [27] presented Local and Global
Diffusion (LGD) networks. That is a novel architecture for the learning of spatio-temporal
representations capturing long-range dependencies. LGD networks have two paths: a local
and a global path for each spatio-temporal location. The local path describes local variation,
and the global path describes holistic appearance. The LGD network outperformed several
state-of-the-art models at the time on benchmarks, including UCF101 [26], where it reached
an accuracy of 98.2%. Kalfaoglu et al. [28] combined 3D convolution with late temporal
modeling. With the use of bidirectional encoder representations from transformers (BERT)
instead of temporal global average pooling (TGAP), they increased performance for 3D
convolution, achieving an accuracy of 85.10% and 98.69% for the HMDB51 [29] and UCF101
datasets, respectively.

Action detection aims to find the time interval in a video where a specific action occurs
and to return these time tags along with a classification of the action. The task can be
divided into two parts: generating temporal region proposals (also referred to as temporal
action localization) and classifying the type of action taking place within the proposed time
frame. In many studies, these two aspects are considered separately [23,30–32], but they
are also adressed jointly with a single model in other works [33,34]. Some success has
been observed with sliding window approaches [35]. However, this is computationally
expensive and lacks flexibility due to fixed window sizes. Some works have focused
on generating the temporal proposals, which can then be used with a classifier [36,37].
Inspired by Faster R-CNN [38], Xu et al. [39] created an end-to-end model for temporal
action detection that generates temporal region proposals, followed by classification. There
are two approaches to the proposal generation task: top down and bottom up. The top
down approach has been used more frequently in previous works [31,40,41] and involves
pre-defined intervals and lengths. This has the problems of boundary precision and
the lack of flexibility in duration. Some methods have used the bottom up approach,
like TAG [31] and BSN [37]. The drawback for them is the lack of ability to generate
sufficient confidence scores for retrieving proposals. Recently, Lin et al. [37] addressed this
challenge by introducing boundary-matching network (BMN), which generates proposals
with more precise temporal boundaries and more reliable confidence scores. Combined
with an existing action classifier, they reported state-of-the-art performance for temporal
action localization.

In this work, we focus on action detection in the context of sports, and, more specif-
ically, soccer videos. We refer to this task as event detection (also called spotting), which
serves the purpose of identifying actions of interest in soccer games such as goals, player
substitutions, and yellow/red cards (bookings).
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2.2. Event Detection in Soccer Videos

Researchers have worked on capturing and analyzing soccer events for a long time,
for various applications ranging from the verification of goals through goal-line tech-
nology [42], to player and ball tracking for segmentation and analysis [43–45], and the
automatic control of camera movements for following the gameplay [46]. Events have also
been extracted offline using metadata from news and media [47]. In this work, we are
interested in the extraction of game happenings such as goals, cards, and substitutions in
real-time (from live video streams), and in this context, the detection of events in soccer
videos is not a new concept. Earlier approaches for the automated detection of selected
events have employed probabilistic models such as Bayesian Networks [48,49], and hidden
Markov model (HMM) [50–54]. With the rise of machine learning, there has been growing
interest in using support vector machine (SVM) [55–60] and deep learning [45,61–65] due
to their relatively higher performance (detection accuracy) and the availability of more
advanced computing infrastructures.

After the release of SoccerNet by Giancola et al. [1], works on action detection in
soccer videos through neural networks have gained prominence over solutions based on
SVMs. SoccerNet was released with a baseline model reaching a mean average precision
(mAP) of 49.7% for tolerances ranging from 5 to 60 s for the task of spotting, which has
been defined by the authors as finding the temporal anchors of soccer events in a video.
Giancola et al. proposed a sliding window approach at 0.5 s stride, using C3D [14], I3D [17],
and ResNet [21] as fixed feature extractors. Rongved et al. [2,3] used a ResNet 3D model
pre-trained on the Kinetics-400 dataset [66] and reported an average-mAP of 51%, which
is an increase from the baseline provided in Giancola et al. [1]. Rongved et al. further
showed that the model generalized to datasets containing clips from the Norwegian soccer
league Eliteserien and the Swedish soccer league Allsvenskan. The results showed that,
in clips containing goals, they could classify 87% of the samples from Allsvenskan and
95% of the samples from Eliteserien, with a threshold of 0.5. Cioppa et al. [4] introduced a
novel loss function that considers the temporal context present around the actions. They
addressed the spotting task by using the introduced contextual loss function in a temporal
segmentation module, and a YOLO [67]-like loss for an action spotting module creating
the spotting predictions. This approach increased the average-mAP for the spotting task
to 62.5% and is currently considered the state-of-the-art for the SoccerNet spotting task.
Another approach to the SoccerNet spotting task was studied in Vats et al. [68], where
the authors introduced a multi-tower temporal convolutional network architecture. 1D
CNNs of varying kernel sizes and receptive fields were used, and the class-probabilities
were obtained by merging the information from the parallel 1D CNNs. They reported an
average-mAP of 60.1%, which has a difference of 2.4% from Cioppa et al. [4] with a simpler
approach using a cross-entropy loss function. More recently, Zhou et al. [69] presented a
solution where they fine-tune multiple action recognition models on soccer data to extract
high-level semantic features, and design a transformer-based temporal detection module to
locate the target events. They achieve good results in the SoccerNet-v2 spotting challenge
with an average-mAP of about 75%.

In this work, we focus on the solutions presented by Cioppa et al. [4] and Rongved
et al. [2,3] as representatives of state-of-the-art models and attempt to augment them using
a multimodal context that includes both video and audio information.

2.3. Multimodality

The idea of a multimodal analysis of video content goes back at least 20 years. For
example, Sadlier et al. [70] performed audio and visual analysis separately, then combined
the statistics of the two approaches afterwards, showing the potential of multimodal
analysis. Wang et al. [48] extracted audio and visual features from sport videos to generate
keyword sequences, where a traditional SVM classifier was used to group the features, and
an HMM classifier automatically found the temporal change character of the event instead
of rule based heuristic modeling, to map certain keyword sequences into events.
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Recently, newer approaches using deep neural networks have also been presented for
use cases other than soccer. Ortega et al. [71] combined audio, video, and textual features
by first separately using fully connected layers, followed by concatenation. SlowFast [72]
used video frames as input at different sample rates and combined these with an audio
stream that takes Log-Mel spectrograms as input, with lateral connections and a special
training method to avoid overfitting.

In the context of our own research (event detection and classification in soccer videos),
AudioVid [73] used a pre-trained audio model to extract features and combine them with
the baseline model NetVLAD [1] at different points through concatenation. They found
that audio generally increased the performance, and achieved a mAP of 7.43% for an action
classification task and 4.19% for an action spotting task using SoccerNet. Gao et al. [74]
used a new dataset including video (460 soccer game broadcasts) and audio information
(commentator voice for 160 of the games, categorized as “excited” and “not-excited”) to
benchmark existing methods such as I3D [17], I3D-NL [75], ECO [76], and pySlowFast [16],
on detecting events (“celebrate”, “goal/shoot”, “card”, and “pass”) and found that I3D-NL
achieves the best result. However, despite having a real-world deployment, the dataset
from this work is not open.

In this work, we apply the idea of using multiple modalities for event detection in
soccer videos, which has more frequently been demonstrated for HMMs and SVM, using
deep learning models. More specifically, we focus on the state-of-the-art models from [2,4]
(which improve upon the baseline model used by [73]) and augment these with a Log-
Mel spectrogram-based audio model. We quantify the performance benefits for different
event classes using the same SoccerNet dataset as our benchmark and point out when
multimodality might be helpful and when it might actually be detrimental.

3. Tested Models

In this section, we describe the models we have experimented with for both visual
and audio information. For the visual analysis, we used the model introduced by Cioppa
et al. [4], the model presented by Rongved et al. [2], and a basic 2D CNN model. As
mentioned in Section 2.2, the approach proposed in Cioppa et al. is currently considered
the state-of-the-art for the SoccerNet spotting task, and Rongved et al. have shown that
their model could generalize to multiple datasets. Thus, these can be considered as
representative approaches of existing work. The 2D CNN model serves as a baseline. For
the audio analysis, we have created another ResNet-based model by transforming audio
signals into Log-Mel spectrograms and analyzing these.

3.1. Visual Model: CALF

As mentioned above, Cioppa et al. [4] introduced a loss function that considers the
temporal context present around the actions, called context-aware loss function (CALF).
Their model consists of a base convolution, a segmentation module that uses their novel
loss function, and a spotting module. In the context of this work, we refer to this model as
“CALF”. Our implementation follows the description provided in the original paper. The
inputs to the model are the ResNet [21] features provided with the SoccerNet dataset [1]
(see Section 5.1 for details).

3.2. Visual Model: 3D-CNN

Based on the model presented by Rongved et al. [2], we use an 18-layered 3D-ResNet
on the video frame inputs. The model is composed of several residual blocks that contain
3D convolutions, with batch-normalization and ReLU. A visual representation of the
pipeline is shown in Figure 2. Additionally, the model has been pre-trained on the Kinetics-
400 [66] dataset.
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Video

3D-ResNet

Figure 2. Illustration of the pipeline used by the video-based 3D-ResNet model.

3.3. Visual Model: 2D-CNN

We use a 2D-CNN model that uses the pre-extracted ResNet features provided by
SoccerNet. A visual representation of the overall pipeline is shown in Figure 3, and further
details of the model are depicted in Figure 4. The model takes in (2 ∗W)× F features,
where W is the window size used for sampling in seconds and F = 512. Inspired by
the approach in SoccerNet [1], we first use a 2D convolution with a kernel 1× F. This is
followed by batch-normalization and another 2D convolution that has a kernel of W

2 × 32,
such that it has a temporal receptive field of W

2 . Finally, we have two fully connected layers
and an output layer.

Video

2D-ResNet

PCA

ResNet Features

2D-CNN

Figure 3. Illustration of the pipeline used by the video-based 2D-CNN model. A pre-trained ResNet
is used to extract features from video, followed by PCA [1]. The features can then be used to train a
network for action detection tasks.
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ResNet Features

Time

Sample

2D Convolution
Kernel: 1× F

Batch Normalization

2D Convolution
Kernel: W

2 × 32

Batch Normalization

Fully-Connected

Fully-Connected

Fully-Connected

Prediction

Window size

Figure 4. Detailed workflow for the 2D-CNN model. This model uses a pre-computed set of features
and is tested with both visual and audio-visual (visual augmented with audio) features in our study.

3.4. Audio Model

Our audio model is based on transforming the audio into Log-Mel spectrograms [5].
Figure 5 shows the pipeline for the audio model. First, audio is extracted from video in
wave-form, which again is used to generate Log-Mel spectrograms. As several other ap-
proaches using Log-Mel spectrograms, we then use a CNN as a classifier, i.e., an 18-layered
2D-ResNet [21], in the same way as we train our visual models. We also test with different
window sizes over which the spectrograms are generated, representing the temporal extent of
the input used.
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Video

Extract Audio

Audio Signal

.Log-Mel Spectrogram

2D-ResNet

Figure 5. Illustration of the pipeline used by the audio-based model. First, audio is extracted from
the video. The audio is used to compute Log-Mel spectrograms, which are then used as inputs to
a 2D-ResNet.

4. Model Fusion

In order to use multiple modalities such as video and audio, different models need
to be combined. There are multiple ways of fusing models. We focus on two different
approaches, which are detailed below.

4.1. Early Fusion through Concatenated Features

Early fusion, also referred to as data-level fusion or input-level fusion, is a traditional
way of fusing data before conducting an analysis [77]. Within the context of our work, this
approach translates to generating concatenated audio-visual features (i.e., generating audio
features and concatenating them with existing visual ResNet features), which can then
be used for training. We use the ResNet features supplied in SoccerNet [1] as our visual
features. For our audio features, we first train an audio model using Log-Mel spectrograms
on W = 8. Next, we remove the last layer, resulting in a 512-dimensional feature vector.
These features are calculated 2 times per second, and we concatenate them such that we
align them over time, resulting in a 1024-dimensional feature vector, 2 times per second.
We illustrate this process of concatenated feature generation in Figure 6.

4.2. Late Fusion through Softmax Average and Max

In late fusion, also referred to as decision-level fusion, data sources are used indepen-
dently until fusion at a decision-making stage. This method might be simpler than early
fusion, particularly when the data sources are significantly varied from each other in terms
of sampling rate, data dimensionality, and unit of measurement [77].

Within the context of our work, this approach translates to fusing independently built
video and audio models by taking the softmax average or max of their predictions at test
time. The intuition behind this approach is that, in cases where the video model might
make a strong prediction that an event has occurred, the audio model might have weaker
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and made more uniform predictions, or vice versa. For softmax average fusion, we use the
audio and video models, which have been trained on their respective inputs. For each
sample, we take the average softmax prediction between the two models. For softmax max
fusion, we calculate it similarly to softmax average, except that instead of average, we use
the maximum softmax prediction between the two models. The process is illustrated in
Figure 7.

Video

AudioVideo Frames

Feature ExtractionFeature Extraction

Concatenate

Model

Figure 6. Early fusion. Illustration of how audio-visual features can be created. A ResNet is used
to compute visual features based on single frames. For the audio, a Log-Mel spectrogram is used
to train a 2D-ResNet and further used as a feature extractor by removing the output layer. These
features are then concatenated.

Video

AudioVideo Frames

Log-Mel-SpectrogramsResNet Features

2D-ResNet2D-CNN

Softmax PredictionSoftmax Prediction

Average / Max

Prediction

Figure 7. Late fusion. Visualization of how two seperate models can be fused through softmax average:
a visual pathway that uses a feature extractor with a 2D-CNN, and an audio pathway that uses
Log-Mel spectrograms with a 2D-ResNet. These models are trained individually, and the output
predictions are fused by softmax (average or max).

5. Experiments and Results

We have performed several experiments to evaluate the performance of different
models, using the SoccerNet dataset for both spotting and classification tasks.



Mach. Learn. Knowl. Extr. 2021, 3 1040

5.1. Dataset

We used the soccer-specific SoccerNet [1] dataset released in 2018. This is a dataset
containing 500 soccer games from 2014 to 2017 with games from six European elite leagues.
It has a total duration of 764 h and includes 6637 annotations of the event types goal, (yel-
low/red) card, and substitution. This gives a frequency of an event happening every 6.9 min
on average. Along with the three classes above, we follow the example in Rongved et al. [2]
and add a background class by sampling in between events. If the time distance between
two consecutive events is larger than 180 s, then a new background sample is added in the
center, such that a background sample will never be within 90 s of another event.

In Table 1, we present the distribution of different events and how we have divided
the dataset into training, validation, and test splits. The training, validation, and test splits
are the same as in Giancola et al. [1], where the authors use 300 games for the training split,
100 games for the validation split, and 100 games for the test split. The augmented dataset
containing the added background class is used for the classification task, for which the
results are presented in Sections 5.4 and 5.5, while only the original three classes are used
by the CALF model for the spotting task, for which the results are presented in Section 5.6.

Table 1. The number of samples per class in our dataset.

Class Training Validation Test

Card 1296 396 453
Substitution 1708 562 579
Goal 961 356 326
Background 1855 636 653

Total 5820 1950 2011

The SoccerNet dataset also comes with extracted visual ResNet features [1]. The
features have been extracted from the videos by using a ResNet-152 [21] image classifier
pre-trained on ImageNet [13]. Features are extracted from single video frames at a rate of
2 times per second. Subsequently, principal component analysis (PCA) is used to reduce
the feature dimension to 512. These features are used in our experiments, as illustrated in
Figure 3.

In addition to the visual ResNet features provided by SoccerNet, we also extract
information from the video and audio streams in the dataset directly. In Table 2, we give
an overview of which type of data is used with which combination of models.

Table 2. Overview of which combination of models use which type of data, indicated by a checkmark.
ResNet features are the visual features extracted using the ResNet model accompanying the SoccerNet
dataset. Video is the 3D-ResNet extracted features using video frames from the games in SoccerNet.
Audio is the Log-Mel spectrograms generated from the audio of the games in SoccerNet.

Data Type
Task Model(s) ResNet features Video Audio

Classification

2D-CNN !

3D-CNN !

Audio !

2D-CNN + audio ! !

3D-CNN + audio ! !

Spotting
CALF !

Audio !

CALF + audio ! !
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5.2. Training and Implementation Details

We implemented the classification models in PyTorch [78], and trained on an Nvidia
DGX-2, which consists of 16 Nvidia Tesla V100 graphics processing units (GPUs) and has a
total memory capacity of 512 Gigabytes. For the CALF model, we used the implementation
from the original paper [4].

Both the 3D-CNN described in Section 3.2 and the 2D-ResNet described in Section 3.4
have similar architectures, with a global average pool (GAP) layer at the end. Due to the
GAP layer, varying input dimensions will not have an effect on the number of weights for
each model. For both the CALF and 2D-CNN models, described in Sections 3.1 and 3.3,
respectively, the models are generated based on input dimensions. This results in a greater
number of weights when the input dimensions increase.

5.2.1. Classification Task

For the classification task, we use a minibatch size of 32 for all models, an initial
learning rate of 0.001, and momentum of 0.9. We use a scheduler that reduces the learning
rate by a multiplicative factor of 0.1 every 10 epochs. During training, we saved the model
that had the best accuracy on the validation set and evaluate its performance on the test set.

The 3D-CNN is described in Section 3.2. This approach takes video frames as input.
First, due to high memory cost, we use a sample interval of 5, meaning that we reduce each
second of video from 25 frames to five frames. Additionally, we downscale the resolution
from 224× 398 to 112× 112. During training, we randomly flip all frames in a sample
horizontally, with 0.5 probability. In both training and testing, the samples are normalized.
We initialize the model with pre-trained weights, previously trained on the Kinetics-400
dataset [66], and fine-tune the model on the SoccerNet dataset over 12 epochs.

For the audio model, we first generate Log-Mel spectrograms, after which we train on
a 2D-ResNet as described in Section 3.4. We use ResNet features to create a 2D-CNN as
described in Section 3.3. For both the audio model and for the 2D-CNN on ResNet features,
we train for 25 epochs.

5.2.2. Spotting Task

For the spotting task, we use the CALF model and features from the audio model
described in Section 3.4 for W = 8. We experiment with ResNet features, audio features,
and concatenated features that combine the ResNet features and audio features. Our testing
is based on the implementation provided by Cioppa et al. [4].

The model takes as input chunks of frames, and the chosen chunk size in the original
CALF model covers 120 s of gameplay, with a receptive field of 40. We vary the chunk size
and temporal receptive field as they might affect the results for lower tolerances and for
when audio features are used. In this paper, we use the models that achieve the best results
on the validation, i.e., chunk sizes 120 and 60, with receptive fields of 40, 20, and 5. These
three configurations are referred to as “CALF-120-40”, “CALF-60-20”, and “CALF-60-5”.

We use a learning rate of 0.001 for all variations. For our tests with only ResNet
features, we train CALF for 300 epochs, validating every 20 epochs. Due to instabilities
while training with audio and concatenated features, we train for 30 epochs on audio
features and 50 epochs on concatenated features, and validate every 2 epochs.

5.3. Metrics

We use standard metrics like accuracy, precision, recall, and F1-score in our multi-class
classification experiments. The task can be interpreted as a one-vs.-all binary classification
problem for each class, where a prediction is considered to be a True Positive (TP) when the
model predicts the correct class, a False Positive (FP) when a class is incorrectly predicted,
a True Negative (TN) when a class is correctly rejected, and a False Negative (FN) when a



Mach. Learn. Knowl. Extr. 2021, 3 1042

class is incorrectly rejected. Based on these, accuracy is defined as the number of correct
predictions over the total number of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision, also called Positive Predictive Value (PPV), is the ratio of samples that are
correctly identified as positive over all samples that are identified as positive:

Precision =
TP

TP + FP
(2)

Recall is the ratio of samples that are correctly identified as positive over all
positive samples:

Recall =
TP

TP + FN
(3)

Finally, the F1 score is the harmonic mean of precision and recall:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

For spotting, we additionally use average-mAP, which is a metric introduced by
Giancola et al. [1], and is expressed as the area under the mAP curve with tolerances
ranging from 5 to 60 s. We regard each class separately as a one-vs.-all binary problem and
consider a positive prediction as a possible True Positive (TP) if it is within a tolerance δ of
the ground truth event with a confidence equal to or higher than our threshold. Formally,
we use the condition in Equation (5):

|gtspot − pspot| <
δ

2
(5)

where gtspot is a ground truth spot and pspot is a predicted spot in seconds. We take
predictions that match the criteria in Equation (5) and create unique pairs of predicted
spots and ground truth spots. These are matched in a greedy fashion, where each ground
truth spot is matched with the closest prediction. Predicted spots that have no match are
considered a False Positive (FP). For a given gtspot, when no predictions are made where this
condition holds, we consider it a False Negative (FN). We use the condition in Equation (5)
to calculate the average precision (AP) for each class:

AP = ∑
n
(Rn − Rn−1)Pn (6)

where Rn and Pn are the recall and precision at the n’th threshold, respectively. AP is
related to precision-recall and can be calculated as the area under the curve. This is useful
as it reduces the PR-curve to a single numerical value. Subsequently, we calculate the mAP:

mAP =
∑C

i=1 APi

C
(7)

where APi is AP calculated for the i’th class for C classes and mAP is the mean AP calculated
over all classes. This is then calculated for tolerances δ ranging between 5 and 60 s. Finally,
we use the mAP scores calculated for different δ to calculate the area under the ROC curve
(AUC) and the average-mAP score, which provides some insight into the model’s overall
performance in the range of 5–60 s.
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5.4. Input Window

When training on audio and/or video features, we need to consider what input works
best. To that end, we investigate the effect of different temporal windows used for our
classification samples, as well as the positioning of our samples relative to the events.

5.4.1. Window Size

The window size determines the temporal size of the input, for example, 1 s of audio
features around a given event. Using a large window may include other events or noise,
while using a small window might not capture enough relevant information. Another
implication of the window size is that it can impact the buffering needed in a real-time
scenario, where low latency is required. Regarding the effect the window size has on
performance, we observe an improvement for larger temporal inputs across all approaches
in Figure 8. Thus, for classification accuracy, a larger window is better. However, as large
windows can also have drawbacks, we continue experimenting with different windows
sizes in the following experiment.

Figure 8. Classification performance with respect to window size (2–32), using the audio model
and the ResNet visual features on the validation and test sets. In general, larger windows lead to
better results.

5.4.2. Window Position

The window position will impact what information we are using. We illustrate some
different positions in Figure 9:

• Centered window: A centered window will sample locally around a given event, includ-
ing both past and future information.

• Backward (shifted) window: For backward window, we only use temporal information
up to the point of an event. This can be thought of as a slightly different task, where
we predict what is about to occur based on information leading up to an event, rather
than what has happened.

• Forward (shifted) window: Samples from just after the event anchor may contain the
most relevant information, such as a soccer ball in a goal, with subsequent celebration
without ambiguous prior information.

There are both theoretical and practical consequences associated with the different
window positions. In real-time detection, reliance on future information requires buffering
before a prediction can be made, thus introducing an undesirable delay.
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Event

... ...

Time

Centered Window

Backward Window

Forward Window

Figure 9. Illustration of window positions relative to the event, for a given sample. A centered
window uses both past and future information, while a backward or forward (shifted) window relies
only on the past and future, respectively.

From Table 3, we observe that for the audio model, using a centered window performs
best at 75% accuracy on both the validation and test set. A forward shift results in a
drop in performance, and a backward shift performs the worst. This may be due to the
relative change in audio just before and after an event, which is only captured by the
center position.

Table 3. Comparison of the accuracy of classification for different models on the validation and test
sets, with respect to window position.

Accuracy (%)

Model-Dataset Window Size Centered Window Backward Window Forward Window

Audio-validation 16 75.23 66.82 70.62
Audio-test 16 75.09 65.09 69.02

ResNet-validation 16 89.33 76.62 89.08
ResNet-test 16 88.12 75.98 89.01

The results for the visual model show that there is little difference between centered
and forward shifted window positions. Backward shifted window performs worse, with
close to a 13% absolute drop in accuracy. The reason for this may be that for visual features,
the most interesting and discriminating information can be found after the event itself.
Thus, in the following experiments, we use a centered window.

5.5. Classification Performance

To evaluate the performance of the classification task, we performed several exper-
iments using the audio 2D-ResNet on Log-Mel spectrograms as described in Section 3.4.
This is compared to and combined with the two different visual models based on the
3D-CNN ResNet described in Section 3.2 and the 2D-CNN described in Section 3.3. These
models are combined by softmax average and softmax max described in Section 4. Ad-
ditionally, a separate model trained on concatenated audio features and ResNet features
is used.
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5.5.1. Overall Performance

We have first assessed the overall results across all events. As observed in Table 4 and
Table 5 for the 3D and 2D models, respectively, the audio model generally performs worse
than the visual model. Evaluating the results in Table 4 for the 3D visual model, the results
indicate that using visual information alone is slightly better. However, using the 2D visual
model, the results in Table 5 show improvements in most cases using result concatenation.
Thus, it is unclear if the multimodal approach improves performance. When combining
the visual and audio models at small window sizes, we observe that the results are worse
than the visual model but still competitive. However, the overall best results are present
for window sizes W > 16, where the softmax average outperforms the visual-only model.
It is therefore interesting to break down the performance into per-event classification to
evaluate whether there are differences between event types (which should be expected
as, for example, goals often have predictable audio with high sound and fans cheering,
whereas events like cards and substitutions have unpredictable audio).

Table 4. Comparison of the accuracy of classification on the validation and test sets, for different
models and late fusion alternatives. The audio model is described in Section 3.4, and the video-based
3D-CNN model is described in Section 3.2. The fusion of the audio and video features is performed
using either softmax average or softmax max, as described in Section 4.

Accuracy (%)

Dataset Window Size Audio Video Softmax Average Softmax Max

Validation 8 71.11 88.31 87.71 87.17
16 72.55 89.90 89.06 88.81

Test 8 72.15 89.69 88.35 87,89
16 73.90 90.87 89.07 88.92

Table 5. Comparison of the accuracy (%) of classification on the validation and test sets, for different
models and fusion alternatives. The audio model is described in Section 3.4, and the video-based
2D-CNN model with pre-extracted ResNet features is described in Section 3.3. The fusion of the
audio and video features is performed using early fusion (concatenation) or late fusion (either softmax
average or softmax max), as described in Section 4.

Accuracy (%)

Dataset Window Size Audio ResNet Concat. Softmax Average Softmax Max

Validation

2 63.54 81.08 84.46 78.72 78.46
4 68.26 84.26 87.64 82.31 82.31
8 72.15 87.08 88.51 86.21 85.79
16 73.90 89.74 91.23 89.38 89.03
32 75.49 90.67 92.51 92.05 91.59

Test

2 61.11 79.81 77.27 76.93 76.08
4 67.28 84.3 81.15 82.40 81.85
8 71.11 87.22 80.91 85.98 85.83
16 72.55 87.87 82.15 89.21 88.91
32 73.89 89.21 87.02 90.85 90.65

5.5.2. Performance per Event Type

For the per-event analysis, we used the same audio and visual models as described
above, and softmax average for the fusion of features. Table 6 shows the detailed results
using the 3D-CNN model, and Table 7 presents the 2D-CNN model. In Figure 10, we
highlighted some of the F1 scores given in the tables. In general, we observe that for
goals, combining audio information with visual information almost always improves
performance. For other events, it depends a bit on the configuration, but it appears that
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the more audio information is included, i.e., the larger the audio window, the better the
results become.

Table 6. Comparison of precision, recall and F1-score per class (event type), for the 3D model
(Section 3.2). W is the window size used for the input. The results for the combined input types are
obtained using late fusion with softmax average.

W = 8 W = 16

Class Input Type Precision Recall F1 Precision Recall F1

Card Audio 0.650 0.647 0.648 0.672 0.704 0.688
Card Video 0.876 0.874 0.875 0.900 0.874 0.887
Card Video + audio 0.844 0.861 0.852 0.868 0.868 0.868

Substitution Audio 0.694 0.718 0.706 0.777 0.674 0.722
Substitution Video 0.925 0.870 0.897 0.949 0.874 0.910
Substitution Video + audio 0.894 0.877 0.886 0.944 0.877 0.910

Goal Audio 0.942 0.902 0.922 0.908 0.874 0.891
Goal Video 0.924 0.926 0.925 0.913 0.966 0.939
Goal Video + audio 0.954 0.945 0.949 0.954 0.960 0.957

Background Audio 0.658 0.654 0.656 0.646 0.712 0.677
Background Video 0.836 0.879 0.857 0.853 0.905 0.878
Background Video + audio 0.848 0.855 0.851 0.834 0.884 0.858

Table 7. Comparison of precision, recall, and F1-score per class (event type), for the 2D model
(Section 3.3). W is the window size used for the input. The input type Combined is the combination
of the Resnet and audio models. The results for the Combined input type are obtained using late
fusion with softmax average.

W = 2 W = 4 W = 8 W = 16 W = 32
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Card Audio 0.564 0.552 0.558 0.601 0.618 0.609 0.650 0.647 0.648 0.672 0.704 0.688 0.632 0.664 0.648
Card ResNet 0.811 0.757 0.783 0.836 0.808 0.822 0.869 0.848 0.858 0.873 0.850 0.861 0.873 0.892 0.882
Card Combined 0.776 0.751 0.763 0.796 0.790 0.793 0.865 0.832 0.848 0.870 0.874 0.872 0.867 0.892 0.879

Substitution Audio 0.625 0.573 0.598 0.651 0.672 0.661 0.694 0.718 0.706 0.777 0.674 0.722 0.817 0.770 0.793
Substitution ResNet 0.866 0.794 0.829 0.885 0.874 0.879 0.909 0.883 0.896 0.923 0.869 0.895 0.933 0.870 0.901
Substitution Combined 0.803 0.741 0.771 0.818 0.841 0.830 0.857 0.872 0.865 0.922 0.893 0.907 0.945 0.914 0.929

Goal Audio 0.851 0.825 0.838 0.919 0.902 0.910 0.942 0.902 0.922 0.908 0.874 0.891 0.867 0.837 0.852
Goal ResNet 0.803 0.936 0.864 0.885 0.923 0.904 0.898 0.942 0.919 0.941 0.923 0.932 0.959 0.942 0.950
Goal Combined 0.878 0.929 0.903 0.937 0.951 0.944 0.940 0.957 0.948 0.969 0.948 0.958 0.960 0.948 0.954

Background Audio 0.524 0.579 0.550 0.622 0.597 0.609 0.658 0.654 0.656 0.646 0.712 0.677 0.691 0.714 0.702
Background ResNet 0.734 0.761 0.747 0.793 0.802 0.798 0.830 0.845 0.838 0.820 0.885 0.851 0.842 0.887 0.864
Background Combined 0.684 0.727 0.705 0.791 0.769 0.780 0.818 0.819 0.819 0.846 0.876 0.861 0.882 0.896 0.889

(a) Window size = 8 (b) Window size = 16
Figure 10. Classification performance in terms of F1 score, for the 2D (Section 3.3) and the 3D
(Section 3.2) models using different input types. We present the results for selected samples from
Tables 6 and 7, using window sizes of 8 and 16. The results for the combined input types are
obtained using softmax average. We observe that for the Goal class, the multimodal approach always
performs better.
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5.6. Spotting Performance

To test how different combinations of audio and visual features affect spotting per-
formance, i.e., detecting an event in the video stream, once again we experimented with
various settings. Here, we used the CALF model described in Section 3.1 with chunk sizes
60 and 120, and receptive fields of 5, 20, and 40. We compared the performance of the mod-
els using audio features, visual ResNet features, and combined audio and ResNet features
as input. The audio features were extracted from the model described in Section 3.4, and
the visual ResNet features were the ResNet features supplied along with SoccerNet [1]. The
combination (fusion) of audio and ResNet features was performed using the concatenation
process described in Section 4.1.

5.6.1. Overall Performance

From Table 8, we observe that for 2 out of 3 tested configurations (“CALF-60-20” and
“CALF-120-40”), using ResNet features alone achieves the highest average-mAP. The only
configuration that has an increase in average-mAP for input type of ResNet + audio is the
model with the smallest chunk size and receptive field (“CALF-60-5”). This may imply
that the benefits of concatenating audio and ResNet features compared to using ResNet
features alone are higher for smaller receptive fields.

Table 8. Performance of the CALF [4] model with different configurations, tested on the test set. The
mAP values indicate the Average Precision values averaged over all event types. The Combined
input type is the integration of the ResNet and the audio models.
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CALF-60-5 Audio NaN 0.0735 0.0010 NaN 0.1913 0.0075 NaN 0.3721 0.0187 NaN 0.3501 0.0293 0.0145
CALF-60-5 ResNet 0.1551 0.2947 0.2545 0.4385 0.5507 0.5113 0.5488 0.6110 0.5495 0.5766 0.6147 0.5634 0.5092
CALF-60-5 Combined 0.1425 0.1729 0.2123 0.4330 0.4780 0.5209 0.5453 0.5547 0.5998 0.5889 0.6135 0.6156 0.5408

CALF-60-20 Audio 0.0695 0.0704 0.0771 0.2416 0.1505 0.1940 0.3146 0.2084 0.2321 0.3729 0.2117 0.2475 0.2069
CALF-60-20 ResNet 0.3259 0.3069 0.3655 0.6401 0.5117 0.5493 0.6882 0.5327 0.5871 0.6145 0.5790 0.5971 0.5574
CALF-60-20 Combined 0.2419 0.2303 0.2769 0.5290 0.4659 0.4915 0.5984 0.5016 0.5683 0.6176 0.5398 0.6136 0.5231

CALF-120-40 Audio NaN 0.0374 0.0007 NaN 0.1519 0.0045 NaN 0.1585 0.0161 NaN 0.2454 0.0264 0.0123
CALF-120-40 ResNet 0.2195 0.2535 0.2869 0.6383 0.5819 0.6067 0.7199 0.6438 0.6425 0.7446 0.6506 0.6530 0.6007
CALF-120-40 Combined 0.1681 0.1855 0.2139 0.5749 0.4674 0.5579 0.6254 0.5836 0.6106 0.6602 0.5931 0.6345 0.5629

The highest average-mAP among all the tested CALF configurations is achieved by
the one that uses ResNet features only, with a chunk size of 120 and receptive field 40
(“CALF-120-40”). With respect to average-mAP, we observe that the configuration that
performs best with the ResNet + audio input type (“CALF-60-5”) does not outperform
either of the configurations which perform best with ResNet features alone, overall.

It should also be noted that for some configurations, using audio features alone did
not allow one to identify any events correctly. There might be several reasons for this, but
still, we see examples where the combination of audio and visual information improves
the results. As Table 8 depicts the combined results over all 3 event types (Card, Goal, and
Substitution classes), we next look at the spotting performance for each individual class,
similar to the classification performance analysis in Section 5.5.

5.6.2. Performance per Event Type

Inspecting the performance indicators in Figure 11 and Table 9, we observe a clear
distinction between different classes (event types). While the performance for Card and
Substitution events drops for two of the configurations, there is a significant increase in
the Average-AP for all three configurations for Goal events. Averaged across all three, the
increase is at nearly 7%. This may imply that some events are inherently easier to recognize
through audio than others, due to the nature of the event. It is easy to imagine that a goal



Mach. Learn. Knowl. Extr. 2021, 3 1048

might be easier to recognize based on sound than cards and substitutions, due to the loud
celebration that often follows a goal.

Table 9. Comparison of precision, recall, and F1-score per class (event type), for the CALF [4]
model with different configurations. Highlighted cells indicate the best Average Precision score
in each individual experiment. The Combined input type is the integration of the ResNet and the
audio models.
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CALF-60-5 Card Audio 0.0030 0.0667 0.0009 0.0096 0.2133 0.0089 0.0197 0.4378 0.0239 0.0254 0.5644 0.0398 0.0183
CALF-60-5 Card ResNet 0.1271 0.2733 0.2031 0.3489 0.4978 0.3748 0.4348 0.5556 0.4067 0.4486 0.5622 0.4184 0.3701
CALF-60-5 Card Combined 0.1455 0.0689 0.1242 0.4673 0.2222 0.3716 0.5779 0.2556 0.4218 0.6109 0.3000 0.4427 0.3728

CALF-60-5 Substitution Audio 0.0022 0.1537 0.0021 0.0102 0.3604 0.0134 0.0192 0.6784 0.0320 0.0275 0.4859 0.0479 0.0254
CALF-60-5 Substitution ResNet 0.1464 0.2827 0.2148 0.4353 0.5530 0.5323 0.5668 0.6148 0.5868 0.6185 0.6131 0.6007 0.5213
CALF-60-5 Substitution Combined 0.0941 0.2014 0.1421 0.2912 0.5583 0.5003 0.4183 0.6784 0.6311 0.4732 0.7491 0.6528 0.5299

CALF-60-5 Goal Audio NaN 0 0 NaN 0 0 NaN 0 0 NaN 0 0 0
CALF-60-5 Goal ResNet 0.1918 0.3282 0.3456 0.5312 0.6012 0.6269 0.6448 0.6626 0.6551 0.6626 0.6687 0.6709 0.6111
CALF-60-5 Goal Combined 0.1879 0.2485 0.3705 0.5406 0.6534 0.6909 0.6398 0.7301 0.7465 0.6825 0.7914 0.7514 0.6879

CALF-60-20 Card Audio 0.0229 0.0178 0.0101 0.0609 0.0156 0.0580 0.0879 0.0356 0.0761 0.1069 0.0311 0.0885 0.0618
CALF-60-20 Card ResNet 0.2574 0.2511 0.2973 0.5012 0.4511 0.4144 0.5293 0.4622 0.4495 0.4395 0.5089 0.4670 0.4238
CALF-60-20 Card Combined 0.2243 0.1889 0.1891 0.4330 0.3444 0.3647 0.5044 0.3800 0.4391 0.5221 0.4200 0.4676 0.3865

CALF-60-20 Substitution Audio 0.0251 0.1413 0.1193 0.1104 0.3410 0.2367 0.1623 0.4576 0.3111 0.2194 0.4753 0.3439 0.2695
CALF-60-20 Substitution ResNet 0.2832 0.2862 0.3244 0.6297 0.5318 0.5594 0.7048 0.5654 0.6177 0.6161 0.6237 0.6231 0.5640
CALF-60-20 Substitution Combined 0.1063 0.2014 0.1779 0.3040 0.5318 0.3896 0.3974 0.5848 0.4708 0.4320 0.6290 0.5550 0.4250

CALF-60-20 Goal Audio 0.1604 0.0521 0.1019 0.5536 0.0951 0.2872 0.6935 0.1319 0.3090 0.7925 0.1288 0.3101 0.2782
CALF-60-20 Goal ResNet 0.4371 0.3834 0.4746 0.7895 0.5521 0.6741 0.8304 0.5706 0.6941 0.7880 0.6043 0.7012 0.6653
CALF-60-20 Goal Combined 0.3952 0.3006 0.4637 0.8500 0.5215 0.7201 0.8934 0.5399 0.7951 0.8986 0.5706 0.8182 0.7383

CALF-120-40 Card Audio 0.0015 0.0222 0.0004 0.0068 0.1022 0.0042 0.0155 0.2333 0.0184 0.0261 0.3933 0.0343 0.0140
CALF-120-40 Card ResNet 0.2103 0.2444 0.2394 0.5624 0.5311 0.4802 0.6268 0.5822 0.5239 0.6522 0.6000 0.5399 0.4775
CALF-120-40 Card Combined 0.1505 0.1378 0.1587 0.5236 0.2956 0.4043 0.5230 0.4044 0.4453 0.5503 0.4133 0.4607 0.4012

CALF-120-40 Substitution Audio 0.0038 0.0901 0.0017 0.0099 0.3534 0.0091 0.0203 0.2420 0.0299 0.0287 0.3428 0.0449 0.0231
CALF-120-40 Substitution ResNet 0.1745 0.2155 0.2341 0.5685 0.5795 0.6269 0.6933 0.6590 0.6660 0.7218 0.6555 0.6735 0.6006
CALF-120-40 Substitution Combined 0.1047 0.1979 0.1562 0.3844 0.5053 0.5102 0.4682 0.6378 0.5629 0.5384 0.6572 0.5988 0.5021

CALF-120-40 Goal Audio NaN 0 0 NaN 0 0 NaN 0 0 NaN 0 0 0
CALF-120-40 Goal ResNet 0.2737 0.3006 0.3872 0.7841 0.6350 0.7131 0.8396 0.6902 0.7375 0.8598 0.6963 0.7455 0.6912
CALF-120-40 Goal Combined 0.2491 0.2209 0.3269 0.8167 0.6012 0.7592 0.8851 0.7086 0.8237 0.8919 0.7086 0.8441 0.7507

(a) CALF-60-5, tolerance = 5 (b) CALF-60-5, tolerance = 20 (c) CALF-60-5, tolerance = 60

(d) CALF-60-40, tolerance = 5 (e) CALF-60-40, tolerance = 20 (f) CALF-60-40, tolerance = 60

Figure 11. Spotting performance in terms of Average Precision per event type, for the CALF-60-5 and CALF-60-20 models
over the tolerances 5, 20, and 60. In general, we can observe that for goals, adding audio information almost always
improves performance. For other events, it depends on the configuration, but it seems like the more audio information is
included, the better the results get.

Since we observed that the performance has declined for card and substitution events,
where it has increased for goal events, it could be interesting to train a model using different
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modalities for different events. If one could identify events that benefit from concatenated
features and only use these features for the given events, the overall performance of the
ensemble model could be improved. As an example, if we combine the results from the
concatenated features for goals, and the ResNet features for cards and substitutions, we
increase the average-mAP by over 2%.

6. Discussion

In this work, our main aim is not to develop a completely novel model that yields
a performance surpassing the state-of-the-art but rather to assess the potential of using
multiple modalities, for event detection in soccer videos. We evaluate different model and
modality combinations from the state-of-the-art using different configurations, in order
to derive insights. In this respect, as also described in Section 2.3, the use of multiple
modalities is not a new idea, but the amount of work on deep neural networks is limited.
In this paper, we used two existing state-of-the-art visual models based on CNN and
assessed the effect of adding audio information on the detection accuracy, for different
types of events.

In general, our experimental results show that the benefit of analyzing audio informa-
tion alone, or in addition to the visual information, is dependent on the context or the type
of event. As shown in Tables 7 and 9, there are many events where the combined modalities
have a positive effect on detection and classification performance. Still, the improvement
is much more profound for events such as goals, which tend to be followed by a more
predictable type of sound (e.g., high volume audio with excited commentator or a cheering
crowd). This finding is in line with existing works focusing solely on audio information,
which typically focus on events where commentator and audience responses to the action
are distinguishable. For instance, Xu et al. [55] create seven audio keywords for detecting
potential events: long-whistling, double-whistling, multiwhistling, exciting commentator
speech, plain commentator speech, exciting audience sound, and plain audience sound,
with the justification that these have strong ties to certain types of events. Islam et al. [79]
propose an approach to extract audio features using Empirical Mode Decomposition (EMD)
that can filter out noises. They conduct a set of experiments on four soccer videos and show
that the proposed method can detect goal events with 96% accuracy. Albeit successful, this
approach might not be generalizable to different types of events as a standalone solution
and is tested on a relatively small scale. However, this is a very interesting area for research.
Our results show that, overall, multimodality has a more inconclusive effect on events
without any particular audio pattern. Thus, the choice of modalities should be based on the
target event. However, this does not discourage the use of finer-tuned and event-specific
audio models, which can be used together with visual models conditionally (depending
on context).

The visual CNN models we have experimented with are meant as examples of state-of-
the-art models. New models are currently being developed and tested. For example, in the
SoccerNet-v2 challenge [80], the best dataset benchmark models, CALF [4], AudioVid [73]
and NetVLAD [1], have achieved average-mAP values of 72.2%, 69.7%, and 54.9% for
goal events, respectively. Moreover, Zhou et al. [69] also achieved good results in the
SoccerNet-v2 spotting challenge as the winning team, with an overall average-mAP of
about 75% (the authors do not provide event-specific numbers). However, these numbers
are lower than our AP of 84% for goal events, achieved by the combined model as shown
in Table 9.

Another issue observed both in our results and in various SoccerNet papers
(e.g., [1,4,73,80]) is that the input window greatly affects performance. A larger window
yields more data to analyze and delays inference prediction in any live event scenario as one
must wait for the window to be available and processed. For example, our approach in [2]
relies on a small temporal window of 8 s after post-processing, and the values calculated
for tolerances δ > 8 can therefore be misleading. The average-mAP metric uses a range
of tolerances from 5 to 60 s, and since our model relies on local information rather than
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long-range contextual information regarding events, it is expected that higher tolerances
will only result in finding spots that are false positives. However, in a real-time setting, it
may be important to have as little delay in predictions as possible. For our approach, a
live prediction will have a delay of about 4 s (for tolerances δ > 8). This includes buffering
future frames and computation. The baseline model would have about 10 s of delay, while
the current state-of-the-art [4] would have about 100 s. It seems that long-range contextual
features can boost performance, and there is a trade-off between delay and the practical
ability to buffer future video frames.

7. Summary and Conclusions

In this paper, we present our research on detecting events in soccer videos, where we
evaluate the use of visual, audio, and the combination of visual and audio features. In
particular, we focus on three types of events (cards, substitutions, and goals), implement and
experiment with existing state-of-the-art visual models based on the ResNet model, using
the SoccerNet dataset containing 500 games and a total of 6637 annotated events belonging
to the above classes. Additionally, we develop an audio-based model using Log-Mel
spectrograms and similarly experiment with this model under different configurations.
Finally, we use a multimodal approach where we combine the video and audio models,
using both early fusion (feature concatenation) and late fusion (averaging/maxing the
softmax prediction values from independent models).

Our experimental results demonstrate the potential of using multiple modalities as
the performance of detecting events increases in many of the selected configurations when
features are combined. However, we have also seen that there is a difference in the ben-
efits gained from the multimodal approach with respect to different event types. More
specifically, the combination of audio and visual features proved more beneficial for the
Goal events than for Card and Substitution events. This yields insights into a potential new
research direction, where we could decide on the use of multiple modalities based on
targeted event categories since different events have different “associated” audio (e.g., for
goals, it is usually some predictable high volume cheering, whereas for substitutions and
cards, we do not have the same predictable audio). In summary, an ML-based event detec-
tion component utilizing several available data modalities can be an important component
of future intelligent video processing and analysis systems.

Our ongoing and future work include the following. Firstly, we would like to pursue
the path of deciding on the deployment of multimodality based on target event type.
Secondly, we would like to investigate more events that are of interest for soccer games,
for instance, by using the newer SoccerNet-v2 dataset (https://soccer-net.org, accessed
on 3 December 2021), which includes new categories. Thirdly, we would like to focus
on the generalizability of our algorithms and findings via cross-dataset analysis, using
results from multiple soccer, and, later on, other sports datasets. For instance, in addition
to exploring the SoccerNet-v2 dataset, we have also been experimenting with in-house
datasets we have been collecting from the Norwegian and Swedish elite soccer leagues,
currently containing about 1000 annotated events. Last but not least, we would like to
work on optimizing the individual models we have evaluated in this study, such as finding
the right trade-offs between detection latency (as determined by input window size and
position), processing overhead, and detection accuracy.
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